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The Problem of Iterates: Introduction

Theorem (Kotake–Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an
open set Ω ⊆ Rn. Then a smooth function f ∈ C∞(Ω) is
real-analytic if and only if for each compact K ⊆ Ω there are
constants C , h > 0 such that∥∥∥Pku

∥∥∥
L2(K)

≤ Chkk! ∀ k ∈ N0.

Problem of Iterates
Let P be a linear differential operator. If u is a
function(distribution) such that the iterates Pku satisfy uniform
estimates can we conclude that all derivatives of u satisfy these
uniform estimates?
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Gevrey vectors

We denote the Gevrey class of order s ≥ 1 by Gs(Ω) (Ω will always
denote an open set in Rn.) Let

P =
∑
|α|≤d

pαD
α Dj = −i∂j , pα ∈ Gs(Ω).

A distribution u ∈ D′(Ω) is an s-Gevrey vector of P if
Pku ∈ L2loc(Ω) for all k ∈ N0 and for each compact set K ⊆ Ω
there is a constant C > 0 such that∥∥∥Pku

∥∥∥
L2(K)

≤ C k+1(dk)!s , ∀ k ∈ N0.

The space of s-Gevrey vectors of P is Gs(Ω;P).
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The Theorem of Iterates in Gevrey classes

Theorem (Lions–Magenes 1970, Bolley–Camus 1981)

Let s ≥ 1. If P is an elliptic differential operator with coefficients
in Gs(Ω) then Gs(Ω;P) = Gs(Ω).

Theorem (Baouendi–Métivier 1982)

Let P be a hypoelliptic operator of principal type with real-analytic
coefficients. Then the following statements hold:

1. G1(Ω;P) = G1(Ω)

2. If s > 1 then for any V ⋐ Ω there exists s ′ > s such that for
any u ∈ Gs(Ω;P) we have that u|V ∈ Gs′(V ).
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The Theorem of Iterates II

▶ However, there are non-elliptic operators for which there are
analytic vectors which are not analytic.

▶ In the non-analytic Gevrey case we have a definite answer:
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The Theorem of Iterates II

▶ However, there are non-elliptic operators for which there are
analytic vectors which are not analytic.

▶ In the non-analytic Gevrey case we have a definite answer:

Theorem 1 (Metivier 1978)

Let P be a differential operators with coefficients in Cω(Ω) and
s > 1. Then the following statements are equivalent:

1. P is elliptic.

2. Gs(Ω;P) = Gs(Ω).



Denjoy-Carleman Classes

Definition
We say that M = (Mk)k≥0 is a weight sequence if M0 = 1 and

M2
k ≤ Mk−1Mk+1 ∀ k ∈ N.

A function f ∈ C∞(Ω) is ultradifferentiable of class {M} if for all
compact sets K ⊆ Ω there are constants C , h > 0 such that

sup
x∈K

|Dαf (x)| ≤ Ch|α|M|α| ∀α ∈ Nn
0.

E{M}(Ω) denotes the space of all ultradifferentiable functions of
class {M} in Ω.



Some basic conditions

Inclusion of real-analytic functions: If

lim inf
k→∞

(
Mk

k!

)1/k

> 0 (1)

then Cω(Ω) ⊆ E{M}(Ω).

Derivation Closedness: If M satisfies

∃Q > 0 : Mk+1 ≤ Qk+1Mk ∀ k ∈ N0, (2)

then any derivative of an element in E{M}(Ω) is itself
contained in E{M}(Ω).

We call a weight sequence M semiregular if M satisfies (1) and (2).
If M is semiregular then E{M}(Ω) is closed under composition with
real-analytic mappings (cf. [Hörmander 1990])
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Non-Quasianalyticity I

▶ We say that a weight sequence M is non-quasianalytic if

∞∑
k=0

Mk

Mk+1
<∞. (3)

▶ M is non-quasianalytic if and only if E{M}(Ω) is
non-quasianalytic, i.e.

