Ellipticity and the problem of iterates in Denjoy-Carleman classes

Stefan Fürdös
(Joint work with Gerhard Schindl)

University of Vienna

November 28, 2023
Workshop on global and microlocal analysis Bologna, Italy

The Problem of Iterates: Introduction

Theorem (Kotake-Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an open set $\Omega \subseteq \mathbb{R}^{n}$. Then a smooth function $f \in \mathcal{C}^{\infty}(\Omega)$ is real-analytic if and only if for each compact $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leq C h^{k} k!\quad \forall k \in \mathbb{N}_{0}
$$

The Problem of Iterates: Introduction

Theorem (Kotake-Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an open set $\Omega \subseteq \mathbb{R}^{n}$. Then a smooth function $f \in \mathcal{C}^{\infty}(\Omega)$ is real-analytic if and only if for each compact $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leq C h^{k} k!\quad \forall k \in \mathbb{N}_{0} .
$$

Problem of Iterates
Let P be a linear differential operator. If u is a function(distribution) such that the iterates $P^{k} u$ satisfy uniform estimates can we conclude that all derivatives of u satisfy these uniform estimates?

Gevrey vectors

We denote the Gevrey class of order $s \geq 1$ by $\mathcal{G}^{s}(\Omega)$ (Ω will always denote an open set in \mathbb{R}^{n}.) Let

$$
P=\sum_{|\alpha| \leq d} p_{\alpha} D^{\alpha} \quad D_{j}=-i \partial_{j}, p_{\alpha} \in \mathcal{G}^{s}(\Omega) .
$$

Gevrey vectors

We denote the Gevrey class of order $s \geq 1$ by $\mathcal{G}^{s}(\Omega)$ (Ω will always denote an open set in \mathbb{R}^{n}.) Let

$$
P=\sum_{|\alpha| \leq d} p_{\alpha} D^{\alpha} \quad D_{j}=-i \partial_{j}, p_{\alpha} \in \mathcal{G}^{s}(\Omega)
$$

A distribution $u \in \mathcal{D}^{\prime}(\Omega)$ is an s-Gevrey vector of P if $P^{k} u \in L_{\text {loc }}^{2}(\Omega)$ for all $k \in \mathbb{N}_{0}$ and for each compact set $K \subseteq \Omega$ there is a constant $C>0$ such that

$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leq C^{k+1}(d k)!^{s}, \quad \forall k \in \mathbb{N}_{0}
$$

The space of s-Gevrey vectors of P is $\mathcal{G}^{s}(\Omega ; P)$.

The Theorem of Iterates in Gevrey classes

Theorem (Lions-Magenes 1970, Bolley-Camus 1981)
Let $s \geq 1$. If P is an elliptic differential operator with coefficients in $\mathcal{G}^{s}(\Omega)$ then $\mathcal{G}^{s}(\Omega ; P)=\mathcal{G}^{s}(\Omega)$.

The Theorem of Iterates in Gevrey classes

Theorem (Lions-Magenes 1970, Bolley-Camus 1981)
Let $s \geq 1$. If P is an elliptic differential operator with coefficients in $\mathcal{G}^{s}(\Omega)$ then $\mathcal{G}^{s}(\Omega ; P)=\mathcal{G}^{s}(\Omega)$.

Theorem (Baouendi-Métivier 1982)
Let P be a hypoelliptic operator of principal type with real-analytic coefficients. Then the following statements hold:

1. $\mathcal{G}^{1}(\Omega ; P)=\mathcal{G}^{1}(\Omega)$
2. If $s>1$ then for any $V \Subset \Omega$ there exists $s^{\prime}>s$ such that for any $u \in \mathcal{G}^{s}(\Omega ; P)$ we have that $\left.u\right|_{v} \in \mathcal{G}^{s^{\prime}}(V)$.

The Theorem of Iterates II

- However, there are non-elliptic operators for which there are analytic vectors which are not analytic.

The Theorem of Iterates II

- However, there are non-elliptic operators for which there are analytic vectors which are not analytic.
- In the non-analytic Gevrey case we have a definite answer:

The Theorem of Iterates II

- However, there are non-elliptic operators for which there are analytic vectors which are not analytic.
- In the non-analytic Gevrey case we have a definite answer:

Theorem 1 (Metivier 1978)
Let P be a differential operators with coefficients in $\mathcal{C}^{\omega}(\Omega)$ and
$s>1$. Then the following statements are equivalent:

1. P is elliptic.
2. $\mathcal{G}^{s}(\Omega ; P)=\mathcal{G}^{s}(\Omega)$.

Denjoy-Carleman Classes

Definition

We say that $\mathbf{M}=\left(M_{k}\right)_{k \geq 0}$ is a weight sequence if $M_{0}=1$ and

$$
M_{k}^{2} \leq M_{k-1} M_{k+1} \quad \forall k \in \mathbb{N}
$$

A function $f \in \mathcal{C}^{\infty}(\Omega)$ is ultradifferentiable of class $\{\mathbf{M}\}$ if for all compact sets $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\sup _{x \in K}\left|D^{\alpha} f(x)\right| \leq C h^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_{0}^{n} .
$$

$\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ denotes the space of all ultradifferentiable functions of class $\{\mathbf{M}\}$ in Ω.

Some basic conditions

Inclusion of real-analytic functions: If

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left(\frac{M_{k}}{k!}\right)^{1 / k}>0 \tag{1}
\end{equation*}
$$

then $\mathcal{C}^{\omega}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Some basic conditions

Inclusion of real-analytic functions: If

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left(\frac{M_{k}}{k!}\right)^{1 / k}>0 \tag{1}
\end{equation*}
$$

then $\mathcal{C}^{\omega}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.
Derivation Closedness: If \mathbf{M} satisfies

$$
\begin{equation*}
\exists Q>0: \quad M_{k+1} \leq Q^{k+1} M_{k} \quad \forall k \in \mathbb{N}_{0} \tag{2}
\end{equation*}
$$

then any derivative of an element in $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ is itself contained in $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.
We call a weight sequence \mathbf{M} semiregular if \mathbf{M} satisfies (1) and (2). If \mathbf{M} is semiregular then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ is closed under composition with real-analytic mappings (cf. [Hörmander 1990])

Non-Quasianalyticity I

- We say that a weight sequence \mathbf{M} is non-quasianalytic if

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{M_{k}}{M_{k+1}}<\infty \tag{3}
\end{equation*}
$$

Non-Quasianalyticity I

- We say that a weight sequence \mathbf{M} is non-quasianalytic if

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{M_{k}}{M_{k+1}}<\infty \tag{3}
\end{equation*}
$$

- \mathbf{M} is non-quasianalytic if and only if $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ is non-quasianalytic, i.e.

$$
\mathcal{D}^{\{\mathbf{M}\}}(\Omega)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \cap \mathcal{C}_{0}^{\infty}(\Omega) \neq\{0\}
$$

Non-Quasianalyticity I

- We say that a weight sequence \mathbf{M} is non-quasianalytic if

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{M_{k}}{M_{k+1}}<\infty \tag{3}
\end{equation*}
$$

- \mathbf{M} is non-quasianalytic if and only if $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ is non-quasianalytic, i.e.

$$
\mathcal{D}^{\{\mathbf{M}\}}(\Omega)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \cap \mathcal{C}_{0}^{\infty}(\Omega) \neq\{0\}
$$

- Note that (3) implies (1).

