Ellipticity and the problem of iterates in Denjoy-Carleman classes

Stefan Fürdös

(Joint work with Gerhard Schindl)

University of Vienna

November 28, 2023 Workshop on global and microlocal analysis Bologna, Italy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem of Iterates: Introduction

Theorem (Kotake–Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an open set $\Omega \subseteq \mathbb{R}^n$. Then a smooth function $f \in \mathcal{C}^{\infty}(\Omega)$ is real-analytic if and only if for each compact $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\left\|P^{k}u\right\|_{L^{2}(\mathcal{K})}\leq Ch^{k}k! \qquad \forall k\in\mathbb{N}_{0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Problem of Iterates: Introduction

Theorem (Kotake–Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an open set $\Omega \subseteq \mathbb{R}^n$. Then a smooth function $f \in \mathcal{C}^{\infty}(\Omega)$ is real-analytic if and only if for each compact $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\left\|P^{k}u\right\|_{L^{2}(\mathcal{K})}\leq Ch^{k}k! \quad \forall k\in\mathbb{N}_{0}.$$

Problem of Iterates

Let P be a linear differential operator. If u is a function(distribution) such that the iterates $P^k u$ satisfy uniform estimates can we conclude that all derivatives of u satisfy these uniform estimates?

Gevrey vectors

We denote the Gevrey class of order $s \ge 1$ by $\mathcal{G}^{s}(\Omega)$ (Ω will always denote an open set in \mathbb{R}^{n} .) Let

$$P = \sum_{|\alpha| \leq d} p_{\alpha} D^{lpha} \qquad D_j = -i\partial_j, \ p_{lpha} \in \mathcal{G}^s(\Omega).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gevrey vectors

We denote the Gevrey class of order $s \ge 1$ by $\mathcal{G}^{s}(\Omega)$ (Ω will always denote an open set in \mathbb{R}^{n} .) Let

$$P = \sum_{|\alpha| \leq d} p_{\alpha} D^{\alpha}$$
 $D_j = -i\partial_j, \ p_{\alpha} \in \mathcal{G}^{s}(\Omega).$

A distribution $u \in \mathcal{D}'(\Omega)$ is an *s*-Gevrey vector of *P* if $P^k u \in L^2_{loc}(\Omega)$ for all $k \in \mathbb{N}_0$ and for each compact set $K \subseteq \Omega$ there is a constant C > 0 such that

$$\left\| P^{k} u \right\|_{L^{2}(K)} \leq C^{k+1}(dk)!^{s}, \qquad \forall k \in \mathbb{N}_{0}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The space of *s*-Gevrey vectors of *P* is $\mathcal{G}^{s}(\Omega; P)$.

The Theorem of Iterates in Gevrey classes

Theorem (Lions–Magenes 1970, Bolley–Camus 1981) Let $s \ge 1$. If P is an elliptic differential operator with coefficients in $\mathcal{G}^{s}(\Omega)$ then $\mathcal{G}^{s}(\Omega; P) = \mathcal{G}^{s}(\Omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Theorem of Iterates in Gevrey classes

Theorem (Lions–Magenes 1970, Bolley–Camus 1981) Let $s \ge 1$. If P is an elliptic differential operator with coefficients in $\mathcal{G}^{s}(\Omega)$ then $\mathcal{G}^{s}(\Omega; P) = \mathcal{G}^{s}(\Omega)$.

Theorem (Baouendi-Métivier 1982)

Let P be a hypoelliptic operator of principal type with real-analytic coefficients. Then the following statements hold:

1.
$$\mathcal{G}^1(\Omega; P) = \mathcal{G}^1(\Omega)$$

2. If s > 1 then for any $V \Subset \Omega$ there exists s' > s such that for any $u \in \mathcal{G}^{s}(\Omega; P)$ we have that $u|_{V} \in \mathcal{G}^{s'}(V)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The Theorem of Iterates II

However, there are non-elliptic operators for which there are analytic vectors which are not analytic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Theorem of Iterates II

- However, there are non-elliptic operators for which there are analytic vectors which are not analytic.
- In the non-analytic Gevrey case we have a definite answer:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Theorem of Iterates II

- However, there are non-elliptic operators for which there are analytic vectors which are not analytic.
- ▶ In the non-analytic Gevrey case we have a definite answer:

Theorem 1 (Metivier 1978)

Let P be a differential operators with coefficients in $C^{\omega}(\Omega)$ and s > 1. Then the following statements are equivalent:

- 1. *P* is elliptic.
- 2. $\mathcal{G}^{s}(\Omega; P) = \mathcal{G}^{s}(\Omega).$

Denjoy-Carleman Classes

Definition

We say that $\mathbf{M} = (M_k)_{k \ge 0}$ is a weight sequence if $M_0 = 1$ and

$$M_k^2 \leq M_{k-1}M_{k+1} \qquad \forall k \in \mathbb{N}.$$

A function $f \in C^{\infty}(\Omega)$ is ultradifferentiable of class $\{\mathbf{M}\}$ if for all compact sets $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\sup_{x\in \mathcal{K}} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} M_{|\alpha|} \qquad \forall \, \alpha \in \mathbb{N}_0^n.$$

 $\mathcal{E}^{\{M\}}(\Omega)$ denotes the space of all ultradifferentiable functions of class $\{M\}$ in Ω .

Some basic conditions

Inclusion of real-analytic functions: If

$$\liminf_{k\to\infty} \left(\frac{M_k}{k!}\right)^{1/k} > 0 \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

then $\mathcal{C}^{\omega}(\Omega) \subseteq \mathcal{E}^{\{M\}}(\Omega)$.

Some basic conditions

Inclusion of real-analytic functions: If

$$\liminf_{k\to\infty} \left(\frac{M_k}{k!}\right)^{1/k} > 0 \tag{1}$$

then $\mathcal{C}^{\omega}(\Omega) \subseteq \mathcal{E}^{\{M\}}(\Omega)$.

Derivation Closedness: If M satisfies

$$\exists Q > 0: M_{k+1} \leq Q^{k+1}M_k \quad \forall k \in \mathbb{N}_0,$$
 (2)

then any derivative of an element in $\mathcal{E}^{\{M\}}(\Omega)$ is itself contained in $\mathcal{E}^{\{M\}}(\Omega)$.

We call a weight sequence **M** semiregular if **M** satisfies (1) and (2). If **M** is semiregular then $\mathcal{E}^{\{M\}}(\Omega)$ is closed under composition with real-analytic mappings (cf. [Hörmander 1990])

Non-Quasianalyticity I

We say that a weight sequence M is non-quasianalytic if

$$\sum_{k=0}^{\infty} \frac{M_k}{M_{k+1}} < \infty.$$
(3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Non-Quasianalyticity I

We say that a weight sequence M is non-quasianalytic if

$$\sum_{k=0}^{\infty} \frac{M_k}{M_{k+1}} < \infty.$$
(3)

 M is non-quasianalytic if and only if *C*^{M}(Ω) is non-quasianalytic, i.e.

$$\mathcal{D}^{\{\mathsf{M}\}}(\Omega) = \mathcal{E}^{\{\mathsf{M}\}}(\Omega) \cap \mathcal{C}^{\infty}_{0}(\Omega) \neq \{0\}.$$

Non-Quasianalyticity I

We say that a weight sequence M is non-quasianalytic if

$$\sum_{k=0}^{\infty} \frac{M_k}{M_{k+1}} < \infty.$$
(3)

 M is non-quasianalytic if and only if C^{M}(Ω) is non-quasianalytic, i.e.

$$\mathcal{D}^{\{\mathsf{M}\}}(\Omega) = \mathcal{E}^{\{\mathsf{M}\}}(\Omega) \cap \mathcal{C}^{\infty}_{0}(\Omega) \neq \{0\}.$$

Note that (3) implies (1).

