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The Problem of lterates: Introduction

Theorem (Kotake—Naramsimhan/Komatsu)

Let P be a differential operator with real-analytic coefficients in an
open set Q C R". Then a smooth function f € C*(Q) is
real-analytic if and only if for each compact K C 2 there are
constants C, h > 0 such that

HPkuHL2(K) < CHK! Yk e Np.
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Problem of Iterates

Let P be a linear differential operator. If u is a
function(distribution) such that the iterates PXu satisfy uniform
estimates can we conclude that all derivatives of u satisfy these
uniform estimates?



Gevrey vectors

We denote the Gevrey class of order s > 1 by G°(Q2) (Q will always
denote an open set in R".) Let

P=>" p.D® D; = —idj, pa € G°().
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Gevrey vectors

We denote the Gevrey class of order s > 1 by G°(Q2) (Q will always
denote an open set in R".) Let

P=>" p.D® D; = —idj, pa € G°().

lo]<d

A distribution u € D’(Q) is an s-Gevrey vector of P if
Pku € L2 () for all k € Ny and for each compact set K C Q
there is a constant C > 0 such that

HPkUHB(K) < CEP(dh)r, Vk € No.

The space of s-Gevrey vectors of P is G*(£2; P).



The Theorem of Iterates in Gevrey classes

Theorem (Lions—Magenes 1970, Bolley—Camus 1981)
Let s > 1. If P is an elliptic differential operator with coefficients

in G*(Q2) then G°(X2; P) = G°(Q).



The Theorem of Iterates in Gevrey classes

Theorem (Lions—Magenes 1970, Bolley-Camus 1981)

Let s > 1. If P is an elliptic differential operator with coefficients

in G*(Q2) then G°(X2; P) = G°(Q).

Theorem (Baouendi—Métivier 1982)

Let P be a hypoelliptic operator of principal type with real-analytic
coefficients. Then the following statements hold:
1. GY(Q; P) =G(Q)
2. If s > 1 then for any V € Q) there exists s’ > s such that for
any u € G5(Q; P) we have that u|y € G% (V).
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> However, there are non-elliptic operators for which there are
analytic vectors which are not analytic.

» In the non-analytic Gevrey case we have a definite answer:

Theorem 1 (Metivier 1978)

Let P be a differential operators with coefficients in C*(Q2) and
s > 1. Then the following statements are equivalent:

1. P is elliptic.
2. G5(; P) = G°(Q).



Denjoy-Carleman Classes

Definition
We say that M = (M) x>0 is a weight sequence if My =1 and

M2 < My_1Myy1  VkeN.

A function f € C*°(Q) is ultradifferentiable of class {M} if for all
compact sets K C € there are constants C, h > 0 such that

sup|D*f(x)| < Ch*IM,  Va e Ng.
xeK

EMM}(Q) denotes the space of all ultradifferentiable functions of
class {M} in Q.



Some basic conditions
Inclusion of real-analytic functions: If

Iiminf(
k—o0

then C¥(Q) C £MM}(Q).

k!

M\ Yk
"> >0



Some basic conditions

Inclusion of real-analytic functions: If

lim inf (’V’k>1/k >0 (1)

k—00 k!

then C¥(Q) C £MM}(Q).

Derivation Closedness: If M satisfies
QR >0: My < Q"M VkeNy, (2)
then any derivative of an element in £{M}(Q) is itself

contained in £IM}(Q).

We call a weight sequence M semiregular if M satisfies (1) and (2).
If M is semiregular then £{M}(Q) is closed under composition with
real-analytic mappings (cf. [Hérmander 1990])
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» We say that a weight sequence M is non-quasianalytic if

— M
> <o (3)
— Misa

» M is non-quasianalytic if and only if £MM}(Q) is
non-quasianalytic, i.e.

DM () = eM(Q) N C5°(2) # {0}



Non-Quasianalyticity |

» We say that a weight sequence M is non-quasianalytic if

=~ M
> v K < . (3)
o k+1
» M is non-quasianalytic if and only if £MM}(Q) is
non-quasianalytic, i.e.
DMI(Q) = £ (Q) N C5o(Q) # {0}

> Note that (3) implies (1).