Non-Quasianalyticity II

A weight sequence \mathbf{M} is strongly non-quasianalytic if

$$
\exists A>0: \quad \sum_{k=j}^{\infty} \frac{M_{k}}{M_{k+1}} \leq A(j+1) \frac{M_{j}}{M_{j+1}} \quad \forall j \in \mathbb{N}_{0}
$$

Non-Quasianalyticity II

A weight sequence \mathbf{M} is strongly non-quasianalytic if

$$
\exists A>0: \sum_{k=j}^{\infty} \frac{M_{k}}{M_{k+1}} \leq A(j+1) \frac{M_{j}}{M_{j+1}} \quad \forall j \in \mathbb{N}_{0}
$$

Theorem (Petzsche 1980)
The weight sequence \mathbf{M} is strongly non-quasianalytic if and only if the associated Borel map

$$
\begin{aligned}
\mathfrak{b}_{\{\mathbf{M}\}}: \mathcal{E}^{\{\mathbf{M}\}}([-1,1]) & \longrightarrow \Lambda_{\{\mathbf{M}\}} \\
f & \longmapsto\left(f^{(k)}(0)\right)_{k \in \mathbb{N}_{0}}
\end{aligned}
$$

is surjective.
Here we have set

$$
\Lambda_{\{\mathbf{M}\}}:=\left\{\left(a_{k}\right)_{k} \in \mathbb{C}^{\mathbb{N}_{0}}: \exists C, h>0:\left|a_{k}\right| \leq C h^{k} M_{k} \quad \forall k \in \mathbb{N}_{0}\right\} .
$$

Denjoy-Carleman vectors

Let \mathbf{M} be a weight sequence and P be a differential operator of order d with coefficients in $\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

A distribution $u \in \mathcal{D}^{\prime}(\Omega)$ is a $\{\mathbf{M}\}$-vector of P if $P^{k} u \in L_{\text {loc }}^{2}(\Omega)$ and for all compact $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leq C h^{k} M_{d k} \quad k \in \mathbb{N}_{0} .
$$

$\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)$ is the space of all $\{\mathbf{M}\}$-vectors associated to P.

Remarks

- If P is an elliptic operator with real-analytic coefficients in Ω then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ for any semiregular weight sequence M, see [Bolley-Camus-Mattera 1979].

Remarks

- If P is an elliptic operator with real-analytic coefficients in Ω then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ for any semiregular weight sequence M, see [Bolley-Camus-Mattera 1979].
- We need more restrictive conditions on \mathbf{M} in the case that P has merely ultradifferentiable coefficients of class $\{\mathbf{M}\}$, see e.g. [Lions-Magenes, 1970], etc.

Remarks

- If P is an elliptic operator with real-analytic coefficients in Ω then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ for any semiregular weight sequence M, see [Bolley-Camus-Mattera 1979].
- We need more restrictive conditions on \mathbf{M} in the case that P has merely ultradifferentiable coefficients of class $\{\mathbf{M}\}$, see e.g. [Lions-Magenes, 1970], etc.
- Some examples of weight sequences:
- Let $s \geq 1$. The Gevrey sequence \mathbf{G}^{s} given by $G_{k}^{s}=(k!)^{s}$ is strongly non-quasianalytic if and only if $s>1 . \mathbf{G}^{s}$ satisfies (2) for all $s \geq 1$.

Remarks

- If P is an elliptic operator with real-analytic coefficients in Ω then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ for any semiregular weight sequence M, see [Bolley-Camus-Mattera 1979].
- We need more restrictive conditions on \mathbf{M} in the case that P has merely ultradifferentiable coefficients of class $\{\mathbf{M}\}$, see e.g. [Lions-Magenes, 1970], etc.
- Some examples of weight sequences:
- Let $s \geq 1$. The Gevrey sequence \mathbf{G}^{s} given by $G_{k}^{s}=(k!)^{s}$ is strongly non-quasianalytic if and only if $s>1 . \mathbf{G}^{s}$ satisfies (2) for all $s \geq 1$.
- Let $q>1$ and $r>1$. The weight sequence $\mathbf{N}^{q, r}$ given by $N_{k}^{q, r}=q^{k^{r}}$ is strongly non-quasianalytic for all $q, r>1$ but $\mathbf{N}^{q, r}$ satisfies (2) if and only if $1<r \geq 2$.

Remarks

- If P is an elliptic operator with real-analytic coefficients in Ω then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$ for any semiregular weight sequence M, see [Bolley-Camus-Mattera 1979].
- We need more restrictive conditions on \mathbf{M} in the case that P has merely ultradifferentiable coefficients of class $\{\mathbf{M}\}$, see e.g. [Lions-Magenes, 1970], etc.
- Some examples of weight sequences:
- Let $s \geq 1$. The Gevrey sequence \mathbf{G}^{s} given by $G_{k}^{s}=(k!)^{s}$ is strongly non-quasianalytic if and only if $s>1 . \mathbf{G}^{s}$ satisfies (2) for all $s \geq 1$.
- Let $q>1$ and $r>1$. The weight sequence $\mathbf{N}^{q, r}$ given by $N_{k}^{q, r}=q^{k^{r}}$ is strongly non-quasianalytic for all $q, r>1$ but $\mathbf{N}^{q, r}$ satisfies (2) if and only if $1<r \geq 2$.
- Let $\sigma>0$. The weight sequence \mathbf{L}^{σ} given by $L_{k}^{\sigma}=k!(\log (k+e))^{\sigma k}$ is not strongly non-quasianalytic for any choice of $\sigma>0$. However \mathbf{L}^{σ} is non-quasianalytic if and only if $\sigma>1$. Finally, (1) and (2) hold for all $\sigma>0$.

Main Theorem

Theorem A (F.-Schindl 2023)
Let P be a non-elliptic operator with real-analytic coefficients in Ω. If M is a strongly non-quasianalytic weight sequence then there is a smooth function $u \in \mathcal{C}^{\infty}(\Omega)$ such that

$$
u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \backslash \mathcal{E}^{\{\mathbf{M}\}}(\Omega)
$$

Main Theorem

Theorem A (F.-Schindl 2023)
Let P be a non-elliptic operator with real-analytic coefficients in Ω. If M is a strongly non-quasianalytic weight sequence then there is a smooth function $u \in \mathcal{C}^{\infty}(\Omega)$ such that

$$
u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \backslash \mathcal{E}^{\{\mathbf{M}\}}(\Omega)
$$

Corollary

Let P be a differential operator with real-analytic coefficients in Ω and M be a strongly non-quasianalytic weight sequence which also satisfies (2). Then the following statements are equivalent:

1. P is elliptic.
2. $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Main Theorem: Invariant Version

Theorem A'
Suppose that the Borel map associated to the Denjoy-Carleman structure $\mathcal{E}^{\{\mathrm{M}\}}$ is surjective.
Then for any non-elliptic partial differential operator P there is an $\{\mathbf{M}\}$-vector of P which is not a function of class $\{\mathbf{M}\}$.

Sketch of the proof in the Gevrey case: Prologue Let

$$
\begin{aligned}
P & =\sum_{|\alpha| \leq d} p_{\alpha}(x) D^{\alpha}, \quad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)\left(\operatorname{or} \mathcal{C}^{\omega}(\Omega)\right) ; \\
p(x, \xi) & =\sum_{|\alpha| \leq d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { symbol of } P, \\
p_{d}(x, \xi) & =\sum_{|\alpha|=d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { principal symbol of } P .
\end{aligned}
$$

Sketch of the proof in the Gevrey case: Prologue

Let

$$
\begin{aligned}
P & =\sum_{|\alpha| \leq d} p_{\alpha}(x) D^{\alpha}, \quad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)\left(\text { or } \mathcal{C}^{\omega}(\Omega)\right) ; \\
p(x, \xi) & =\sum_{|\alpha| \leq d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { symbol of } P, \\
p_{d}(x, \xi) & =\sum_{|\alpha|=d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { principal symbol of } P .
\end{aligned}
$$

If P is non-elliptic then there are $x_{0} \in \Omega$ and $\xi_{0} \in S^{n-1}$ such that

$$
p_{d}\left(x_{0}, \xi_{0}\right)=0
$$

Sketch of the proof in the Gevrey case: Prologue

Let

$$
\begin{aligned}
P & =\sum_{|\alpha| \leq d} p_{\alpha}(x) D^{\alpha}, \quad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)\left(\operatorname{or} \mathcal{C}^{\omega}(\Omega)\right) ; \\
p(x, \xi) & =\sum_{|\alpha| \leq d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { symbol of } P, \\
p_{d}(x, \xi) & =\sum_{|\alpha|=d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { principal symbol of } P .
\end{aligned}
$$

If P is non-elliptic then there are $x_{0} \in \Omega$ and $\xi_{0} \in S^{n-1}$ such that

$$
p_{d}\left(x_{0}, \xi_{0}\right)=0
$$

Let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right)=\left\{y \in \mathbb{R}^{n}:\left|y-x_{0}\right| \leq 2 \delta\right\} \subseteq \Omega$.