Non-Quasianalyticity II

A weight sequence \mathbf{M} is strongly non-quasianalytic if

$$\exists A > 0: \quad \sum_{k=j}^{\infty} rac{M_k}{M_{k+1}} \leq A(j+1) rac{M_j}{M_{j+1}} \qquad \forall j \in \mathbb{N}_0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Non-Quasianalyticity II

A weight sequence ${\boldsymbol{\mathsf{M}}}$ is strongly non-quasianalytic if

$$\exists A > 0: \quad \sum_{k=j}^{\infty} \frac{M_k}{M_{k+1}} \leq A(j+1) \frac{M_j}{M_{j+1}} \qquad \forall j \in \mathbb{N}_0.$$

Theorem (Petzsche 1980)

The weight sequence M is strongly non-quasianalytic if and only if the associated Borel map

$$\mathfrak{b}_{\{\mathsf{M}\}}: \mathcal{E}^{\{\mathsf{M}\}}([-1,1]) \longrightarrow \Lambda_{\{\mathsf{M}\}}$$
 $f \longmapsto \left(f^{(k)}(0)
ight)_{k \in \mathbb{N}_0}$

is surjective.

Here we have set

$$\Lambda_{\{\mathbf{M}\}} := \Big\{ (a_k)_k \in \mathbb{C}^{\mathbb{N}_0} : \exists C, h > 0 : |a_k| \le Ch^k M_k \quad \forall k \in \mathbb{N}_0 \Big\}.$$

Denjoy-Carleman vectors

Let **M** be a weight sequence and *P* be a differential operator of order *d* with coefficients in $\mathcal{E}^{\{M\}}(\Omega)$.

A distribution $u \in \mathcal{D}'(\Omega)$ is a $\{\mathbf{M}\}$ -vector of P if $P^k u \in L^2_{loc}(\Omega)$ and for all compact $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\left\|P^{k}u\right\|_{L^{2}(K)}\leq Ch^{k}M_{dk} \qquad k\in\mathbb{N}_{0}.$$

 $\mathcal{E}^{\{M\}}(\Omega; P)$ is the space of all $\{M\}$ -vectors associated to P.

If P is an elliptic operator with real-analytic coefficients in Ω then E^{M}(Ω; P) = E^{M}(Ω) for any semiregular weight sequence M, see [Bolley–Camus–Mattera 1979].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- If P is an elliptic operator with real-analytic coefficients in Ω then E^{M}(Ω; P) = E^{M}(Ω) for any semiregular weight sequence M, see [Bolley–Camus–Mattera 1979].
- We need more restrictive conditions on M in the case that P has merely ultradifferentiable coefficients of class {M}, see e.g. [Lions-Magenes, 1970], etc.

- If P is an elliptic operator with real-analytic coefficients in Ω then E^{M}(Ω; P) = E^{M}(Ω) for any semiregular weight sequence M, see [Bolley–Camus–Mattera 1979].
- We need more restrictive conditions on M in the case that P has merely ultradifferentiable coefficients of class {M}, see e.g. [Lions–Magenes, 1970], etc.
- Some examples of weight sequences:
 - Let s ≥ 1. The Gevrey sequence G^s given by G^s_k = (k!)^s is strongly non-quasianalytic if and only if s > 1. G^s satisfies (2) for all s ≥ 1.

- If P is an elliptic operator with real-analytic coefficients in Ω then E^{M}(Ω; P) = E^{M}(Ω) for any semiregular weight sequence M, see [Bolley–Camus–Mattera 1979].
- We need more restrictive conditions on M in the case that P has merely ultradifferentiable coefficients of class {M}, see e.g. [Lions–Magenes, 1970], etc.
- Some examples of weight sequences:
 - Let s ≥ 1. The Gevrey sequence G^s given by G^s_k = (k!)^s is strongly non-quasianalytic if and only if s > 1. G^s satisfies (2) for all s ≥ 1.
 - ▶ Let q > 1 and r > 1. The weight sequence $\mathbf{N}^{q,r}$ given by $N_k^{q,r} = q^{k'}$ is strongly non-quasianalytic for all q, r > 1 but $\mathbf{N}^{q,r}$ satisfies (2) if and only if $1 < r \ge 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If P is an elliptic operator with real-analytic coefficients in Ω then E^{M}(Ω; P) = E^{M}(Ω) for any semiregular weight sequence M, see [Bolley–Camus–Mattera 1979].
- We need more restrictive conditions on M in the case that P has merely ultradifferentiable coefficients of class {M}, see e.g. [Lions–Magenes, 1970], etc.
- Some examples of weight sequences:
 - Let s ≥ 1. The Gevrey sequence G^s given by G^s_k = (k!)^s is strongly non-quasianalytic if and only if s > 1. G^s satisfies (2) for all s ≥ 1.
 - Let q > 1 and r > 1. The weight sequence $\mathbf{N}^{q,r}$ given by $N_k^{q,r} = q^{k'}$ is strongly non-quasianalytic for all q, r > 1 but $\mathbf{N}^{q,r}$ satisfies (2) if and only if $1 < r \ge 2$.
 - Let $\sigma > 0$. The weight sequence \mathbf{L}^{σ} given by $L_k^{\sigma} = k! (\log(k+e))^{\sigma k}$ is not strongly non-quasianalytic for any choice of $\sigma > 0$. However \mathbf{L}^{σ} is non-quasianalytic if and only if $\sigma > 1$. Finally, (1) and (2) hold for all $\sigma > 0$.

Main Theorem

Theorem A (F.-Schindl 2023)

Let P be a non-elliptic operator with real-analytic coefficients in Ω . If **M** is a strongly non-quasianalytic weight sequence then there is a smooth function $u \in C^{\infty}(\Omega)$ such that

 $u \in \mathcal{E}^{\{M\}}(\Omega; P) \setminus \mathcal{E}^{\{M\}}(\Omega).$

Main Theorem

Theorem A (F.-Schindl 2023)

Let P be a non-elliptic operator with real-analytic coefficients in Ω . If **M** is a strongly non-quasianalytic weight sequence then there is a smooth function $u \in C^{\infty}(\Omega)$ such that

$$u \in \mathcal{E}^{\{M\}}(\Omega; P) \setminus \mathcal{E}^{\{M\}}(\Omega).$$

Corollary

Let P be a differential operator with real-analytic coefficients in Ω and **M** be a strongly non-quasianalytic weight sequence which also satisfies (2). Then the following statements are equivalent:

1. P is elliptic.

2.
$$\mathcal{E}^{\{\mathbf{M}\}}(\Omega; P) = \mathcal{E}^{\{\mathbf{M}\}}(\Omega).$$

Main Theorem: Invariant Version

Theorem A'

Suppose that the Borel map associated to the Denjoy-Carleman structure $\mathcal{E}^{\{M\}}$ is surjective.