D{M}(Ω) = E{M}(Ω) ∩ C∞
0 (Ω) ̸= {0}.

▶ Note that (3) implies (1).
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Non-Quasianalyticity II
A weight sequence M is strongly non-quasianalytic if

∃A > 0 :
∞∑
k=j

Mk

Mk+1
≤ A(j + 1)

Mj

Mj+1
∀ j ∈ N0.

Theorem (Petzsche 1980)

The weight sequence M is strongly non-quasianalytic if and only if
the associated Borel map

b{M} : E{M}([−1, 1]) −→ Λ{M}

f 7−→
(
f (k)(0)

)
k∈N0

is surjective.

Here we have set

Λ{M} :=
{
(ak)k ∈ CN0 : ∃C , h > 0 : |ak | ≤ ChkMk ∀ k ∈ N0

}
.
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Denjoy-Carleman vectors

Let M be a weight sequence and P be a differential operator of
order d with coefficients in E{M}(Ω).

A distribution u ∈ D′(Ω) is a {M}-vector of P if Pku ∈ L2loc(Ω)
and for all compact K ⊆ Ω there are constants C , h > 0 such that∥∥∥Pku

∥∥∥
L2(K)

≤ ChkMdk k ∈ N0.

E{M}(Ω;P) is the space of all {M}-vectors associated to P.



Remarks

▶ If P is an elliptic operator with real-analytic coefficients in Ω
then E{M}(Ω;P) = E{M}(Ω) for any semiregular weight
sequence M, see [Bolley–Camus–Mattera 1979].

▶ We need more restrictive conditions on M in the case that P
has merely ultradifferentiable coefficients of class {M}, see
e.g. [Lions–Magenes, 1970], etc.

▶ Some examples of weight sequences:

▶ Let s ≥ 1. The Gevrey sequence Gs given by G s
k = (k!)s is

strongly non-quasianalytic if and only if s > 1. Gs satisfies (2)
for all s ≥ 1.

▶ Let q > 1 and r > 1. The weight sequence Nq,r given by
Nq,r

k = qk
r

is strongly non-quasianalytic for all q, r > 1 but
Nq,r satisfies (2) if and only if 1 < r ≥ 2.

▶ Let σ > 0. The weight sequence Lσ given by
Lσk = k!(log(k + e))σk is not strongly non-quasianalytic for any
choice of σ > 0. However Lσ is non-quasianalytic if and only if
σ > 1. Finally, (1) and (2) hold for all σ > 0.
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Main Theorem

Theorem A (F.–Schindl 2023)

Let P be a non-elliptic operator with real-analytic coefficients in Ω.
If M is a strongly non-quasianalytic weight sequence then there is
a smooth function u ∈ C∞(Ω) such that

u ∈ E{M}(Ω;P) \ E{M}(Ω).

Corollary

Let P be a differential operator with real-analytic coefficients in Ω
and M be a strongly non-quasianalytic weight sequence which also
satisfies (2). Then the following statements are equivalent:

1. P is elliptic.

2. E{M}(Ω;P) = E{M}(Ω).
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Main Theorem: Invariant Version

Theorem A’
Suppose that the Borel map associated to the Denjoy-Carleman
structure E{M} is surjective.
Then for any non-elliptic partial differential operator P there is an
{M}-vector of P which is not a function of class {M}.



Sketch of the proof in the Gevrey case: Prologue
Let

P =
∑
|α|≤d

pα(x)D
α, pα ∈ C∞(Ω)

(
or Cω(Ω)

)
;

p(x , ξ) =
∑
|α|≤d

pα(x)ξ
α . . . symbol of P,

pd(x , ξ) =
∑
|α|=d

pα(x)ξ
α . . . principal symbol of P.

If P is non-elliptic then there are x0 ∈ Ω and ξ0 ∈ Sn−1 such that

pd(x0, ξ0) = 0.