Sketch of the proof in the Gevrey case: Prologue

Let

$$
\begin{aligned}
P & =\sum_{|\alpha| \leq d} p_{\alpha}(x) D^{\alpha}, \quad p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)\left(\operatorname{or} \mathcal{C}^{\omega}(\Omega)\right) ; \\
p(x, \xi) & =\sum_{|\alpha| \leq d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { symbol of } P, \\
p_{d}(x, \xi) & =\sum_{|\alpha|=d} p_{\alpha}(x) \xi^{\alpha} \quad \ldots \text { principal symbol of } P .
\end{aligned}
$$

If P is non-elliptic then there are $x_{0} \in \Omega$ and $\xi_{0} \in S^{n-1}$ such that

$$
p_{d}\left(x_{0}, \xi_{0}\right)=0
$$

Let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right)=\left\{y \in \mathbb{R}^{n}:\left|y-x_{0}\right| \leq 2 \delta\right\} \subseteq \Omega$.
Then we have

$$
\begin{gathered}
\exists D \geq 1 \forall t \geq 1 \forall \varepsilon \in(0,1) \forall x \in B\left(x_{0}, 2 \delta t^{-\varepsilon}\right): \\
\left|p\left(x, t \xi_{0}\right)\right| \leq D t^{d-\varepsilon} .
\end{gathered}
$$

Sketch of proof in the Gevrey case: Part 1

- For $s>1$ given let $\sigma \in(1, s)$ and $0<\varepsilon \leq \frac{d(s-\sigma)}{2 d s-\sigma}<1 / 2$.

Sketch of proof in the Gevrey case: Part 1

- For $s>1$ given let $\sigma \in(1, s)$ and $0<\varepsilon \leq \frac{d(s-\sigma)}{2 d s-\sigma}<1 / 2$.
- Let $\psi \in \mathcal{G}^{\sigma}\left(\mathbb{R}^{n}\right) \cap \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi(x)=1$ for $|x| \leq \delta$ and $\psi(x)=0$ for $|x| \geq 2 \delta$.

Sketch of proof in the Gevrey case: Part 1

- For $s>1$ given let $\sigma \in(1, s)$ and $0<\varepsilon \leq \frac{d(s-\sigma)}{2 d s-\sigma}<1 / 2$.
- Let $\psi \in \mathcal{G}^{\sigma}\left(\mathbb{R}^{n}\right) \cap \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi(x)=1$ for $|x| \leq \delta$ and $\psi(x)=0$ for $|x| \geq 2 \delta$.
- The vector u is defined as

$$
u(x)=\int_{1}^{\infty} \psi\left(t^{\varepsilon}\left(x-x_{0}\right)\right) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

where $\eta=(d-\varepsilon) /(d s)<1 / s$.

Sketch of proof in the Gevrey case: Part 1

- For $s>1$ given let $\sigma \in(1, s)$ and $0<\varepsilon \leq \frac{d(s-\sigma)}{2 d s-\sigma}<1 / 2$.
- Let $\psi \in \mathcal{G}^{\sigma}\left(\mathbb{R}^{n}\right) \cap \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi(x)=1$ for $|x| \leq \delta$ and $\psi(x)=0$ for $|x| \geq 2 \delta$.
- The vector u is defined as

$$
u(x)=\int_{1}^{\infty} \psi\left(t^{\varepsilon}\left(x-x_{0}\right)\right) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

where $\eta=(d-\varepsilon) /(d s)<1 / s$.

- Then

$$
D_{\xi_{0}}^{k} u\left(x_{0}\right)=\int_{1}^{\infty} t^{k} e^{-t^{\eta}} d t=\frac{1}{\eta} \Gamma\left(\frac{k+1}{\eta}\right)+o(1)
$$

Sketch of proof in the Gevrey case: Part 1

- For $s>1$ given let $\sigma \in(1, s)$ and $0<\varepsilon \leq \frac{d(s-\sigma)}{2 d s-\sigma}<1 / 2$.
- Let $\psi \in \mathcal{G}^{\sigma}\left(\mathbb{R}^{n}\right) \cap \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi(x)=1$ for $|x| \leq \delta$ and $\psi(x)=0$ for $|x| \geq 2 \delta$.
- The vector u is defined as

$$
u(x)=\int_{1}^{\infty} \psi\left(t^{\varepsilon}\left(x-x_{0}\right)\right) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

where $\eta=(d-\varepsilon) /(d s)<1 / s$.

- Then

$$
D_{\xi_{0}}^{k} u\left(x_{0}\right)=\int_{1}^{\infty} t^{k} e^{-t^{\eta}} d t=\frac{1}{\eta} \Gamma\left(\frac{k+1}{\eta}\right)+o(1)
$$

- Thus $u \notin \mathcal{G}^{s^{\prime}}$ near x_{0} for all $s^{\prime}<1 / \eta$.

Sketch of proof in the Gevrey case: Part 2

- In order to estimate $P^{k} u$ we introduce functions $Q_{k}(x, t)$ such that

$$
P^{k} u(x)=\int_{1}^{\infty} Q_{k}(x, t) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

Sketch of proof in the Gevrey case: Part 2

- In order to estimate $P^{k} u$ we introduce functions $Q_{k}(x, t)$ such that

$$
P^{k} u(x)=\int_{1}^{\infty} Q_{k}(x, t) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

- It is (relatively) easy to see that

$$
\left|Q_{k}(x, t)\right| \leq A^{k+1}\left(t^{(d-\varepsilon) k}+(d k)!^{\sigma} t^{k \varepsilon(2 d-1)}\right)
$$

Sketch of proof in the Gevrey case: Part 2

- In order to estimate $P^{k} u$ we introduce functions $Q_{k}(x, t)$ such that

$$
P^{k} u(x)=\int_{1}^{\infty} Q_{k}(x, t) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

- It is (relatively) easy to see that

$$
\left|Q_{k}(x, t)\right| \leq A^{k+1}\left(t^{(d-\varepsilon) k}+(d k)!^{\sigma} t^{k \varepsilon(2 d-1)}\right)
$$

- Using the fact that for each $s>0$ there is a constant $B>0$ such that $\rho^{d k} \leq B^{k}(d k)!^{s} \exp \left(\rho^{1 / s} / 2\right)$ we obtain

$$
\left|Q_{k}(x, t)\right| \leq A^{k+1}(d k)!^{s} \exp \left(\frac{-t^{\eta}}{2}\right)
$$

for a generic constant A independent of k.