Then for any non-elliptic partial differential operator P there is an $\{M\}$ -vector of P which is not a function of class $\{M\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sketch of the proof in the Gevrey case: Prologue Let

$$P = \sum_{|\alpha| \le d} p_{\alpha}(x) D^{\alpha}, \qquad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega) \text{ (or } \mathcal{C}^{\omega}(\Omega));$$
$$p(x,\xi) = \sum_{|\alpha| \le d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ symbol of } P,$$
$$p_{d}(x,\xi) = \sum_{|\alpha| = d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ principal symbol of } P.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sketch of the proof in the Gevrey case: Prologue Let

$$P = \sum_{|\alpha| \le d} p_{\alpha}(x) D^{\alpha}, \qquad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega) \text{ (or } \mathcal{C}^{\omega}(\Omega));$$
$$p(x,\xi) = \sum_{|\alpha| \le d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ symbol of } P,$$
$$p_{d}(x,\xi) = \sum_{|\alpha| = d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ principal symbol of } P.$$

If P is non-elliptic then there are $x_0 \in \Omega$ and $\xi_0 \in S^{n-1}$ such that

 $p_d(x_0,\xi_0)=0.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sketch of the proof in the Gevrey case: Prologue Let

$$P = \sum_{|\alpha| \le d} p_{\alpha}(x) D^{\alpha}, \qquad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega) \text{ (or } \mathcal{C}^{\omega}(\Omega));$$
$$p(x,\xi) = \sum_{|\alpha| \le d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ symbol of } P,$$
$$p_{d}(x,\xi) = \sum_{|\alpha| = d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ principal symbol of } P.$$

If P is non-elliptic then there are $x_0 \in \Omega$ and $\xi_0 \in S^{n-1}$ such that

$$p_d(x_0,\xi_0)=0.$$

Let $\delta > 0$ be such that $B(x_0, 2\delta) = \{y \in \mathbb{R}^n : |y - x_0| \le 2\delta\} \subseteq \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sketch of the proof in the Gevrey case: Prologue Let

$$P = \sum_{|\alpha| \le d} p_{\alpha}(x) D^{\alpha}, \qquad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega) \text{ (or } \mathcal{C}^{\omega}(\Omega));$$
$$p(x,\xi) = \sum_{|\alpha| \le d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ symbol of } P,$$
$$p_{d}(x,\xi) = \sum_{|\alpha| = d} p_{\alpha}(x)\xi^{\alpha} \qquad \dots \text{ principal symbol of } P.$$

If P is non-elliptic then there are $x_0 \in \Omega$ and $\xi_0 \in S^{n-1}$ such that

$$p_d(x_0,\xi_0)=0.$$

Let $\delta > 0$ be such that $B(x_0, 2\delta) = \{y \in \mathbb{R}^n : |y - x_0| \le 2\delta\} \subseteq \Omega$. Then we have

$$\exists D \ge 1 \ \forall t \ge 1 \ \forall \varepsilon \in (0,1) \ \forall x \in B(x_0, 2\delta t^{-\varepsilon}):$$

 $|p(x, t\xi_0)| \le Dt^{d-\varepsilon}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• For s > 1 given let $\sigma \in (1, s)$ and $0 < \varepsilon \le \frac{d(s-\sigma)}{2ds-\sigma} < 1/2$.

▶ For
$$s > 1$$
 given let $\sigma \in (1, s)$ and $0 < \varepsilon \leq rac{d(s-\sigma)}{2ds-\sigma} < 1/2$.

► Let $\psi \in \mathcal{G}^{\sigma}(\mathbb{R}^n) \cap \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ such that $\psi(x) = 1$ for $|x| \leq \delta$ and $\psi(x) = 0$ for $|x| \geq 2\delta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• For
$$s > 1$$
 given let $\sigma \in (1, s)$ and $0 < \varepsilon \le rac{d(s-\sigma)}{2ds-\sigma} < 1/2$.

- Let $\psi \in \mathcal{G}^{\sigma}(\mathbb{R}^n) \cap \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ such that $\psi(x) = 1$ for $|x| \leq \delta$ and $\psi(x) = 0$ for $|x| \geq 2\delta$.
- The vector u is defined as

$$u(x)=\int_1^\infty\psi\left(t^\varepsilon(x-x_0)\right)e^{-t^\eta}e^{it\xi_0(x-x_0)}\,dt,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $\eta = (d - \varepsilon)/(ds) < 1/s$.

▶ For
$$s>1$$
 given let $\sigma \in (1,s)$ and $0< arepsilon \leq rac{d(s-\sigma)}{2ds-\sigma} < 1/2$.

► Let $\psi \in \mathcal{G}^{\sigma}(\mathbb{R}^n) \cap \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ such that $\psi(x) = 1$ for $|x| \leq \delta$ and $\psi(x) = 0$ for $|x| \geq 2\delta$.

The vector u is defined as

$$u(x) = \int_1^\infty \psi\left(t^\varepsilon(x-x_0)\right) e^{-t^\eta} e^{it\xi_0(x-x_0)} dt,$$

where $\eta = (d - \varepsilon)/(ds) < 1/s$.

Then

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^\eta} dt = \frac{1}{\eta} \Gamma\left(\frac{k+1}{\eta}\right) + o(1).$$

▶ For
$$s>1$$
 given let $\sigma \in (1,s)$ and $0< \varepsilon \leq rac{d(s-\sigma)}{2ds-\sigma} < 1/2$.

• Let $\psi \in \mathcal{G}^{\sigma}(\mathbb{R}^n) \cap \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ such that $\psi(x) = 1$ for $|x| \leq \delta$ and $\psi(x) = 0$ for $|x| \geq 2\delta$.

The vector u is defined as

$$u(x) = \int_1^\infty \psi\left(t^\varepsilon(x-x_0)\right) e^{-t^\eta} e^{it\xi_0(x-x_0)} dt,$$

where $\eta = (d - \varepsilon)/(ds) < 1/s$. Then

 $D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^\eta} dt = \frac{1}{\eta} \Gamma\left(\frac{k+1}{\eta}\right) + o(1).$

• Thus $u \notin \mathcal{G}^{s'}$ near x_0 for all $s' < 1/\eta$.