Let δ > 0 be such that B(x0, 2δ) = {y ∈ Rn : |y − x0| ≤ 2δ} ⊆ Ω.
Then we have

∃D ≥ 1 ∀t ≥ 1 ∀ ε ∈ (0, 1) ∀x ∈ B(x0, 2δt
−ε) :

|p(x , tξ0)| ≤ Dtd−ε.
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Sketch of proof in the Gevrey case: Part 1

▶ For s > 1 given let σ ∈ (1, s) and 0 < ε ≤ d(s−σ)
2ds−σ < 1/2.

▶ Let ψ ∈ Gσ(Rn) ∩ C∞
0 (Rn) such that ψ(x) = 1 for |x | ≤ δ and

ψ(x) = 0 for |x | ≥ 2δ.

▶ The vector u is defined as

u(x) =

∫ ∞

1
ψ (tε(x − x0)) e

−tηe itξ0(x−x0) dt,

where η = (d − ε)/(ds) < 1/s.

▶ Then

Dk
ξ0u(x0) =

∫ ∞

1
tke−tη dt =

1

η
Γ

(
k + 1

η

)
+ o(1).

▶ Thus u /∈ Gs′ near x0 for all s ′ < 1/η.
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Sketch of proof in the Gevrey case: Part 2

▶ In order to estimate Pku we introduce functions Qk(x , t) such
that

Pku(x) =

∫ ∞

1
Qk(x , t)e

−tηe itξ0(x−x0) dt.

▶ It is (relatively) easy to see that

|Qk(x , t)| ≤ Ak+1
(
t(d−ε)k + (dk)!σtkε(2d−1)

)
.

▶ Using the fact that for each s > 0 there is a constant B > 0
such that ρdk ≤ Bk(dk)!s exp(ρ1/s/2) we obtain

|Qk(x , t)| ≤ Ak+1(dk)!s exp

(
−tη

2

)
for a generic constant A independent of k .

▶ Finally |Pku| ≤ Ak+1(dk)!s
∫∞
1 exp(−tν/2).
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Observations

If we want to modify Metivier’s proof to the case of
Denjoy-Carleman classes, we have to consider the following:

▶ For a given weight sequences M we need to find two other
weight sequences

▶ The second part can be relatively easily modified to the
Denjoy-Carleman case, if we still define u as a Fourier
integral, with a suitable kernel.

▶ The first part means in particular, that u is an optimal
function for Gs′ : u is not element of Gt for any t < s (in fact,
u /∈ E{M} for any strictly smaller DC-class EM ⊊ Gs′).

▶ The problem for us: Optimal functions for Denjoy-Carleman
classes have been previously constructed, but only as Fourier
series.

▶ Our first aim: to construct optimal functions in DC classes as
Fourier integrals.
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Some Definitions and Notation

Let M, N be weight sequences and A > 0.

M ≤ N :⇐⇒ Mk ≤ Nk ∀ k ∈ N0,

M ≤ AN :⇐⇒ Mk ≤ ANk ∀ k ∈ N0,

M ⪯ N :⇐⇒ ∃C , h > 0 : Mk ≤ ChkNk ∀ k ∈ N0,

M ≈ N :⇐⇒ M ⪯ N ∧ N ⪯ M,

M ⪹ N :⇐⇒ M ⪯ N ∧ N ⪯̸ M.

If M ⪯ N then E{M}(Ω) ⊆ E{N}(Ω) and
E{M}(Ω;P) ⊆ E{N}(Ω;P).

Furthermore for M, N and ρ > 0 we define two new weight
sequences:

▶ MN which is given by (MN)k = MkNk .

▶ Mρ given by (Mρ)k = Mρ
k .



Some Definitions and Notation

Let M, N be weight sequences and A > 0.