Sketch of proof in the Gevrey case: Part 2

- In order to estimate $P^{k} u$ we introduce functions $Q_{k}(x, t)$ such that

$$
P^{k} u(x)=\int_{1}^{\infty} Q_{k}(x, t) e^{-t^{\eta}} e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

- It is (relatively) easy to see that

$$
\left|Q_{k}(x, t)\right| \leq A^{k+1}\left(t^{(d-\varepsilon) k}+(d k)!^{\sigma} t^{k \varepsilon(2 d-1)}\right)
$$

- Using the fact that for each $s>0$ there is a constant $B>0$ such that $\rho^{d k} \leq B^{k}(d k)!^{s} \exp \left(\rho^{1 / s} / 2\right)$ we obtain

$$
\left|Q_{k}(x, t)\right| \leq A^{k+1}(d k)!^{s} \exp \left(\frac{-t^{\eta}}{2}\right)
$$

for a generic constant A independent of k.

- Finally $\left|P^{k} u\right| \leq A^{k+1}(d k)!^{s} \int_{1}^{\infty} \exp \left(-t^{\nu} / 2\right)$.

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences \mathbf{M} we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for $\mathcal{G}^{s^{\prime}}: u$ is not element of \mathcal{G}^{t} for any $t<s$ (in fact, $u \notin \mathcal{E}^{\{\mathbf{M}\}}$ for any strictly smaller DC-class $\left.\mathcal{E}^{\mathbf{M}} \subsetneq \mathcal{G}^{s^{\prime}}\right)$.

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for $\mathcal{G}^{s^{\prime}}: u$ is not element of \mathcal{G}^{t} for any $t<s$ (in fact, $u \notin \mathcal{E}^{\{\mathbf{M}\}}$ for any strictly smaller DC-class $\left.\mathcal{E}^{\mathbf{M}} \subsetneq \mathcal{G}^{s^{\prime}}\right)$.
- The problem for us: Optimal functions for Denjoy-Carleman classes have been previously constructed, but only as Fourier series.

Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:

- For a given weight sequences M we need to find two other weight sequences
- The second part can be relatively easily modified to the Denjoy-Carleman case, if we still define u as a Fourier integral, with a suitable kernel.
- The first part means in particular, that u is an optimal function for $\mathcal{G}^{s^{\prime}}: u$ is not element of \mathcal{G}^{t} for any $t<s$ (in fact, $u \notin \mathcal{E}^{\{\mathbf{M}\}}$ for any strictly smaller DC-class $\left.\mathcal{E}^{\mathbf{M}} \subsetneq \mathcal{G}^{s^{\prime}}\right)$.
- The problem for us: Optimal functions for Denjoy-Carleman classes have been previously constructed, but only as Fourier series.
- Our first aim: to construct optimal functions in DC classes as Fourier integrals.

Some Definitions and Notation

Let \mathbf{M}, \mathbf{N} be weight sequences and $A>0$.

$\mathbf{M} \leq \mathbf{N}$	$: \Longleftrightarrow$	$M_{k} \leq N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \leq A \mathbf{N}$	$: \Longleftrightarrow$	$M_{k} \leq A N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \preceq \mathbf{N}$	$: \Longleftrightarrow$	$\exists C, h>0: M_{k} \leq C h^{k} N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \approx \mathbf{N}$	$: \Longleftrightarrow$	$\mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \preceq \mathbf{M}$,	
$\mathbf{M} \preceq \mathbf{N}$	$: \Longleftrightarrow$	$\mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \preceq \mathbf{M}$.	

Some Definitions and Notation

Let \mathbf{M}, \mathbf{N} be weight sequences and $A>0$.

$\mathbf{M} \leq \mathbf{N}$	$: \Longleftrightarrow$	$M_{k} \leq N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \leq A \mathbf{N}$	$: \Longleftrightarrow$	$M_{k} \leq A N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \preceq \mathbf{N}$	$: \Longleftrightarrow$	$\exists C, h>0: M_{k} \leq C h^{k} N_{k}$	$\forall k \in \mathbb{N}_{0}$,
$\mathbf{M} \approx \mathbf{N}$	$: \Longleftrightarrow$	$\mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \preceq \mathbf{M}$,	
$\mathbf{M} \preceq \mathbf{N}$	$: \Longleftrightarrow$	$\mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \npreceq \mathbf{M}$.	

If $\mathbf{M} \preceq \mathbf{N}$ then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega)$ and $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega ; P)$.

Some Definitions and Notation

Let \mathbf{M}, \mathbf{N} be weight sequences and $A>0$.

$$
\begin{array}{llcl}
\mathbf{M} \leq \mathbf{N} & : \Longleftrightarrow & M_{k} \leq N_{k} & \forall k \in \mathbb{N}_{0}, \\
\mathbf{M} \leq A \mathbf{N} & : \Longleftrightarrow & M_{k} \leq A N_{k} & \forall k \in \mathbb{N}_{0}, \\
\mathbf{M} \preceq \mathbf{N} & : \Longleftrightarrow & \exists C, h>0: M_{k} \leq C h^{k} N_{k} & \forall k \in \mathbb{N}_{0}, \\
\mathbf{M} \approx \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \preceq \mathbf{M}, & \\
\mathbf{M} \varsubsetneqq \mathbf{N} & : \Longleftrightarrow & \mathbf{M} \preceq \mathbf{N} \wedge \mathbf{N} \preceq \mathbf{M} . &
\end{array}
$$

If $\mathbf{M} \preceq \mathbf{N}$ then $\mathcal{E}^{\{\mathbf{M}\}}(\Omega) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega)$ and $\mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \subseteq \mathcal{E}^{\{\mathbf{N}\}}(\Omega ; P)$.

Furthermore for \mathbf{M}, \mathbf{N} and $\rho>0$ we define two new weight sequences:

- MN which is given by $(M N)_{k}=M_{k} N_{k}$.
- \mathbf{M}^{ρ} given by $\left(M^{\rho}\right)_{k}=M_{k}^{\rho}$.

Associated functions

Let \mathbf{M} be a weight sequence. The weight function $\omega_{\mathbf{M}}$ associated to \mathbf{M} is defined by

$$
\omega_{\mathbf{M}}(t)=\sup _{k \in \mathbb{N}_{0}} \log \frac{t^{k}}{M_{k}}, \quad t>0, \quad \& \quad \omega_{\mathbf{M}}(0)=0
$$

Then $\omega_{\mathbf{M}}$ is a continuous function on $[0, \infty)$ which increases faster then $\log t^{p}$ for every $p \in \mathbb{N}$.

Associated functions

Let \mathbf{M} be a weight sequence. The weight function $\omega_{\mathbf{M}}$ associated to M is defined by

$$
\omega_{\mathbf{M}}(t)=\sup _{k \in \mathbb{N}_{0}} \log \frac{t^{k}}{M_{k}}, \quad t>0, \quad \& \quad \omega_{\mathbf{M}}(0)=0
$$

Then $\omega_{\mathbf{M}}$ is a continuous function on $[0, \infty)$ which increases faster then $\log t^{p}$ for every $p \in \mathbb{N}$.

The weight associated to \mathbf{M} is the function

$$
h_{\mathrm{M}}(t)=\inf _{k \in \mathbb{N}_{0}} M_{k} t^{k}, \quad t>0, \quad \& \quad h_{\mathrm{M}}(0)=0
$$

Clearly

$$
h_{\mathrm{M}}\left(\frac{1}{t}\right)=e^{-\omega_{\mathrm{M}}(t)}, \quad t>0
$$

Hence $h_{\mathbf{M}}$ is a continuous function which is flat at the origin.