Non-Quasianalyticity I
A weight sequence M is strongly non-quasianalytic if

[e.9]

M, . M: .
JA>0: <A(G+1)—L Vj € Np.
ZMk+1 (U )Mj+1 J 0

k=j



Non-Quasianalyticity I
A weight sequence M is strongly non-quasianalytic if

[e.9]

M _ M; _
JA>0: <AG+1)—2  VjeN,.
;MkJrl ( )Mj+1

Theorem (Petzsche 1980)

The weight sequence M s strongly non-quasianalytic if and only if
the associated Borel map

by : EM([-1,1]) — Apwy

foo (f(k>(0))kGN

is surjective.

Here we have set

Ay = {(ak)kECNO:HC,h>O: |ak| < CH* M VkeNo}.



Denjoy-Carleman vectors

Let M be a weight sequence and P be a differential operator of
order d with coefficients in £{M}(Q).

A distribution u € D'(Q) is a {M}-vector of P if Pku € L2 (Q)
and for all compact K C Q2 there are constants C, h > 0 such that

HP%HBW < Ch*My ke Np.

EIMH(Q; P) is the space of all {M}-vectors associated to P.
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Remarks

» If P is an elliptic operator with real-analytic coefficients in Q
then £IMH(Q; P) = £IM}(Q) for any semiregular weight
sequence M, see [Bolley-Camus—Mattera 1979].

» We need more restrictive conditions on M in the case that P
has merely ultradifferentiable coefficients of class {M}, see
e.g. [Lions—Magenes, 1970], etc.

» Some examples of weight sequences:

> Let s > 1. The Gevrey sequence G® given by G; = (k!)® is
strongly non-quasianalytic if and only if s > 1. G® satisfies (2)
for all s > 1.

> Let g > 1 and r > 1. The weight sequence N9 " given by
NJ" = g~ is strongly non-quasianalytic for all g, r > 1 but
N satisfies (2) if and only if 1 < r > 2.

> Let 0 > 0. The weight sequence L7 given by
L7 = k!(log(k + €))°* is not strongly non-quasianalytic for any
choice of 0 > 0. However L? is non-quasianalytic if and only if
o > 1. Finally, (1) and (2) hold for all & > 0.



Main Theorem

Theorem A (F.—Schindl 2023)

Let P be a non-elliptic operator with real-analytic coefficients in Q.

If M is a strongly non-quasianalytic weight sequence then there is
a smooth function u € C*°(Q) such that
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Main Theorem

Theorem A (F.—Schindl 2023)

Let P be a non-elliptic operator with real-analytic coefficients in Q.
If M is a strongly non-quasianalytic weight sequence then there is
a smooth function u € C*°(Q) such that

ue EMQ; P\ eMH(Q).

Corollary

Let P be a differential operator with real-analytic coefficients in Q
and M be a strongly non-quasianalytic weight sequence which also
satisfies (2). Then the following statements are equivalent:

1. P is elliptic.

2. EMH(Q; P) = £IM}(Q).



Main Theorem: Invariant Version

Theorem A’

Suppose that the Borel map associated to the Denjoy-Carleman
structure EM} s surjective.

Then for any non-elliptic partial differential operator P there is an
{M}-vector of P which is not a function of class {M}.



Sketch of the proof in the Gevrey case: Prologue
Let

P=Y" pa(x)D*,  pa€C®(Q) (or C*(Q));

la|<d
p(x,€) = Z Pa(x)* ... symbol of P,
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pd(x, &) = Z Pa(x)E¢ ... principal symbol of P.
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Sketch of the proof in the Gevrey case: Prologue
Let

P=Y" pa(x)D*,  pa€C®(Q) (or C*(Q));

la|<d

p(x,€) = Z Pa(x)* ... symbol of P,
la|<d

pd(x, &) = Z Pa(x)E¢ ... principal symbol of P.
|a|=d

If P is non-elliptic then there are xg € Q and & € S"! such that

pd(x0,&0) = 0.

Let 0 > 0 be such that B(xp,20) = {y € R": |y — x| <20} C Q.
Then we have

ID>1Vt>1Vee (0,1) Vx € B(xg, 20t™5) :
|p(x, t&o)| < Dtd—<.
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Sketch

of proof in the Gevrey case: Part 1

For s > 1 givenlet 0 € (1,5) and 0 < e < ‘;E;s__? <1/2.
Let ¢ € G7(R") NC3°(R™) such that ¢(x) =1 for |x| < ¢ and
(x) = 0 for |x| > 24.

The vector u is defined as
u(x) _ / ¥ (tE(X B XO)) e~ t" eit{o(x—xo) dt,
1

where n = (d —¢)/(ds) < 1/s.
Then

o 1 k+1
Dkuxo :/ tke_tndtzr<>+ol.
o U(x0) . ; 7 (1)



Sketch

of proof in the Gevrey case: Part 1

For s > 1 givenlet 0 € (1,5) and 0 < e < ZE;S__? <1/2.