▶ In order to estimate $P^k u$ we introduce functions $Q_k(x, t)$ such that

$$P^{k}u(x) = \int_{1}^{\infty} Q_{k}(x,t)e^{-t^{\eta}}e^{it\xi_{0}(x-x_{0})} dt.$$

▶ In order to estimate $P^k u$ we introduce functions $Q_k(x, t)$ such that

$$P^k u(x) = \int_1^\infty Q_k(x,t) e^{-t^\eta} e^{it\xi_0(x-x_0)} dt.$$

It is (relatively) easy to see that

$$|Q_k(x,t)| \leq A^{k+1} \left(t^{(d-arepsilon)k} + (dk)!^\sigma t^{karepsilon(2d-1)}
ight).$$

▶ In order to estimate $P^k u$ we introduce functions $Q_k(x, t)$ such that

$$P^{k}u(x) = \int_{1}^{\infty} Q_{k}(x,t)e^{-t^{\eta}}e^{it\xi_{0}(x-x_{0})} dt.$$

It is (relatively) easy to see that

$$|Q_k(x,t)| \leq A^{k+1} \left(t^{(d-\varepsilon)k} + (dk)!^{\sigma} t^{k\varepsilon(2d-1)} \right).$$

► Using the fact that for each s > 0 there is a constant B > 0 such that ρ^{dk} ≤ B^k(dk)!^s exp(ρ^{1/s}/2) we obtain

$$|Q_k(x,t)| \leq A^{k+1}(dk)!^s \exp\left(rac{-t^\eta}{2}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for a generic constant A independent of k.

▶ In order to estimate $P^k u$ we introduce functions $Q_k(x, t)$ such that

$$P^{k}u(x) = \int_{1}^{\infty} Q_{k}(x,t)e^{-t^{\eta}}e^{it\xi_{0}(x-x_{0})} dt.$$

It is (relatively) easy to see that

$$|Q_k(x,t)| \leq A^{k+1} \left(t^{(d-\varepsilon)k} + (dk)!^{\sigma} t^{k\varepsilon(2d-1)} \right).$$

► Using the fact that for each s > 0 there is a constant B > 0 such that ρ^{dk} ≤ B^k(dk)!^s exp(ρ^{1/s}/2) we obtain

$$|Q_k(x,t)| \leq A^{k+1}(dk)!^s \exp\left(rac{-t^\eta}{2}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for a generic constant A independent of k.

• Finally $|P^k u| \leq A^{k+1}(dk)!^s \int_1^\infty \exp(-t^{\nu}/2)$.

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

 For a given weight sequences M we need to find two other weight sequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for G^{s'}: u is not element of G^t for any t < s (in fact, u ∉ E^{M} for any strictly smaller DC-class E^M ⊊ G^{s'}).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for G^{s'}: u is not element of G^t for any t < s (in fact, u ∉ E^{M} for any strictly smaller DC-class E^M ⊊ G^{s'}).
- The problem for us: Optimal functions for Denjoy-Carleman classes have been previously constructed, but only as Fourier series.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If we want to modify Metivier's proof to the case of Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for G^{s'}: u is not element of G^t for any t < s (in fact, u ∉ E^{M} for any strictly smaller DC-class E^M ⊊ G^{s'}).
- The problem for us: Optimal functions for Denjoy-Carleman classes have been previously constructed, but only as Fourier series.
- Our first aim: to construct optimal functions in DC classes as Fourier integrals.

Some Definitions and Notation

Let **M**, **N** be weight sequences and A > 0.

$$\begin{split} \mathbf{M} &\leq \mathbf{N} & : \Longleftrightarrow & M_k \leq N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\leq A\mathbf{N} & : \Longleftrightarrow & M_k \leq AN_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\preceq \mathbf{N} & : \Longleftrightarrow & \exists \ C, \ h > 0: \ M_k \leq Ch^k N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some Definitions and Notation

Let **M**, **N** be weight sequences and A > 0.

$$\begin{split} \mathbf{M} &\leq \mathbf{N} & : \Longleftrightarrow & M_k \leq N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\leq A\mathbf{N} & : \Longleftrightarrow & M_k \leq AN_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\preceq \mathbf{N} & : \Longleftrightarrow & \exists \ C, \ h > 0 : \ M_k \leq Ch^k N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\gtrsim \mathbf{N} & : \Leftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\simeq \mathbf{N} & : \Leftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $\mathbf{M} \preceq \mathbf{N}$ then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega)$ and $\mathcal{E}^{\{\mathbf{M}\}}(\Omega; P) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega; P)$.

Some Definitions and Notation

Let **M**, **N** be weight sequences and A > 0.

$$\begin{split} \mathbf{M} &\leq \mathbf{N} & : \Longleftrightarrow & M_k \leq N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\leq A\mathbf{N} & : \Longleftrightarrow & M_k \leq AN_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\preceq \mathbf{N} & : \Longleftrightarrow & \exists \ C, \ h > 0 : \ M_k \leq Ch^k N_k & \forall \ k \in \mathbb{N}_0, \\ \mathbf{M} &\approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\gtrsim \mathbf{N} & : \Leftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}, \\ \mathbf{M} &\gtrsim \mathbf{N} & : \Leftrightarrow & \mathbf{M} \preceq \mathbf{N} \land \mathbf{N} \preceq \mathbf{M}. \end{split}$$

If
$$\mathbf{M} \leq \mathbf{N}$$
 then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega)$ and $\mathcal{E}^{\{\mathbf{M}\}}(\Omega; P) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega; P)$.

Furthermore for **M**, **N** and $\rho > 0$ we define two new weight sequences:

• **MN** which is given by $(MN)_k = M_k N_k$.

•
$$\mathbf{M}^{\rho}$$
 given by $(M^{\rho})_k = M_k^{\rho}$.

Associated functions

Let ${\bf M}$ be a weight sequence. The weight function $\omega_{{\bf M}}$ associated to ${\bf M}$ is defined by

$$\omega_{\mathbf{M}}(t) = \sup_{k \in \mathbb{N}_0} \log rac{t^k}{M_k}, \quad t > 0, \qquad \& \qquad \omega_{\mathbf{M}}(0) = 0.$$

Then $\omega_{\mathbf{M}}$ is a continuous function on $[0, \infty)$ which increases faster then log t^p for every $p \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Associated functions

Let ${\bf M}$ be a weight sequence. The weight function $\omega_{{\bf M}}$ associated to ${\bf M}$ is defined by

$$\omega_{\mathbf{M}}(t) = \sup_{k \in \mathbb{N}_0} \log rac{t^k}{M_k}, \quad t > 0, \qquad \& \qquad \omega_{\mathbf{M}}(0) = 0.$$

Then $\omega_{\mathbf{M}}$ is a continuous function on $[0, \infty)$ which increases faster then log t^p for every $p \in \mathbb{N}$.

The weight associated to $\boldsymbol{\mathsf{M}}$ is the function

$$h_{\mathsf{M}}(t) = \inf_{k \in \mathbb{N}_0} M_k t^k, \quad t > 0, \qquad \& \qquad h_{\mathsf{M}}(0) = 0.$$

Clearly

$$h_{\mathsf{M}}\left(rac{1}{t}
ight)=e^{-\omega_{\mathsf{M}}(t)},\qquad t>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hence h_{M} is a continuous function which is flat at the origin.