M ≤ N :⇐⇒ Mk ≤ Nk ∀ k ∈ N0,

M ≤ AN :⇐⇒ Mk ≤ ANk ∀ k ∈ N0,

M ⪯ N :⇐⇒ ∃C , h > 0 : Mk ≤ ChkNk ∀ k ∈ N0,

M ≈ N :⇐⇒ M ⪯ N ∧ N ⪯ M,

M ⪹ N :⇐⇒ M ⪯ N ∧ N ⪯̸ M.

If M ⪯ N then E{M}(Ω) ⊆ E{N}(Ω) and
E{M}(Ω;P) ⊆ E{N}(Ω;P).

Furthermore for M, N and ρ > 0 we define two new weight
sequences:

▶ MN which is given by (MN)k = MkNk .

▶ Mρ given by (Mρ)k = Mρ
k .



Some Definitions and Notation

Let M, N be weight sequences and A > 0.

M ≤ N :⇐⇒ Mk ≤ Nk ∀ k ∈ N0,

M ≤ AN :⇐⇒ Mk ≤ ANk ∀ k ∈ N0,

M ⪯ N :⇐⇒ ∃C , h > 0 : Mk ≤ ChkNk ∀ k ∈ N0,

M ≈ N :⇐⇒ M ⪯ N ∧ N ⪯ M,

M ⪹ N :⇐⇒ M ⪯ N ∧ N ⪯̸ M.

If M ⪯ N then E{M}(Ω) ⊆ E{N}(Ω) and
E{M}(Ω;P) ⊆ E{N}(Ω;P).

Furthermore for M, N and ρ > 0 we define two new weight
sequences:

▶ MN which is given by (MN)k = MkNk .

▶ Mρ given by (Mρ)k = Mρ
k .



Associated functions

Let M be a weight sequence. The weight function ωM associated
to M is defined by

ωM(t) = sup
k∈N0

log
tk

Mk
, t > 0, & ωM(0) = 0.

Then ωM is a continuous function on [0,∞) which increases faster
then log tp for every p ∈ N.

The weight associated to M is the function

hM(t) = inf
k∈N0

Mkt
k , t > 0, & hM(0) = 0.

Clearly

hM

(
1

t

)
= e−ωM(t), t > 0.

Hence hM is a continuous function which is flat at the origin.
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Ultraholomorphic functions

Let R be the Riemann surface of the logarithm. For γ > 0 let

Sγ =
{
z ∈ R : |arg z | ≤ γπ

2

}
.

If M is a weight sequence then let O{M}(Sγ) be the space of
holomorphic functions g on Sγ for which there are a formal series
ĝ =

∑∞
k=0 akz

k and constants C , h > 0 such that∣∣∣∣∣∣g(z)−
k−1∑
j=0

ajz
j

∣∣∣∣∣∣ ≤ ChkMk |z |k , ∀ z ∈ Sγ , ∀k ∈ N.

We say that ĝ is the {M}-asymptotic expansion of g .
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Remarks

▶ If g ∈ O{M}(Sγ) and K ⋐ Sγ is a subsector then there are
constants C ,Q > 0 such that

sup
z∈K

∣∣∣g (k)(z)
∣∣∣ ≤ CQkMk , ∀ k ∈ N0.

▶ If g ∈ O{M}(Sγ) then there is only one asymptotic expansion
ĝ .

▶ The asymptotic Borel map bM,γ : O{M}(Sγ) → C{M}[[z ]] is
given by g 7→ ĝ .
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An invariant
We say that a sequence (ck)k is almost increasing if there is a
constant a > 0 such that cℓ ≤ ack for all k ≤ ℓ.

For the study of the surjectivity of the asymptotic Borel map
Thilliez introduced the following invariant:

Definition
For a weight sequence M we set

γ(M) = sup

{
γ > 0 : The sequence

Mk

Mk−1kγ
is almost increasing

}
.

▶ The asymptotic Borel map is surjective on Sγ if and only if
γ < γ(M).