Let ¢ € G7(R") NC3°(R™) such that ¢(x) =1 for |x| < ¢ and
(x) = 0 for |x| > 24.

The vector u is defined as

u(x) = / W (£°(x — xp)) e~ el 0) g,
1

where n = (d —¢)/(ds) < 1/s.
Then

o0 1 k+1
ngou(xo) = / the " dt = =T <+> + o(1).
1 n n

Thus u ¢ G near xo for all s’ < 1/.



Sketch of proof in the Gevrey case: Part 2

> In order to estimate PXu we introduce functions Qx(x, t) such
that

w .
Pru(x) = / Qu(x, t)et" eieolx—0) gp.
1
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> In order to estimate PXu we introduce functions Qx(x, t) such
that
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» Using the fact that for each s > 0 there is a constant B > 0
such that p? < B*(dk)!s exp(p'/*/2) we obtain

|Qu(x, 1) < A1 (dk)!® exp (‘f)

for a generic constant A independent of k.



Sketch of proof in the Gevrey case: Part 2

> In order to estimate PXu we introduce functions Qx(x, t) such
that

Pk”(X) :/ Qk(x, t)e_t"e"tﬁo(x—xo) dt.
1
> It is (relatively) easy to see that
|Qu(x, t)] < AkT1 (t(d—s)k n (dk)!atks(2d—1)) .

» Using the fact that for each s > 0 there is a constant B > 0
such that p? < B*(dk)!s exp(p'/*/2) we obtain

|Qu(x, 1) < A1 (dk)!® exp (‘f)

for a generic constant A independent of k.
> Finally |Pku| < AF1(dk)!® [Cexp(—t"/2).
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Observations

If we want to modify Metivier's proof to the case of
Denjoy-Carleman classes, we have to consider the following:
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>

For a given weight sequences M we need to find two other
weight sequences

The second part can be relatively easily modified to the
Denjoy-Carleman case, if we still define u as a Fourier
integral, with a suitable kernel.

The first part means in particular, that v is an optimal
function for G*': u is not element of Gt for any t < s (in fact,
u ¢ EMM} for any strictly smaller DC-class EM € G*).

The problem for us: Optimal functions for Denjoy-Carleman
classes have been previously constructed, but only as Fourier
series.

Our first aim: to construct optimal functions in DC classes as
Fourier integrals.
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Some Definitions and Notation

Let M, N be weight sequences and A > 0.

M<N — M, < Ny V k € No,
M<AN <= M, < ANy V k € No,
M=<N = 3JC,h>0: M,<Ch*N, VkeN,
M~ N — M=<N A N=<M,
MZN — M=<N A NZM.

If M < N then £IM}(Q) C £INH(Q) and
EM(Q; P) C eINH(Q; P).
Furthermore for M, N and p > 0 we define two new weight
sequences:
» MN which is given by (MN), = M Nj.
> M? given by (M?), = M.



Associated functions

Let M be a weight sequence. The weight function wpy associated
to M is defined by
£k

wM(t):leuR;I) Iogﬁk, t >0, & wm(0) = 0.
0

Then wpm is a continuous function on [0, c0) which increases faster
then log tP for every p € N.



Associated functions

Let M be a weight sequence. The weight function wpy associated
to M is defined by
£k

wM(t):feul\? Iogﬁk, t >0, & wm(0) = 0.
0

Then wpm is a continuous function on [0, c0) which increases faster
then log tP for every p € N.

The weight associated to M is the function

hM(t):kiergol\/lktk, t>0, &  hu(0)=0.

Clearly
1
hm <t> = e~wm(t), t>0.

Hence hp is a continuous function which is flat at the origin.
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Ultraholomorphic functions

Let R be the Riemann surface of the logarithm. For v > 0 let

S :{ZER:\argzl < %}

If M is a weight sequence then let O\ (S,) be the space of
holomorphic functions g on S, for which there are a formal series
E=>720 axz" and constants C, h > 0 such that

k—1

g(z) - > a7 | < CHMilz|*,Vz € S, VkeN.
j=0

We say that g is the {M}-asymptotic expansion of g.
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> If g € Oymy(Sy) and K € S, is a subsector then there are
constants C, Q > 0 such that

sug\g(k)(z)( < CQ*My, V k € Np.
ze
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Remarks

> If g € Oymy(Sy) and K € S, is a subsector then there are
constants C, Q > 0 such that

sup‘g(k)(z)‘ < CQ*M,, V k € Np.

zeK

> If g € Ofmy(S,) then there is only one asymptotic expansion

g.