Ultraholomorphic functions

Let \mathcal{R} be the Riemann surface of the logarithm. For $\gamma>0$ let

$$
S_{\gamma}=\left\{z \in \mathcal{R}:|\arg z| \leq \frac{\gamma \pi}{2}\right\}
$$

Ultraholomorphic functions

Let \mathcal{R} be the Riemann surface of the logarithm. For $\gamma>0$ let

$$
S_{\gamma}=\left\{z \in \mathcal{R}:|\arg z| \leq \frac{\gamma \pi}{2}\right\} .
$$

If \mathbf{M} is a weight sequence then let $\mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ be the space of holomorphic functions g on S_{γ} for which there are a formal series $\hat{g}=\sum_{k=0}^{\infty} a_{k} z^{k}$ and constants $C, h>0$ such that

$$
\left|g(z)-\sum_{j=0}^{k-1} a_{j} z^{j}\right| \leq C h^{k} M_{k}|z|^{k}, \forall z \in S_{\gamma}, \forall k \in \mathbb{N} .
$$

We say that \hat{g} is the $\{\mathbf{M}\}$-asymptotic expansion of g.

Remarks

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ and $K \Subset S_{\gamma}$ is a subsector then there are constants $C, Q>0$ such that

$$
\sup _{z \in K}\left|g^{(k)}(z)\right| \leq C Q^{k} M_{k}, \quad \forall k \in \mathbb{N}_{0} .
$$

Remarks

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ and $K \Subset S_{\gamma}$ is a subsector then there are constants $C, Q>0$ such that

$$
\sup _{z \in K}\left|g^{(k)}(z)\right| \leq C Q^{k} M_{k}, \quad \forall k \in \mathbb{N}_{0} .
$$

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ then there is only one asymptotic expansion \hat{g}.

Remarks

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ and $K \Subset S_{\gamma}$ is a subsector then there are constants $C, Q>0$ such that

$$
\sup _{z \in K}\left|g^{(k)}(z)\right| \leq C Q^{k} M_{k}, \quad \forall k \in \mathbb{N}_{0}
$$

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ then there is only one asymptotic expansion \hat{g}.
- The asymptotic Borel map $\mathfrak{b}_{\mathbf{M}, \gamma}: \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right) \rightarrow \mathbb{C}_{\{\mathbf{M}\}}[[z]]$ is given by $g \mapsto \hat{g}$.

Remarks

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ and $K \Subset S_{\gamma}$ is a subsector then there are constants $C, Q>0$ such that

$$
\sup _{z \in K}\left|g^{(k)}(z)\right| \leq C Q^{k} M_{k}, \quad \forall k \in \mathbb{N}_{0}
$$

- If $g \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ then there is only one asymptotic expansion \hat{g}.
- The asymptotic Borel map $\mathfrak{b}_{\mathbf{M}, \gamma}: \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right) \rightarrow \mathbb{C}_{\{\mathbf{M}\}}[[z]]$ is given by $g \mapsto \hat{g}$.

$$
\mathbb{C}_{\{\mathbf{M}\}}[[z]]=\left\{\sum_{j=0}^{\infty} a_{j} z^{j} \in \mathcal{C}[[z]]: \exists C, h>0\left|a_{k}\right| \leq C h^{k} M_{k} \quad \forall k \in \mathbb{N}_{0}\right\}
$$

An invariant

We say that a sequence $\left(c_{k}\right)_{k}$ is almost increasing if there is a constant $a>0$ such that $c_{\ell} \leq a c_{k}$ for all $k \leq \ell$.

An invariant

We say that a sequence $\left(c_{k}\right)_{k}$ is almost increasing if there is a constant $a>0$ such that $c_{\ell} \leq a c_{k}$ for all $k \leq \ell$.
For the study of the surjectivity of the asymptotic Borel map Thilliez introduced the following invariant:

Definition

For a weight sequence \mathbf{M} we set
$\gamma(\mathbf{M})=\sup \left\{\gamma>0:\right.$ The sequence $\frac{M_{k}}{M_{k-1} k^{\gamma}}$ is almost increasing $\}$.

- The asymptotic Borel map is surjective on S_{γ} if and only if $\gamma<\gamma(\mathbf{M})$.
- $\gamma\left(\mathbf{G}^{s}\right)=s$ for $s \geq 1$.
- \mathbf{M} is a strongly non-quasianalytic weight sequence if and only if $\gamma(\mathbf{M})>1$.
- $\gamma\left(\mathbf{M}^{\rho}\right)=\rho \gamma(\mathbf{M})$ for $\rho>0$.

Optimal functions in the ultraholomorphic setting

Definition
A holomorphic function G on S_{γ} is an $\{\mathbf{M}\}$-optimal flat functions if

$$
\begin{aligned}
G(t) & \geq A_{1} h_{\mathbf{M}}\left(B_{1} t\right), & & t>0, \\
|G(z)| & \leq A_{2} h_{\mathbf{M}}\left(B_{2} t\right), & & z \in S_{\gamma},
\end{aligned}
$$

for constants $A_{1}, A_{2}, B_{1}, B_{2}>0$.

Optimal functions in the ultraholomorphic setting

Definition

A holomorphic function G on S_{γ} is an $\{\mathbf{M}\}$-optimal flat functions if

$$
\begin{aligned}
G(t) & \geq A_{1} h_{\mathbf{M}}\left(B_{1} t\right), & & t>0, \\
|G(z)| & \leq A_{2} h_{\mathbf{M}}\left(B_{2} t\right), & & z \in S_{\gamma},
\end{aligned}
$$

for constants $A_{1}, A_{2}, B_{1}, B_{2}>0$.
Clearly $G \in \mathcal{O}_{\{\mathbf{M}\}}\left(S_{\gamma}\right)$ with asymptotic expansion $\hat{G}=0$.

The main technical result

Theorem (Jiminez-Garrio-Sanz-Schindl 2022)

1. If $\gamma<\gamma(\mathbf{M})$ then there exist $\{\mathbf{M}\}$-optimal flat functions in S_{γ}.
2. If G is an optimal $\{\mathbf{M}\}$-flat function then there are constants $C_{1}, h_{1}>0$ such that

$$
C_{1} h_{1}^{k} M_{k} \leq \int_{0}^{\infty} t^{k} G(1 / t) d t
$$

If M satisfies additionally (2) then there exist $C_{2}, h_{2}>0$ such that

$$
\int_{0}^{\infty} t^{k} G(1 / t) d t \leq C_{2} h_{2}^{k} M_{k} .
$$

Optimal functions in DC-classes

Let \mathbf{M} a weight sequence and G_{M} an optimal $\{\mathbf{M}\}$-flat function (in some sector S_{γ}). If we choose $x_{0} \in \mathbb{R}^{n}$ and $\xi_{0} \in S^{n-1}$ and set

$$
f(x)=\int_{0}^{\infty} G_{\mathbf{M}}(1 / t) e^{i \xi_{0} t\left(x-x_{0}\right)} d t
$$

then

$$
D_{\xi_{0}}^{k} f\left(x_{0}\right)=\int_{0}^{\infty} t^{k} G_{\mathbf{M}}(1 / t) d t
$$

Thus f cannot be of class $\{\mathbf{T}\}$ near x_{0} for any weight sequence $\mathbf{T} \not \approx \mathrm{M}$.
If (2) holds for \mathbf{M} then $f \in \mathcal{E}^{\{\mathbf{M}\}}\left(\mathbb{R}^{n}\right)$.

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.
- For $x_{0} \in \Omega$ let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right) \subseteq \Omega$.

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.
- For $x_{0} \in \Omega$ let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{\mathbf{L}\}}\left(\mathbb{R}^{n}\right)$ be such that $\psi(x)=1$ for $|x|<\delta$ and $\psi(x)=0$ for $|x|>2 \delta$.

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.
- For $x_{0} \in \Omega$ let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{\mathbf{L}\}}\left(\mathbb{R}^{n}\right)$ be such that $\psi(x)=1$ for $|x|<\delta$ and $\psi(x)=0$ for $|x|>2 \delta$.
- Let G_{N} be an optimal $\{\mathbf{N}\}$-flat function and set $\Phi_{\mathbf{N}}(t)=G_{\mathbf{N}}(1 / t)$.