Ultraholomorphic functions

Let $\mathcal R$ be the Riemann surface of the logarithm. For $\gamma > 0$ let

$$\mathcal{S}_{\gamma} = \Big\{ z \in \mathcal{R} : | ext{arg} \, z | \leq rac{\gamma \pi}{2} \Big\}.$$

Ultraholomorphic functions

Let ${\mathcal R}$ be the Riemann surface of the logarithm. For $\gamma > 0$ let

$$\mathcal{S}_{\gamma} = \Big\{ z \in \mathcal{R} : | rg z | \leq rac{\gamma \pi}{2} \Big\}.$$

If **M** is a weight sequence then let $\mathcal{O}_{\{\mathbf{M}\}}(S_{\gamma})$ be the space of holomorphic functions g on S_{γ} for which there are a formal series $\hat{g} = \sum_{k=0}^{\infty} a_k z^k$ and constants C, h > 0 such that

$$\left|g(z)-\sum_{j=0}^{k-1}a_jz^j
ight|\leq Ch^kM_k|z|^k,orall z\in S_\gamma,\;orall k\in\mathbb{N}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that \hat{g} is the {**M**}-asymptotic expansion of g.

If g ∈ O_{{M}}(S_γ) and K ∈ S_γ is a subsector then there are constants C, Q > 0 such that

$$\sup_{z\in K} \left| g^{(k)}(z) \right| \leq CQ^k M_k, \qquad \forall \, k\in \mathbb{N}_0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If g ∈ O_{{M}}(S_γ) and K ∈ S_γ is a subsector then there are constants C, Q > 0 such that

$$\sup_{z\in K} \left| g^{(k)}(z) \right| \leq CQ^k M_k, \qquad \forall \, k\in \mathbb{N}_0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• If $g \in \mathcal{O}_{\{M\}}(S_{\gamma})$ then there is only one asymptotic expansion \hat{g} .

If g ∈ O_{{M}}(S_γ) and K ∈ S_γ is a subsector then there are constants C, Q > 0 such that

$$\sup_{z\in K} \left| g^{(k)}(z) \right| \leq CQ^k M_k, \qquad \forall \, k\in \mathbb{N}_0.$$

- ロ ト - 4 回 ト - 4 □ - 4

- If g ∈ O_{{M}}(S_γ) then there is only one asymptotic expansion ĝ.
- The asymptotic Borel map b_{M,γ} : O_{M}(S_γ) → C_{{M}[[z]] is given by g → ĝ.

If g ∈ O_{{M}}(S_γ) and K ∈ S_γ is a subsector then there are constants C, Q > 0 such that

$$\sup_{z\in K} \left| g^{(k)}(z) \right| \leq CQ^k M_k, \qquad \forall \, k\in \mathbb{N}_0.$$

- If $g \in \mathcal{O}_{\{M\}}(S_{\gamma})$ then there is only one asymptotic expansion \hat{g} .
- The asymptotic Borel map b_{M,γ} : O_{M}(S_γ) → C_{{M}[[z]] is given by g → ĝ.

$$\mathbb{C}_{\{\mathsf{M}\}}[[z]] = \left\{ \sum_{j=0}^{\infty} a_j z^j \in \mathcal{C}[[z]] : \exists C, h > 0 | a_k| \le Ch^k M_k \quad \forall k \in \mathbb{N}_0 \right\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An invariant

We say that a sequence $(c_k)_k$ is almost increasing if there is a constant a > 0 such that $c_{\ell} \leq ac_k$ for all $k \leq \ell$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

An invariant

We say that a sequence $(c_k)_k$ is almost increasing if there is a constant a > 0 such that $c_{\ell} \le ac_k$ for all $k \le \ell$.

For the study of the surjectivity of the asymptotic Borel map Thilliez introduced the following invariant:

Definition

For a weight sequence \mathbf{M} we set

$$\gamma(\mathbf{M}) = \sup \bigg\{ \gamma > 0 : \text{ The sequence } \frac{M_k}{M_{k-1}k^{\gamma}} \text{ is almost increasing} \bigg\}.$$

The asymptotic Borel map is surjective on S_γ if and only if γ < γ(M).</p>

$$\blacktriangleright \ \gamma(\mathbf{G}^s) = s \text{ for } s \ge 1.$$

• **M** is a strongly non-quasianalytic weight sequence if and only if $\gamma(\mathbf{M}) > 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\blacktriangleright \ \gamma(\mathbf{M}^{\rho}) = \rho \gamma(\mathbf{M}) \text{ for } \rho > 0.$$

Optimal functions in the ultraholomorphic setting

Definition

A holomorphic function G on S_{γ} is an {**M**}-optimal flat functions if

$$egin{aligned} G(t) &\geq A_1 h_{\mathsf{M}}(B_1 t), \qquad t > 0, \ &|G(z)| \leq A_2 h_{\mathsf{M}}(B_2 t), \qquad z \in S_\gamma, \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for constants $A_1, A_2, B_1, B_2 > 0$.

Optimal functions in the ultraholomorphic setting

Definition

A holomorphic function G on S_{γ} is an $\{M\}$ -optimal flat functions if

$$egin{aligned} G(t) &\geq A_1 h_{\mathsf{M}}(B_1 t), \qquad t > 0, \ |G(z)| &\leq A_2 h_{\mathsf{M}}(B_2 t), \qquad z \in S_\gamma, \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for constants $A_1, A_2, B_1, B_2 > 0$.

Clearly $G \in \mathcal{O}_{\{M\}}(S_{\gamma})$ with asymptotic expansion $\hat{G} = 0$.

The main technical result

Theorem (Jiminez-Garrio–Sanz–Schindl 2022)

- 1. If $\gamma < \gamma(\mathbf{M})$ then there exist $\{\mathbf{M}\}$ -optimal flat functions in S_{γ} .
- 2. If G is an optimal $\{\mathbf{M}\}$ -flat function then there are constants $C_1, h_1 > 0$ such that

$$C_1 h_1^k M_k \leq \int_0^\infty t^k G(1/t) \, dt.$$

If **M** satisfies additionally (2) then there exist C_2 , $h_2 > 0$ such that c^{∞}

$$\int_0^\infty t^k G(1/t) \, dt \leq C_2 h_2^k M_k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimal functions in DC-classes

Let **M** a weight sequence and $G_{\mathbf{M}}$ an optimal {**M**}-flat function (in some sector S_{γ}). If we choose $x_0 \in \mathbb{R}^n$ and $\xi_0 \in S^{n-1}$ and set

$$f(x) = \int_0^\infty G_{\mathsf{M}}(1/t) e^{i\xi_0 t(x-x_0)} dt$$

then

$$D_{\xi_0}^k f(x_0) = \int_0^\infty t^k G_{\mathsf{M}}(1/t) \, dt.$$

Thus *f* cannot be of class $\{\mathbf{T}\}$ near x_0 for any weight sequence $\mathbf{T} \succeq \mathbf{M}$.

If (2) holds for **M** then $f \in \mathcal{E}^{\{\mathbf{M}\}}(\mathbb{R}^n)$.

Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $x_0 \in \Omega$ let $\delta > 0$ be such that $B(x_0, 2\delta) \subseteq \Omega$.

- Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.
- For $x_0 \in \Omega$ let $\delta > 0$ be such that $B(x_0, 2\delta) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{L\}}(\mathbb{R}^n)$ be such that $\psi(x) = 1$ for $|x| < \delta$ and $\psi(x) = 0$ for $|x| > 2\delta$.

- Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.
- For $x_0 \in \Omega$ let $\delta > 0$ be such that $B(x_0, 2\delta) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{L\}}(\mathbb{R}^n)$ be such that $\psi(x) = 1$ for $|x| < \delta$ and $\psi(x) = 0$ for $|x| > 2\delta$.

► Let G_N be an optimal {N}-flat function and set $\Phi_N(t) = G_N(1/t)$.

- Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.
- For $x_0 \in \Omega$ let $\delta > 0$ be such that $B(x_0, 2\delta) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{L\}}(\mathbb{R}^n)$ be such that $\psi(x) = 1$ for $|x| < \delta$ and $\psi(x) = 0$ for $|x| > 2\delta$.
- Let G_N be an optimal $\{N\}$ -flat function and set $\Phi_N(t) = G_N(1/t)$.
- If ξ₀ ∈ ℝⁿ \ {0} and 0 < ε < 1 (to be specified later) then we set</p>

$$u(x) = \int_1^\infty \psi\left(t^\varepsilon(x-x_0)\right) \Phi_N(t) e^{it\xi_0(x-x_0)} dt.$$

- Let M be a weight sequence and suppose that there are two weight sequences L and N such that L is non-quasianalytic, γ(N) > 0 and L ≤ M ≈ N.
- For $x_0 \in \Omega$ let $\delta > 0$ be such that $B(x_0, 2\delta) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{L\}}(\mathbb{R}^n)$ be such that $\psi(x) = 1$ for $|x| < \delta$ and $\psi(x) = 0$ for $|x| > 2\delta$.
- Let G_N be an optimal $\{N\}$ -flat function and set $\Phi_N(t) = G_N(1/t)$.
- If ξ₀ ∈ ℝⁿ \ {0} and 0 < ε < 1 (to be specified later) then we set</p>

$$u(x) = \int_1^\infty \psi\left(t^{\varepsilon}(x-x_0)\right) \Phi_N(t) e^{it\xi_0(x-x_0)} dt.$$

Thence u is a C[∞]-function which is not of class {T} near x₀ for any T ≈ N. In particular u ∉ ε^{M}(Ω).

The construction of u in the DC-case: Part II

Now let *P* be a linear differential operator of order *d* with coefficients in $\mathcal{E}^{\{L\}}(\Omega)$ which is not elliptic at (x_0, ξ_0) . Then there are functions Q_k such that

$$P^k u = \int_1^\infty Q_k(x,t) \Phi_{\mathsf{N}}(t) e^{it\xi_0(x-x_0)} dt.$$

There are constants C, h > 0 such that

$$|Q_k(x,t)| \leq Ch^k \left(t^{(d-\varepsilon)k} + t^{k\varepsilon(2d-1)}L_{dk}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The construction of u in the DC-case: Part II

Now let *P* be a linear differential operator of order *d* with coefficients in $\mathcal{E}^{\{L\}}(\Omega)$ which is not elliptic at (x_0, ξ_0) . Then there are functions Q_k such that

$$P^k u = \int_1^\infty Q_k(x,t) \Phi_{\mathsf{N}}(t) e^{it\xi_0(x-x_0)} dt.$$

There are constants C, h > 0 such that

$$|Q_k(x,t)| \leq Ch^k \left(t^{(d-\varepsilon)k} + t^{k\varepsilon(2d-1)}L_{dk}\right).$$

Now set $\rho = t^{1-\varepsilon/d}$ and $R = t^{\varepsilon(2-1/d)}$. Obviously

$$t^{(d-\varepsilon)k} =
ho^{dk} =
ho^{dk} rac{M_{dk}}{M_{dk}} \le M_{dk} e^{\omega_{\mathsf{M}}(
ho)} = M_{dk} e^{\omega_{\mathsf{M}}(t^{1-\varepsilon/d})}.$$

▲□▶▲□▶▲□▶▲□▶ = のへの

For the second term, we need to assume that there is a weight sequence ${\bf V}$ such that ${\bf LV} \preceq {\bf M}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$t^{k\varepsilon(2d-1)}L_{dk}=R^{dk}L_{dk}\leq L_{dk}V_{dk}e^{\omega_{\mathbf{V}}(t^{\varepsilon(2-1/d)})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$t^{k\varepsilon(2d-1)}L_{dk}=R^{dk}L_{dk}\leq L_{dk}V_{dk}e^{\omega_{\mathbf{V}}(t^{\varepsilon(2-1/d)})}.$$

Thence there are constants C, h > 0 such that

$$|Q_k(x,t)| \leq Ch^k M_{dk} \left(e^{\omega_{\mathbf{M}}(t^{1-arepsilon/d})} + e^{\omega_{\mathbf{V}}(t^{arepsilon(2-1/d)})}
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$t^{k\varepsilon(2d-1)}L_{dk}=R^{dk}L_{dk}\leq L_{dk}V_{dk}e^{\omega_{\mathbf{V}}(t^{\varepsilon(2-1/d)})}.$$

Thence there are constants C, h > 0 such that

$$|Q_k(x,t)| \leq Ch^k M_{dk} \left(e^{\omega_{\mathsf{M}}(t^{1-arepsilon/d})} + e^{\omega_{\mathsf{V}}(t^{arepsilon(2-1/d)})}
ight)$$

If we assume that $\varepsilon \leq 1/2$ then $t^{\varepsilon(2-1/d)} \leq t^{1-\varepsilon/d}$. Therefore

$$\omega_{\mathbf{V}}\left(t^{arepsilon(2-1/d)}
ight)\leq\omega_{\mathbf{V}}\left(1-arepsilon/d
ight).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$t^{k\varepsilon(2d-1)}L_{dk}=R^{dk}L_{dk}\leq L_{dk}V_{dk}e^{\omega_{\mathbf{V}}(t^{\varepsilon(2-1/d)})}.$$

Thence there are constants C, h > 0 such that

$$|Q_k(x,t)| \leq Ch^k M_{dk} \left(e^{\omega_{\mathsf{M}}(t^{1-arepsilon/d})} + e^{\omega_{\mathsf{V}}(t^{arepsilon(2-1/d)})}
ight)$$

If we assume that $\varepsilon \leq 1/2$ then $t^{\varepsilon(2-1/d)} \leq t^{1-\varepsilon/d}$. Therefore

$$\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1/d)}
ight) \leq \omega_{\mathbf{V}}\left(1-arepsilon/d
ight).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

On the other hand, if we suppose that $\mathbf{V} \leq \mathbf{M}$ then $\omega_{\mathbf{M}}(s) \leq \omega_{\mathbf{V}}(s)$ for all $s \geq 0$.

Final estimates

It follows that there are constants $C, h, B_2 \ge 1$ such that

$$\left| \mathcal{P}^{k} u(x) \right| \leq Ch^{k} M_{dk} \int_{1}^{\infty} e^{-\omega_{\mathbf{N}}(t/B_{2})} e^{\omega_{\mathbf{V}}(t^{1-\varepsilon/d})} dt$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $x \in \Omega$. Thence $u \in \mathcal{E}^{\{M\}}(\Omega; P)$ if we can show that the integral on the right-hand side converges.