> The asymptotic Borel map bm : Ogmy(Sy) = Compl[2]] is
given by g — g.

Comllzll =< a7 €C[2]]: 3C,h > 0lay| < CH*M Vk € Ng
j=0
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An invariant

We say that a sequence (ck)k is almost increasing if there is a
constant a > 0 such that ¢; < acy for all kK < /.

For the study of the surjectivity of the asymptotic Borel map
Thilliez introduced the following invariant:

Definition

For a weight sequence M we set

~v(M) = sup{'y > 0: The sequence

M, . Imost i .
— IS alMOSTt INnCreasin .
My_1 k7 g

» The asymptotic Borel map is surjective on S, if and only if
v <v(M).
» 7(G®) =s fors > 1.

» M is a strongly non-quasianalytic weight sequence if and only
if v(M) > 1.

> (M) = py(M) for p > 0.
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Optimal functions in the ultraholomorphic setting

Definition
A holomorphic function G on S, is an {M}-optimal flat functions if
G(t) zAth(Blt), t >0,
|G(Z)’ < Ath(th), zc 57,

for constants Ay, Ay, B1, B> > 0.

PN

Clearly G € Ogmy(S,) with asymptotic expansion G = 0.



The main technical result

Theorem (Jiminez-Garrio—Sanz—Schind| 2022)
1. If v < (M) then there exist {M}-optimal flat functions in S, .

2. If G is an optimal {M}-flat function then there are constants
C1, h1 > 0 such that

CLhf My < / tkG(1/t) dt.
0

If M satisfies additionally (2) then there exist Co, ho > 0 such

that

/ tkG(1/t) dt < Gohs M.
0



Optimal functions in DC-classes

Let M a weight sequence and Gpm an optimal {M}-flat function (in
some sector S,). If we choose xg € R” and & € S 1 and set

F(x) = / G(L/t)e@t—0) gy
0

then .
Dk f(x0) = /0 £ Ga(1/1t) dt.

Thus f cannot be of class {T} near xp for any weight sequence

TZM

If (2) holds for M then f € £{M}(R").
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> Let M be a weight sequence and suppose that there are two
weight sequences L and N such that L is non-quasianalytic,
y(N)>0and LM 3 N.

» For xp € Q let § > 0 be such that B(xp,2d) C Q.
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The construction of u in the DC-case

>

Let M be a weight sequence and suppose that there are two
weight sequences L and N such that L is non-quasianalytic,
y(N)>0and LM 3 N.
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The construction of u in the DC-case

>

Let M be a weight sequence and suppose that there are two
weight sequences L and N such that L is non-quasianalytic,
y(N)>0and LM 3 N.

For xo € Q2 let 6 > 0 be such that B(xp,20) C Q.

Let ¢ € DIL}(R") be such that ¥(x) = 1 for |x| < § and
(x) = 0 for |x| > 24.

Let Gy be an optimal {N}-flat function and set

(DN(t) = GN(]./t).

If & € R\ {0} and 0 < ¢ < 1 (to be specified later) then we
set

u(x) = /1 T (E(x — x0)) Pu(£)elt o) g,

Thence u is a C*°-function which is not of class {T} near xp
for any T 3 N. In particular u ¢ E{M}(Q).



The construction of u in the DC-case: Part Il

Now let P be a linear differential operator of order d with
coefficients in £{L}(Q) which is not elliptic at (xo,&). Then there
are functions @ such that

o0
Pky — / Qu(x, )b (t)e @t gt
1
There are constants C, h > 0 such that

1Qu(x, 1) < Ch* <t(d—a)k 1 tks(2d—1)Ldk> _



The construction of u in the DC-case: Part Il

Now let P be a linear differential operator of order d with
coefficients in £{L}(Q) which is not elliptic at (xo,&). Then there
are functions @ such that

Pky = /1 h Qu(x, t) by (t)elEo—0) gt
There are constants C, h > 0 such that
|Qu(x, t)| < Ch <t(d—a)k 1 tks(2d—1)Ldk> _
Now set p = t1=¢/9 and R = t<(2=1/9) Obviously

t(d—e)k _ ,Odk _ pdk dk < MdkewM(p) — MdkewM(tlis/d)‘
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sequence V such that LV < M.
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For the second term, we need to assume that there is a weight
sequence V such that LV < M.Then

theCID g = RIL gy < Ly VeV,
Thence there are constants C, h > 0 such that

|Qk(X, t)| < ChkMdk (ewM(tl—s/d) 4 ewv(t6(2—1/d)))
If we assume that ¢ < 1/2 then te(2-1/d) < t1=¢/d  Therefore

wy <t5(2_1/d)) <wy(l—¢/d).