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.
- For $x_{0} \in \Omega$ let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{\mathbf{L L}\}}\left(\mathbb{R}^{n}\right)$ be such that $\psi(x)=1$ for $|x|<\delta$ and $\psi(x)=0$ for $|x|>2 \delta$.
- Let G_{N} be an optimal $\{\mathbf{N}\}$-flat function and set $\Phi_{\mathbf{N}}(t)=G_{\mathbf{N}}(1 / t)$.
- If $\xi_{0} \in \mathbb{R}^{n} \backslash\{0\}$ and $0<\varepsilon<1$ (to be specified later) then we set

$$
u(x)=\int_{1}^{\infty} \psi\left(t^{\varepsilon}\left(x-x_{0}\right)\right) \Phi_{N}(t) e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

The construction of u in the DC-case

- Let \mathbf{M} be a weight sequence and suppose that there are two weight sequences \mathbf{L} and \mathbf{N} such that \mathbf{L} is non-quasianalytic, $\gamma(\mathbf{N})>0$ and $\mathbf{L} \preceq \mathbf{M} \preccurlyeq \mathbf{N}$.
- For $x_{0} \in \Omega$ let $\delta>0$ be such that $B\left(x_{0}, 2 \delta\right) \subseteq \Omega$.
- Let $\psi \in \mathcal{D}^{\{\mathbf{L L}\}}\left(\mathbb{R}^{n}\right)$ be such that $\psi(x)=1$ for $|x|<\delta$ and $\psi(x)=0$ for $|x|>2 \delta$.
- Let G_{N} be an optimal $\{\mathbf{N}\}$-flat function and set $\Phi_{\mathbf{N}}(t)=G_{\mathbf{N}}(1 / t)$.
- If $\xi_{0} \in \mathbb{R}^{n} \backslash\{0\}$ and $0<\varepsilon<1$ (to be specified later) then we set

$$
u(x)=\int_{1}^{\infty} \psi\left(t^{\varepsilon}\left(x-x_{0}\right)\right) \Phi_{N}(t) e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

- Thence u is a \mathcal{C}^{∞}-function which is not of class $\{\mathbf{T}\}$ near x_{0} for any $\mathbf{T} \npreceq \mathbf{N}$. In particular $u \notin \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

The construction of u in the DC-case: Part II

Now let P be a linear differential operator of order d with coefficients in $\mathcal{E}^{\{\mathbf{L}\}}(\Omega)$ which is not elliptic at $\left(x_{0}, \xi_{0}\right)$. Then there are functions Q_{k} such that

$$
P^{k} u=\int_{1}^{\infty} Q_{k}(x, t) \Phi_{\mathbf{N}}(t) e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

There are constants $C, h>0$ such that

$$
\left|Q_{k}(x, t)\right| \leq C h^{k}\left(t^{(d-\varepsilon) k}+t^{k \varepsilon(2 d-1)} L_{d k}\right) .
$$

The construction of u in the DC-case: Part II

Now let P be a linear differential operator of order d with coefficients in $\mathcal{E}^{\{\mathbf{L}\}}(\Omega)$ which is not elliptic at $\left(x_{0}, \xi_{0}\right)$. Then there are functions Q_{k} such that

$$
P^{k} u=\int_{1}^{\infty} Q_{k}(x, t) \Phi_{\mathbf{N}}(t) e^{i t \xi_{0}\left(x-x_{0}\right)} d t
$$

There are constants $C, h>0$ such that

$$
\left|Q_{k}(x, t)\right| \leq C h^{k}\left(t^{(d-\varepsilon) k}+t^{k \varepsilon(2 d-1)} L_{d k}\right)
$$

Now set $\rho=t^{1-\varepsilon / d}$ and $R=t^{\varepsilon(2-1 / d)}$. Obviously

$$
t^{(d-\varepsilon) k}=\rho^{d k}=\rho^{d k} \frac{M_{d k}}{M_{d k}} \leq M_{d k} e^{\omega_{M}(\rho)}=M_{d k} e^{\omega_{\mathrm{M}}\left(t^{1-\varepsilon / d}\right)} .
$$

For the second term, we need to assume that there is a weight sequence \mathbf{V} such that $\mathbf{L V} \preceq \mathbf{M}$.

For the second term, we need to assume that there is a weight sequence \mathbf{V} such that $\mathbf{L V} \preceq \mathbf{M}$.Then

$$
t^{k \varepsilon(2 d-1)} L_{d k}=R^{d k} L_{d k} \leq L_{d k} V_{d k} e^{\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right)}
$$

For the second term, we need to assume that there is a weight sequence \mathbf{V} such that $\mathbf{L V} \preceq \mathbf{M}$. Then

$$
t^{k \varepsilon(2 d-1)} L_{d k}=R^{d k} L_{d k} \leq L_{d k} V_{d k} e^{\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right)}
$$

Thence there are constants $C, h>0$ such that

$$
\left|Q_{k}(x, t)\right| \leq C h^{k} M_{d k}\left(e^{\omega_{\mathrm{M}}\left(t^{1-\varepsilon / d}\right)}+e^{\omega_{\mathrm{V}}\left(t^{\varepsilon(2-1 / d)}\right)}\right)
$$

For the second term, we need to assume that there is a weight sequence \mathbf{V} such that $\mathbf{L V} \preceq \mathbf{M}$. Then

$$
t^{k \varepsilon(2 d-1)} L_{d k}=R^{d k} L_{d k} \leq L_{d k} V_{d k} e^{\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right)}
$$

Thence there are constants $C, h>0$ such that

$$
\left|Q_{k}(x, t)\right| \leq C h^{k} M_{d k}\left(e^{\omega_{\mathrm{M}}\left(t^{1-\varepsilon / d}\right)}+e^{\omega_{\mathrm{V}}\left(t^{\varepsilon(2-1 / d)}\right)}\right)
$$

If we assume that $\varepsilon \leq 1 / 2$ then $t^{\varepsilon(2-1 / d)} \leq t^{1-\varepsilon / d}$. Therefore

$$
\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right) \leq \omega_{\mathbf{V}}(1-\varepsilon / d)
$$

For the second term, we need to assume that there is a weight sequence \mathbf{V} such that $\mathbf{L V} \preceq \mathbf{M}$. Then

$$
t^{k \varepsilon(2 d-1)} L_{d k}=R^{d k} L_{d k} \leq L_{d k} V_{d k} e^{\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right)}
$$

Thence there are constants $C, h>0$ such that

$$
\left|Q_{k}(x, t)\right| \leq C h^{k} M_{d k}\left(e^{\omega_{\mathrm{M}}\left(t^{1-\varepsilon / d}\right)}+e^{\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right)}\right)
$$

If we assume that $\varepsilon \leq 1 / 2$ then $t^{\varepsilon(2-1 / d)} \leq t^{1-\varepsilon / d}$. Therefore

$$
\omega_{\mathbf{V}}\left(t^{\varepsilon(2-1 / d)}\right) \leq \omega_{\mathbf{V}}(1-\varepsilon / d)
$$

On the other hand, if we suppose that $\mathbf{V} \leq \mathbf{M}$ then $\omega_{\mathbf{M}}(s) \leq \omega_{\mathbf{V}}(s)$ for all $s \geq 0$.

Final estimates

It follows that there are constants $C, h, B_{2} \geq 1$ such that

$$
\left|P^{k} u(x)\right| \leq C h^{k} M_{d k} \int_{1}^{\infty} e^{-\omega_{\mathbf{N}}\left(t / B_{2}\right)} e^{\omega \mathbf{V}\left(t^{1-\varepsilon / d}\right)} d t
$$

for $x \in \Omega$. Thence $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)$ if we can show that the integral on the right-hand side converges.