▶ γ(Gs) = s for s ≥ 1.

▶ M is a strongly non-quasianalytic weight sequence if and only
if γ(M) > 1.

▶ γ(Mρ) = ργ(M) for ρ > 0.
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Optimal functions in the ultraholomorphic setting

Definition
A holomorphic function G on Sγ is an {M}-optimal flat functions if

G (t) ≥ A1hM(B1t), t > 0,

|G (z)| ≤ A2hM(B2t), z ∈ Sγ ,

for constants A1,A2,B1,B2 > 0.

Clearly G ∈ O{M}(Sγ) with asymptotic expansion Ĝ = 0.



Optimal functions in the ultraholomorphic setting

Definition
A holomorphic function G on Sγ is an {M}-optimal flat functions if

G (t) ≥ A1hM(B1t), t > 0,

|G (z)| ≤ A2hM(B2t), z ∈ Sγ ,

for constants A1,A2,B1,B2 > 0.

Clearly G ∈ O{M}(Sγ) with asymptotic expansion Ĝ = 0.



The main technical result

Theorem (Jiminez-Garrio–Sanz–Schindl 2022)

1. If γ < γ(M) then there exist {M}-optimal flat functions in Sγ .

2. If G is an optimal {M}-flat function then there are constants
C1, h1 > 0 such that

C1h
k
1Mk ≤

∫ ∞

0
tkG (1/t) dt.

If M satisfies additionally (2) then there exist C2, h2 > 0 such
that ∫ ∞

0
tkG (1/t) dt ≤ C2h

k
2Mk .



Optimal functions in DC-classes

Let M a weight sequence and GM an optimal {M}-flat function (in
some sector Sγ). If we choose x0 ∈ Rn and ξ0 ∈ Sn−1 and set

f (x) =

∫ ∞

0
GM(1/t)e iξ0t(x−x0) dt

then

Dk
ξ0f (x0) =

∫ ∞

0
tkGM(1/t) dt.

Thus f cannot be of class {T} near x0 for any weight sequence
T ⪹ M.

If (2) holds for M then f ∈ E{M}(Rn).



The construction of u in the DC-case

▶ Let M be a weight sequence and suppose that there are two
weight sequences L and N such that L is non-quasianalytic,
γ(N) > 0 and L ⪯ M ⪹ N.

▶ For x0 ∈ Ω let δ > 0 be such that B(x0, 2δ) ⊆ Ω.

▶ Let ψ ∈ D{L}(Rn) be such that ψ(x) = 1 for |x | < δ and
ψ(x) = 0 for |x | > 2δ.

▶ Let GN be an optimal {N}-flat function and set
ΦN(t) = GN(1/t).

▶ If ξ0 ∈ Rn \ {0} and 0 < ε < 1 (to be specified later) then we
set

u(x) =

∫ ∞

1
ψ (tε(x − x0)) ΦN(t)e

itξ0(x−x0) dt.

▶ Thence u is a C∞-function which is not of class {T} near x0
for any T ⪹ N. In particular u /∈ E{M}(Ω).
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The construction of u in the DC-case: Part II

Now let P be a linear differential operator of order d with
coefficients in E{L}(Ω) which is not elliptic at (x0, ξ0). Then there
are functions Qk such that

Pku =

∫ ∞

1
Qk(x , t)ΦN(t)e

itξ0(x−x0) dt.

There are constants C , h > 0 such that

|Qk(x , t)| ≤ Chk
(
t(d−ε)k + tkε(2d−1)Ldk

)
.

Now set ρ = t1−ε/d and R = tε(2−1/d). Obviously

t(d−ε)k = ρdk = ρdk
Mdk

Mdk
≤ Mdke

ωM(ρ) = Mdke
ωM(t1−ε/d ).
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For the second term, we need to assume that there is a weight
sequence V such that LV ⪯ M.