Final estimates

It follows that there are constants $C, h, B_2 \ge 1$ such that

$$\left| \mathcal{P}^{k} u(x) \right| \leq Ch^{k} M_{dk} \int_{1}^{\infty} e^{-\omega_{\mathbf{N}}(t/B_{2})} e^{\omega_{\mathbf{V}}(t^{1-\varepsilon/d})} dt$$

for $x \in \Omega$. Thence $u \in \mathcal{E}^{\{M\}}(\Omega; P)$ if we can show that the integral on the right-hand side converges.

Thus we need a way to compare ω_N with ω_V . If we have, for example, that

$$\exists a \in (0,1) \ \forall s \geq 1 : \omega_{\mathbf{V}}(s) \leq a \omega_{\mathbf{N}} \left(B_2^{-1} s^{\frac{d}{d-\varepsilon}} \right) + D.$$

Thus

$$-\omega_{\mathsf{N}}\left(rac{t}{B_2}
ight)+\omega_{\mathsf{V}}\left(t^{1-arepsilon/d}
ight)\leq -(1-a)\omega_{\mathsf{N}}\left(rac{t}{B_2}
ight).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Auxillary result

Proposition (F.-Schindl 2023)

Let **T** and **U** be two weight sequences and $\tau > 1$. Then the following two assertions are equivalent:

- 1. There is a constant $A \ge 1$ such that $\mathbf{U} \le A\mathbf{T}^{\tau}$.
- 2. There is a constant $C \ge 1$ such that

$$\omega_{\mathsf{T}}(s) \leq \tau^{-1} \omega_{\mathsf{U}}(s^{\tau}) + \mathcal{C}, \qquad \forall s \geq 0.$$

If one of the assertions hold then for all 0 < a < 1 and $\sigma \ge \tau$ there exists a constant $\tilde{C} \ge 1$ such that

$$\omega_{\mathsf{T}}(s) \leq au^{-1} \omega_{\mathsf{U}}\left(\mathsf{a} \mathsf{s}^{\sigma}
ight) + ilde{\mathcal{C}}, \qquad orall \, s \geq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We set $\mathbf{T} = \mathbf{V}$, $\mathbf{U} = \mathbf{N}$, $\tau = d/(d - \varepsilon)$, $a = B_2^{-1}$.

An abstract theorem

Theorem B

Let M, L, N and V be weight sequences and $d \in \mathbb{N}$ such that the following properties hold:

- 1. $\mathbf{M} \underset{\approx}{\prec} \mathbf{N}$ and $\gamma(\mathbf{N}) > 0$
- 2. L is non-quasianalytic.
- 3. $V \leq M$ and $LV \leq M$.
- There are constants 1 < τ < 2d/(2d − 1) and A ≥ 1 such that N ≤ AV^τ.

Then, for every non-elliptic differential operator P of order d with coefficients in $\mathcal{E}^{\{L\}}(\Omega)$, there is a smooth function u such that $u \in \mathcal{E}^{\{M\}}(\Omega; P)$ but $u \notin \mathcal{E}^{\{T\}}(\Omega)$ for any weight sequence $\mathbf{T} \succeq \mathbf{N}$.

Proof of Main Theorem: Conclusion

Corollary

Let **M** be a weight sequence with $\gamma(\mathbf{M}) = \infty$ and **T** be a weight sequence such that $\mathbf{T} \leq \mathbf{M}^{\rho}$ for all $\rho > 0$. If P is a non-elliptic differential operator with coefficients in $\mathcal{E}^{\{\mathbf{T}\}}(\Omega)$ then there is a function $u \in \mathcal{C}^{\infty}(\Omega)$ such that $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega; P) \setminus \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Proof of Main Theorem: Conclusion

Corollary

Let **M** be a weight sequence with $\gamma(\mathbf{M}) = \infty$ and **T** be a weight sequence such that $\mathbf{T} \leq \mathbf{M}^{\rho}$ for all $\rho > 0$. If P is a non-elliptic differential operator with coefficients in $\mathcal{E}^{\{\mathbf{T}\}}(\Omega)$ then there is a function $u \in \mathcal{C}^{\infty}(\Omega)$ such that $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega; P) \setminus \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Proof.

Choose parameters 0 $<\sigma<1$ and $\rho>1$ such that

$$1 < \rho < \frac{2d}{2d-1}\sigma.$$

We set $\mathbf{V} = \mathbf{M}^{\sigma}$, $\mathbf{L} = \mathbf{M}^{1-\sigma}$ and $\mathbf{N} = \mathbf{M}^{\rho}$. Then the assumptions of Theorem C are fulfilled.

The case $1 < \gamma(\mathsf{M}) < \infty$

The previous proof does not work in the case $1 < \gamma(\mathbf{M}) < \infty$. But we can directly imitate the proof in the Gevrey case: Set $\mathbf{T} = \mathbf{M}^{1/\gamma}$ with $\gamma = \gamma(\mathbf{M})$. Thus $\gamma(\mathbf{T}) = 1$ and $\gamma(\mathbf{T}^s) = s$.

Theorem C

Let **M** be a weight sequence such that $1 < \gamma(\mathbf{M}) < \infty$. If P is a non-elliptic differential operator of class $\{\mathbf{M}^{\rho}\}$, where $1 < 1/\rho < \gamma(\mathbf{M})$, then there is a smooth function u such that

$$u \in \mathcal{E}^{\{M\}}(\Omega; P) \setminus \mathcal{E}^{\{M\}}(\Omega).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Returning to the Gevrey case

Corollary

Let $1 \le r < s$ and P be a non-elliptic differential operator with coefficients in $\mathcal{G}^r(\Omega)$. Then there is a smooth function u such that

 $u \in \mathcal{G}^{s}(\Omega; P) \setminus \mathcal{G}^{s}(\Omega).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Returning to the Gevrey case

Corollary

Let $1 \le r < s$ and P be a non-elliptic differential operator with coefficients in $\mathcal{G}^r(\Omega)$. Then there is a smooth function u such that

 $u \in \mathcal{G}^{s}(\Omega; P) \setminus \mathcal{G}^{s}(\Omega).$

Theorem D

Let $1 \le r < s$. If P is a differential operator with coefficients in $\mathcal{G}^r(\Omega)$ then the following statements are equivalent:

- 1. P is elliptic.
- 2. $\mathcal{G}^{s}(\Omega; P) = \mathcal{G}^{s}(\Omega).$

Other weights

Definition

A weight function is an increasing continuous function $\omega : [0, \infty) \rightarrow [0, \infty)$ with the following properties:

$$\begin{split} & \omega|_{[0,1]} = 0 \\ & \bullet \ \omega(2t) = O(\omega(t)), \to \infty, \end{split}$$

$$\blacktriangleright \log t = O(\omega(t))$$

•
$$\varphi_{\omega} = \omega \circ \exp$$
 is convex.