Final estimates

It follows that there are constants $C, h, B_{2} \geq 1$ such that

$$
\left|P^{k} u(x)\right| \leq C h^{k} M_{d k} \int_{1}^{\infty} e^{-\omega_{N}\left(t / B_{2}\right)} e^{\omega_{\mathrm{V}}\left(t^{1-\varepsilon / d}\right)} d t
$$

for $x \in \Omega$. Thence $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)$ if we can show that the integral on the right-hand side converges.
Thus we need a way to compare $\omega_{\mathbf{N}}$ with $\omega_{\mathbf{V}}$. If we have, for example, that

$$
\exists a \in(0,1) \forall s \geq 1: \omega_{\mathbf{V}}(s) \leq a \omega_{\mathrm{N}}\left(B_{2}^{-1} s^{\frac{d}{d-\varepsilon}}\right)+D
$$

Thus

$$
-\omega_{\mathbf{N}}\left(\frac{t}{B_{2}}\right)+\omega_{\mathbf{V}}\left(t^{1-\varepsilon / d}\right) \leq-(1-a) \omega_{\mathbf{N}}\left(\frac{t}{B_{2}}\right)
$$

Auxillary result

Proposition (F.-Schindl 2023)

Let \mathbf{T} and \mathbf{U} be two weight sequences and $\tau>1$. Then the following two assertions are equivalent:

1. There is a constant $A \geq 1$ such that $\mathbf{U} \leq A \mathbf{T}^{\tau}$.
2. There is a constant $C \geq 1$ such that

$$
\omega_{\mathbf{T}}(s) \leq \tau^{-1} \omega_{\mathbf{U}}\left(s^{\tau}\right)+C, \quad \forall s \geq 0
$$

If one of the assertions hold then for all $0<a<1$ and $\sigma \geq \tau$ there exists a constant $\tilde{C} \geq 1$ such that

$$
\omega_{\mathbf{T}}(s) \leq \tau^{-1} \omega_{\mathbf{U}}\left(a s^{\sigma}\right)+\tilde{C}, \quad \forall s \geq 0
$$

We set $\mathbf{T}=\mathbf{V}, \mathbf{U}=\mathbf{N}, \tau=d /(d-\varepsilon), a=B_{2}^{-1}$.

An abstract theorem

Theorem B
Let $\mathbf{M}, \mathbf{L}, \mathbf{N}$ and \mathbf{V} be weight sequences and $d \in \mathbb{N}$ such that the following properties hold:

1. $\mathbf{M} \precsim \mathbf{N}$ and $\gamma(\mathbf{N})>0$
2. \mathbf{L} is non-quasianalytic.
3. $\mathbf{V} \leq \mathbf{M}$ and $\mathbf{L V} \preceq \mathbf{M}$.
4. There are constants $1<\tau<2 d /(2 d-1)$ and $A \geq 1$ such that $\mathbf{N} \leq A \mathbf{V}^{\tau}$.
Then, for every non-elliptic differential operator P of order d with coefficients in $\mathcal{E}^{\{\mathbf{L}\}}(\Omega)$, there is a smooth function u such that $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P)$ but $u \notin \mathcal{E}^{\{\mathbf{T}\}}(\Omega)$ for any weight sequence $\mathbf{T} \npreceq \mathbf{N}$.

Proof of Main Theorem: Conclusion

Corollary

Let \mathbf{M} be a weight sequence with $\gamma(\mathbf{M})=\infty$ and T be a weight sequence such that $\mathbf{T} \preceq \mathbf{M}^{\rho}$ for all $\rho>0$.
If P is a non-elliptic differential operator with coefficients in $\mathcal{E}^{\{\mathbf{T}\}}(\Omega)$ then there is a function $u \in \mathcal{C}^{\infty}(\Omega)$ such that $u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \backslash \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Proof of Main Theorem: Conclusion

Corollary
Let \mathbf{M} be a weight sequence with $\gamma(\mathbf{M})=\infty$ and T be a weight sequence such that $\mathbf{T} \preceq \mathbf{M}^{\rho}$ for all $\rho>0$.
If P is a non-elliptic differential operator with coefficients in
$\mathcal{E}^{\{\mathbf{T}\}}(\Omega)$ then there is a function $u \in \mathcal{C}^{\infty}(\Omega)$ such that
$u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \backslash \mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.
Proof.
Choose parameters $0<\sigma<1$ and $\rho>1$ such that

$$
1<\rho<\frac{2 d}{2 d-1} \sigma
$$

We set $\mathbf{V}=\mathbf{M}^{\sigma}, \mathbf{L}=\mathbf{M}^{1-\sigma}$ and $\mathbf{N}=\mathbf{M}^{\rho}$. Then the assumptions of Theorem C are fulfilled.

The case $1<\gamma(\mathbf{M})<\infty$

The previous proof does not work in the case $1<\gamma(\mathbf{M})<\infty$. But we can directly imitate the proof in the Gevrey case: Set $\mathbf{T}=\mathbf{M}^{1 / \gamma}$ with $\gamma=\gamma(\mathbf{M})$. Thus $\gamma(\mathbf{T})=1$ and $\gamma\left(\mathbf{T}^{s}\right)=s$.

Theorem C

Let \mathbf{M} be a weight sequence such that $1<\gamma(\mathbf{M})<\infty$. If P is a non-elliptic differential operator of class $\left\{\mathbf{M}^{\rho}\right\}$, where $1<1 / \rho<\gamma(\mathbf{M})$, then there is a smooth function u such that

$$
u \in \mathcal{E}^{\{\mathbf{M}\}}(\Omega ; P) \backslash \mathcal{E}^{\{\mathbf{M}\}}(\Omega)
$$

Returning to the Gevrey case

Corollary

Let $1 \leq r<s$ and P be a non-elliptic differential operator with coefficients in $\mathcal{G}^{r}(\Omega)$. Then there is a smooth function u such that

$$
u \in \mathcal{G}^{s}(\Omega ; P) \backslash \mathcal{G}^{s}(\Omega)
$$

Returning to the Gevrey case

Corollary

Let $1 \leq r<s$ and P be a non-elliptic differential operator with coefficients in $\mathcal{G}^{r}(\Omega)$. Then there is a smooth function u such that

$$
u \in \mathcal{G}^{s}(\Omega ; P) \backslash \mathcal{G}^{s}(\Omega)
$$

Theorem D
Let $1 \leq r<s$. If P is a differential operator with coefficients in $\mathcal{G}^{r}(\Omega)$ then the following statements are equivalent:

1. P is elliptic.
2. $\mathcal{G}^{s}(\Omega ; P)=\mathcal{G}^{s}(\Omega)$.

Other weights

Definition

A weight function is an increasing continuous function $\omega:[0, \infty) \rightarrow[0, \infty)$ with the following properties:

- $\left.\omega\right|_{[0,1]}=0$
- $\omega(2 t)=O(\omega(t)), \rightarrow \infty$,
- $\log t=O(\omega(t))$
- $\varphi_{\omega}=\omega \circ \exp$ is convex.