Then

tkε(2d−1)Ldk = RdkLdk ≤ LdkVdke
ωV(t

ε(2−1/d)).

Thence there are constants C , h > 0 such that

|Qk(x , t)| ≤ ChkMdk

(
eωM(t1−ε/d ) + eωV(t

ε(2−1/d))
)

If we assume that ε ≤ 1/2 then tε(2−1/d) ≤ t1−ε/d . Therefore

ωV

(
tε(2−1/d)

)
≤ ωV (1− ε/d) .

On the other hand, if we suppose that V ≤ M then
ωM(s) ≤ ωV(s) for all s ≥ 0.
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Final estimates
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Auxillary result

Proposition (F.-Schindl 2023)

Let T and U be two weight sequences and τ > 1. Then the
following two assertions are equivalent:

1. There is a constant A ≥ 1 such that U ≤ ATτ .

2. There is a constant C ≥ 1 such that

ωT(s) ≤ τ−1ωU (sτ ) + C , ∀ s ≥ 0.

If one of the assertions hold then for all 0 < a < 1 and σ ≥ τ there
exists a constant C̃ ≥ 1 such that

ωT(s) ≤ τ−1ωU (asσ) + C̃ , ∀ s ≥ 0.

We set T = V, U = N, τ = d/(d − ε), a = B−1
2 .



An abstract theorem

Theorem B
Let M, L, N and V be weight sequences and d ∈ N such that the
following properties hold:

1. M ⪹ N and γ(N) > 0

2. L is non-quasianalytic.

3. V ≤ M and LV ⪯ M.

4. There are constants 1 < τ < 2d/(2d − 1) and A ≥ 1 such
that N ≤ AVτ .

Then, for every non-elliptic differential operator P of order d with
coefficients in E{L}(Ω), there is a smooth function u such that
u ∈ E{M}(Ω;P) but u /∈ E{T}(Ω) for any weight sequence T ⪹ N.



Proof of Main Theorem: Conclusion

Corollary

Let M be a weight sequence with γ(M) = ∞ and T be a weight
sequence such that T ⪯ Mρ for all ρ > 0.
If P is a non-elliptic differential operator with coefficients in
E{T}(Ω) then there is a function u ∈ C∞(Ω) such that
u ∈ E{M}(Ω;P) \ E{M}(Ω).

Proof.
Choose parameters 0 < σ < 1 and ρ > 1 such that

1 < ρ <
2d

2d − 1
σ.

We set V = Mσ, L = M1−σ and N = Mρ. Then the assumptions
of Theorem C are fulfilled.
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The case 1 < γ(M) < ∞

The previous proof does not work in the case 1 < γ(M) <∞.
But we can directly imitate the proof in the Gevrey case:
Set T = M1/γ with γ = γ(M). Thus γ(T) = 1 and γ(Ts) = s.

Theorem C
Let M be a weight sequence such that 1 < γ(M) <∞. If P is a
non-elliptic differential operator of class {Mρ}, where
1 < 1/ρ < γ(M), then there is a smooth function u such that

u ∈ E{M}(Ω;P) \ E{M}(Ω).



Returning to the Gevrey case

Corollary

Let 1 ≤ r < s and P be a non-elliptic differential operator with
coefficients in Gr (Ω). Then there is a smooth function u such that

u ∈ Gs(Ω;P) \ Gs(Ω).

Theorem D
Let 1 ≤ r < s. If P is a differential operator with coefficients in
Gr (Ω) then the following statements are equivalent:

1. P is elliptic.

2. Gs(Ω;P) = Gs(Ω).
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Other weights

Definition
A weight function is an increasing continuous function
ω : [0,∞) → [0,∞) with the following properties:

▶ ω|[0,1] = 0

▶ ω(2t) = O(ω(t)), → ∞,

▶ log t = O(ω(t))

▶ φω = ω ◦ exp is convex.