The conjugate function of φ_{ω} is

$$arphi_{\omega}^{*}(t) = \sup_{s \geq 0} (st - arphi(s)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Classes given by weight functions

A function $f \in C^{\infty}(\Omega)$ is ultradifferentiable of class $\{\omega\}$ if for any compact $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\sup_{x\in K} |D^{\alpha}u(x)| \leq Ce^{1/h\varphi^*(h|\alpha|)}, \qquad \forall \, \alpha \in \mathbb{N}_0^n.$$

The space of ultradifferentiable functions of class $\{\omega\}$ is $\mathcal{E}^{\{\omega\}}(\Omega)$.

A distribution $u \in \mathcal{D}'(\Omega)$ is an $\{\omega\}$ -vector of a differential operator P (with $\mathcal{E}^{\{\omega\}}(\Omega)$) if $P^k u \in L^2_{loc}(\Omega)$, $\forall k \in \mathbb{N}_0$, and for every compact set $K \subseteq \Omega$ there are constants C, h > 0 such that

$$\|P^{k}u\|_{L^{2}(\mathcal{K})} \leq Ce^{\frac{1}{h}\varphi_{\omega}^{*}(hdk)}, \qquad \forall k \in \mathbb{N}_{0}.$$

The space of $\{\omega\}$ -vectors of P is $\mathcal{E}^{\{\omega\}}(\Omega; P)$.

Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. E^{ω_s}(Ω) = G^s(Ω).

Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. ε^{ω_s}(Ω) = G^s(Ω).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► However, the class generated by \(\sigma_s(t) = (\log t)^s\), t ≥ 1, cannot be described by weight sequences.

- Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. ε^{ω_s}(Ω) = G^s(Ω).
- ► However, the class generated by σ_s(t) = (log t)^s, t ≥ 1, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.

- Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. E^{ω_s}(Ω) = G^s(Ω).
- ► However, the class generated by σ_s(t) = (log t)^s, t ≥ 1, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet–Meise–Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. E^{ω_s}(Ω) = G^s(Ω).
- ► However, the class generated by σ_s(t) = (log t)^s, t ≥ 1, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet–Meise–Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.
- In particular if a weight function ω satisfies

$$\exists H \ge 1 \ \forall t \ge 0: \quad 2\omega(t) \le \omega(Ht) + H \tag{4}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then there is a weight sequence **M** such that $\mathcal{E}^{\{\omega\}}(\Omega) = \mathcal{E}^{\{M\}}(\Omega).$

- Let s ≥ 1. The weight function ω_s(t) = max{0, t^s − 1} generates the Gevrey class of order s, i.e. E^{ω_s}(Ω) = G^s(Ω).
- ► However, the class generated by σ_s(t) = (log t)^s, t ≥ 1, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet–Meise–Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.
- In particular if a weight function ω satisfies

$$\exists H \ge 1 \ \forall t \ge 0: \quad 2\omega(t) \le \omega(Ht) + H \tag{4}$$

then there is a weight sequence **M** such that $\mathcal{E}^{\{\omega\}}(\Omega) = \mathcal{E}^{\{\mathbf{M}\}}(\Omega).$ $\mathcal{E}^{\{\omega\}}(\Omega) \cap \mathcal{C}_0^{\infty}(\Omega) \neq \{0\}$ if

$$\int_{1}^{\infty} \frac{\omega(t)}{t^2} dt < \infty.$$
 (5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)

Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)

Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

Theorem (Boiti–Jornet 2016)

Let ω be a subadditive weight function. If P is an elliptic operator with $\mathcal{E}^{\{\omega\}}(\Omega)$ -coefficients then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)

Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

Theorem (Boiti–Jornet 2016)

Let ω be a subadditive weight function. If P is an elliptic operator with $\mathcal{E}^{\{\omega\}}(\Omega)$ -coefficients then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

Theorem (F.-Schindl 2022)

Let ω be a weight function. If P is an elliptic operator with analytic coefficients in Ω then

$$\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega). \quad \text{ for all } i \in \mathbb{R} \ \text{ for all } i \in$$

Theorem 2 (Juan-Huguet 2010)

Let P be a differential operator with constant coefficients and ω a non-quasianalytic weight function, i.e. it satisfies (5). If also (4) holds then the following statements are equivalent:

P is elliptic.

$$\triangleright \ \mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$$

Theorem 3 (F.-Schindl 2022)

Let P be a analytic-hypoelliptic differential operator of principal type in Ω and ω be a weight function satisfying

$$\exists H > 0: \quad \omega(t^2) = O(\omega(Ht)), \quad t \to \infty.$$
(6)

Then $\mathcal{E}^{\{\omega\}}(\Omega; P) = \mathcal{E}^{\{\omega\}}(\Omega).$

- Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.
 - On the other hand, if M is strongly non-quasianalytic then there exists σ > 1 such that G^σ ⊆ E^{M}.

- ▶ Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.
 - On the other hand, if M is strongly non-quasianalytic then there exists σ > 1 such that G^σ ⊆ E^{M}.

However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:

- ▶ Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.
 - On the other hand, if M is strongly non-quasianalytic then there exists σ > 1 such that G^σ ⊆ E^{M}.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
 - According to [Bonet–Meise–Taylor 1992] the Borel map associated to *E*^{ω} is surjective if and only if

$$\int_{1}^{\infty} \frac{\omega(ty)}{t^{2}} dt = O(\omega(y)), \quad y \longrightarrow \infty.$$
 (7)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.
 - On the other hand, if M is strongly non-quasianalytic then there exists σ > 1 such that G^σ ⊆ E^{M}.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
 - According to [Bonet–Meise–Taylor 1992] the Borel map associated to E^{\omega} is surjective if and only if

$$\int_{1}^{\infty} \frac{\omega(ty)}{t^{2}} dt = O(\omega(y)), \quad y \longrightarrow \infty.$$
 (7)

But (6) implies (7).

- Theorem 2 is in some way a complement to Theorem A:
 - Remember if ω is a weight function which satisfies (4) then there is a weight sequence M such that E^{ω} = E^{M}. Moreover, there is a s > 1 such that E^{ω} ⊆ G^s.
 - On the other hand, if M is strongly non-quasianalytic then there exists σ > 1 such that G^σ ⊆ E^{M}.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
 - According to [Bonet–Meise–Taylor 1992] the Borel map associated to E^{\omega} is surjective if and only if

$$\int_{1}^{\infty} \frac{\omega(ty)}{t^{2}} dt = O(\omega(y)), \quad y \longrightarrow \infty.$$
 (7)

- But (6) implies (7).
- Moreover, if ω satisfies (6) then

$$\bigcup_{s>1} \mathcal{G}^{s}(\Omega) \subseteq \mathcal{E}^{\{\omega\}}(\Omega).$$

Literature

S. Fürdös and G. Schindl. The theorem of iterates for elliptic and non-elliptic operators. J. Funct. Anal., 283(5):74, 2022. Id/No 109554, https://doi.org/10.1016/j.jfa.2022.109554.

S. Fürdös and G. Schindl.

Ellipticity and the problem of iterates for Denjoy-Carleman classes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

https://arxiv.org/abs/2212.12260

THANK YOU!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