The conjugate function of φ_{ω} is

$$
\varphi_{\omega}^{*}(t)=\sup _{s \geq 0}(s t-\varphi(s))
$$

Classes given by weight functions

A function $f \in \mathcal{C}^{\infty}(\Omega)$ is ultradifferentiable of class $\{\omega\}$ if for any compact $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\sup _{x \in K}\left|D^{\alpha} u(x)\right| \leq C e^{1 / h \varphi^{*}(h|\alpha|)}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

The space of ultradifferentiable functions of class $\{\omega\}$ is $\mathcal{E}^{\{\omega\}}(\Omega)$.
A distribution $u \in \mathcal{D}^{\prime}(\Omega)$ is an $\{\omega\}$-vector of a differential operator P (with $\left.\mathcal{E}^{\{\omega\}}(\Omega)\right)$ if $P^{k} u \in L_{l o c}^{2}(\Omega), \forall k \in \mathbb{N}_{0}$, and for every compact set $K \subseteq \Omega$ there are constants $C, h>0$ such that

$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leq C e^{\frac{1}{h} \varphi_{\omega}^{*}(h d k)}, \quad \forall k \in \mathbb{N}_{0}
$$

The space of $\{\omega\}$-vectors of P is $\mathcal{E}^{\{\omega\}}(\Omega ; P)$.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.
- However, the class generated by $\sigma_{s}(t)=(\log t)^{s}, t \geq 1$, cannot be described by weight sequences.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.
- However, the class generated by $\sigma_{s}(t)=(\log t)^{s}, t \geq 1$, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.
- However, the class generated by $\sigma_{s}(t)=(\log t)^{s}, t \geq 1$, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet-Meise-Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.
- However, the class generated by $\sigma_{s}(t)=(\log t)^{s}, t \geq 1$, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet-Meise-Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.
- In particular if a weight function ω satisfies

$$
\begin{equation*}
\exists H \geq 1 \quad \forall t \geq 0: \quad 2 \omega(t) \leq \omega(H t)+H \tag{4}
\end{equation*}
$$

then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}(\Omega)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

Remarks

- Let $s \geq 1$. The weight function $\omega_{s}(t)=\max \left\{0, t^{s}-1\right\}$ generates the Gevrey class of order s, i.e. $\mathcal{E}^{\left\{\omega_{s}\right\}}(\Omega)=\mathcal{G}^{s}(\Omega)$.
- However, the class generated by $\sigma_{s}(t)=(\log t)^{s}, t \geq 1$, cannot be described by weight sequences.
- The opposite is also true, there are Denjoy-Carleman classes which cannot be described by weight functions.
- [Bonet-Meise-Melikhov 2007] gave conditions when weight functions and weight sequences describe the same classes.
- In particular if a weight function ω satisfies

$$
\begin{equation*}
\exists H \geq 1 \quad \forall t \geq 0: \quad 2 \omega(t) \leq \omega(H t)+H \tag{4}
\end{equation*}
$$

then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}(\Omega)=\mathcal{E}^{\{\mathbf{M}\}}(\Omega)$.

- $\mathcal{E}^{\{\omega\}}(\Omega) \cap \mathcal{C}_{0}^{\infty}(\Omega) \neq\{0\}$ if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\omega(t)}{t^{2}} d t<\infty \tag{5}
\end{equation*}
$$

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)
Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega)
$$

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)
Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega) .
$$

Theorem (Boiti-Jornet 2016)
Let ω be a subadditive weight function. If P is an elliptic operator with $\mathcal{E}^{\{\omega\}}(\Omega)$-coefficients then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega) .
$$

Problem of Iterates in BMT-Classes

Theorem (Juan-Huguet 2010)
Let ω be a weight function. If P is an elliptic differential operator with constant coefficients then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega) .
$$

Theorem (Boiti-Jornet 2016)
Let ω be a subadditive weight function. If P is an elliptic operator with $\mathcal{E}^{\{\omega\}}(\Omega)$-coefficients then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega) .
$$

Theorem (F.-Schindl 2022)
Let ω be a weight function. If P is an elliptic operator with analytic coefficients in Ω then

$$
\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega) .
$$

Comparison I

Theorem 2 (Juan-Huguet 2010)
Let P be a differential operator with constant coefficients and ω a non-quasianalytic weight function, i.e. it satisfies (5). If also (4) holds then the following statements are equivalent:

- P is elliptic.
- $\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega)$.

Theorem 3 (F.-Schindl 2022)
Let P be a analytic-hypoelliptic differential operator of principal type in Ω and ω be a weight function satisfying

$$
\begin{equation*}
\exists H>0: \quad \omega\left(t^{2}\right)=O(\omega(H t)), \quad t \rightarrow \infty . \tag{6}
\end{equation*}
$$

Then $\mathcal{E}^{\{\omega\}}(\Omega ; P)=\mathcal{E}^{\{\omega\}}(\Omega)$.

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
- Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{s}$.

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
- Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{s}$.
- On the other hand, if \mathbf{M} is strongly non-quasianalytic then there exists $\sigma>1$ such that $\mathcal{G}^{\sigma} \subseteq \mathcal{E}^{\{\mathrm{M}\}}$.

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
- Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{\text {s }}$.
- On the other hand, if \mathbf{M} is strongly non-quasianalytic then there exists $\sigma>1$ such that $\mathcal{G}^{\sigma} \subseteq \mathcal{E}^{\{\mathrm{M}\}}$.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
\rightarrow Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{s}$.
- On the other hand, if \mathbf{M} is strongly non-quasianalytic then there exists $\sigma>1$ such that $\mathcal{G}^{\sigma} \subseteq \mathcal{E}^{\{\mathrm{M}\}}$.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
- According to [Bonet-Meise-Taylor 1992] the Borel map associated to $\mathcal{E}^{\{\omega\}}$ is surjective if and only if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\omega(t y)}{t^{2}} d t=O(\omega(y)), \quad y \longrightarrow \infty \tag{7}
\end{equation*}
$$

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
\rightarrow Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{s}$.
- On the other hand, if \mathbf{M} is strongly non-quasianalytic then there exists $\sigma>1$ such that $\mathcal{G}^{\sigma} \subseteq \mathcal{E}^{\{\mathbf{M}\}}$.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
- According to [Bonet-Meise-Taylor 1992] the Borel map associated to $\mathcal{E}^{\{\omega\}}$ is surjective if and only if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\omega(t y)}{t^{2}} d t=O(\omega(y)), \quad y \longrightarrow \infty \tag{7}
\end{equation*}
$$

- But (6) implies (7).

Comparison II

- Theorem 2 is in some way a complement to Theorem A:
\rightarrow Remember if ω is a weight function which satisfies (4) then there is a weight sequence \mathbf{M} such that $\mathcal{E}^{\{\omega\}}=\mathcal{E}^{\{\mathbf{M}\}}$. Moreover, there is a $s>1$ such that $\mathcal{E}^{\{\omega\}} \subseteq \mathcal{G}^{s}$.
- On the other hand, if \mathbf{M} is strongly non-quasianalytic then there exists $\sigma>1$ such that $\mathcal{G}^{\sigma} \subseteq \mathcal{E}^{\{\mathrm{M}\}}$.
- However, Theorem 3 shows that Theorem A' cannot hold in the category of Braun-Meise-Taylor classes:
- According to [Bonet-Meise-Taylor 1992] the Borel map associated to $\mathcal{E}^{\{\omega\}}$ is surjective if and only if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\omega(t y)}{t^{2}} d t=O(\omega(y)), \quad y \longrightarrow \infty \tag{7}
\end{equation*}
$$

- But (6) implies (7).
- Moreover, if ω satisfies (6) then

$$
\bigcup_{s>1} \mathcal{G}^{s}(\Omega) \subseteq \mathcal{E}^{\{\omega\}}(\Omega)
$$

Literature

S. Fürdös and G. Schindl.

The theorem of iterates for elliptic and non-elliptic operators.
J. Funct. Anal., 283(5):74, 2022.

Id/No 109554,
https://doi.org/10.1016/j.jfa.2022.109554.
盏 S. Fürdös and G. Schindl.
Ellipticity and the problem of iterates for Denjoy-Carleman classes.
https://arxiv.org/abs/2212.12260

THANK YOU!