The conjugate function of φω is

φ∗
ω(t) = sup

s≥0
(st − φ(s)).



Classes given by weight functions

A function f ∈ C∞(Ω) is ultradifferentiable of class {ω} if for any
compact K ⊆ Ω there are constants C , h > 0 such that

sup
x∈K

|Dαu(x)| ≤ Ce1/hφ
∗(h|α|), ∀α ∈ Nn

0.

The space of ultradifferentiable functions of class {ω} is E{ω}(Ω).

A distribution u ∈ D′(Ω) is an {ω}-vector of a differential operator
P (with E{ω}(Ω)) if Pku ∈ L2loc(Ω), ∀k ∈ N0, and for every
compact set K ⊆ Ω there are constants C , h > 0 such that

∥Pku∥L2(K) ≤ Ce
1
hφ

∗
ω(hdk), ∀ k ∈ N0.

The space of {ω}-vectors of P is E{ω}(Ω;P).



Remarks
▶ Let s ≥ 1. The weight function ωs(t) = max{0, ts − 1}

generates the Gevrey class of order s, i.e. E{ωs}(Ω) = Gs(Ω).

▶ However, the class generated by σs(t) = (log t)s , t ≥ 1,
cannot be described by weight sequences.

▶ The opposite is also true, there are Denjoy-Carleman classes
which cannot be described by weight functions.

▶ [Bonet–Meise–Melikhov 2007] gave conditions when weight
functions and weight sequences describe the same classes.

▶ In particular if a weight function ω satisfies

∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) + H (4)

then there is a weight sequence M such that
E{ω}(Ω) = E{M}(Ω).

▶ E{ω}(Ω) ∩ C∞
0 (Ω) ̸= {0} if∫ ∞

1

ω(t)

t2
dt <∞. (5)
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Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)

Let ω be a weight function. If P is an elliptic differential operator
with constant coefficients then

E{ω}(Ω;P) = E{ω}(Ω).

Theorem (Boiti–Jornet 2016)

Let ω be a subadditive weight function. If P is an elliptic operator
with E{ω}(Ω)-coefficients then

E{ω}(Ω;P) = E{ω}(Ω).

Theorem (F.–Schindl 2022)

Let ω be a weight function. If P is an elliptic operator with
analytic coefficients in Ω then

E{ω}(Ω;P) = E{ω}(Ω).
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Comparison I

Theorem 2 (Juan-Huguet 2010)

Let P be a differential operator with constant coefficients and ω a
non-quasianalytic weight function, i.e. it satisfies (5). If also (4)
holds then the following statements are equivalent:

▶ P is elliptic.

▶ E{ω}(Ω;P) = E{ω}(Ω).

Theorem 3 (F.–Schindl 2022)

Let P be a analytic-hypoelliptic differential operator of principal
type in Ω and ω be a weight function satisfying

∃H > 0 : ω(t2) = O(ω(Ht)), t → ∞. (6)

Then E{ω}(Ω;P) = E{ω}(Ω).



Comparison II
▶ Theorem 2 is in some way a complement to Theorem A:

▶ Remember if ω is a weight function which satisfies (4) then
there is a weight sequence M such that E{ω} = E{M}.
Moreover, there is a s > 1 such that E{ω} ⊆ Gs .

▶ On the other hand, if M is strongly non-quasianalytic then
there exists σ > 1 such that Gσ ⊆ E{M}.

▶ However, Theorem 3 shows that Theorem A’ cannot hold in
the category of Braun-Meise-Taylor classes:

▶ According to [Bonet–Meise–Taylor 1992] the Borel map
associated to E{ω} is surjective if and only if∫ ∞

1

ω(ty)

t2
dt = O(ω(y)), y −→ ∞. (7)

▶ But (6) implies (7).
▶ Moreover, if ω satisfies (6) then⋃

s>1

Gs(Ω) ⊆ E{ω}(Ω).
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