On the other hand, if we suppose that V < M then
wm(s) < wy(s) for all s > 0.



Final estimates
It follows that there are constants C, h, B, > 1 such that

}Pk ‘ < ChkMdk /Ooe—wN(t/BQ)ewv(tlg/d) dt

for x € Q. Thence u € £IM}(Q; P) if we can show that the
integral on the right-hand side converges.



Final estimates

It follows that there are constants C, h, B, > 1 such that
oo
}Pk ‘ < Ch* Mgy / e on(t/B2) g (871 iy

for x € Q. Thence u € £IM}(Q; P) if we can show that the
integral on the right-hand side converges.

Thus we need a way to compare wy with wy. If we have, for
example, that

d
Ja€(0,1) Vs> 1:wy(s) < awn <32—15d5> LD
Thus



Auxillary result

Proposition (F.-Schindl 2023)

Let T and U be two weight sequences and T > 1. Then the
following two assertions are equivalent:

1. There is a constant A > 1 such that U < AT".
2. There is a constant C > 1 such that

wr(s) <7ty (s7) + C, Vs> 0.

If one of the assertions hold then for all 0 < a < 1 and o > 7 there
exists a constant C > 1 such that

wr(s) < 77wy (as?) + C, Vs> 0.

Weset T=V,U=N,7=d/(d—¢), a=By".



An abstract theorem

Theorem B
Let M, L, N and V be weight sequences and d € N such that the
following properties hold:

1. MZ N and+(N) >0

2. L is non-quasianalytic.

3. V<Mand LV X M.

4. There are constants 1 < 7 < 2d/(2d — 1) and A > 1 such

that N < AV™.

Then, for every non-elliptic differential operator P of order d with
coefficients in E1L(Q), there is a smooth function u such that
ue EMNQ; P) but u ¢ ETTHQ) for any weight sequence T Z N.



Proof of Main Theorem: Conclusion

Corollary

Let M be a weight sequence with v(M) = co and T be a weight
sequence such that T < M? for all p > 0.

If P is a non-elliptic differential operator with coefficients in
EWTH(Q) then there is a function u € C°°(Q) such that

uve EMHQ; P)\ £IMH(Q).



Proof of Main Theorem: Conclusion

Corollary

Let M be a weight sequence with v(M) = co and T be a weight
sequence such that T < M? for all p > 0.

If P is a non-elliptic differential operator with coefficients in
E{TH(Q) then there is a function u € C®(Q) such that

uve EMHQ; P)\ £IMH(Q).

Proof.
Choose parameters 0 < ¢ < 1 and p > 1 such that
l<p< 2d
P=2d—1"

We set V= M?, L =M= and N = M”. Then the assumptions
of Theorem C are fulfilled. Ol



The case 1 < y(M) < o0

The previous proof does not work in the case 1 < y(M) < co.
But we can directly imitate the proof in the Gevrey case:
Set T = MY7 with v = v(M). Thus v(T) =1 and 7(T*) = s.

Theorem C

Let M be a weight sequence such that 1 < (M) < co. If P is a
non-elliptic differential operator of class {M*}, where

1 <1/p < y(M), then there is a smooth function u such that

ue EMQ; P\ eMH(Q).



Returning to the Gevrey case

Corollary

Let 1 < r < s and P be a non-elliptic differential operator with
coefficients in G"(2). Then there is a smooth function u such that

u € G5(Q P)\ G5(Q).



Returning to the Gevrey case

Corollary

Let 1 < r < s and P be a non-elliptic differential operator with
coefficients in G"(2). Then there is a smooth function u such that

u € G5(Q P)\ G5(Q).

Theorem D
Let 1 < r < s. If P is a differential operator with coefficients in
G"(Q2) then the following statements are equivalent:

1. P is elliptic.
2. G5(; P) = G5(Q).



Other weights

Definition
A weight function is an increasing continuous function
w : [0,00) — [0, 00) with the following properties:

> Wl =0

> w(2t) = O(w(t)), — oo,

» logt = O(w(t))

> (p, = w o exp is convex.

The conjugate function of ¢, is

eu(t) = igg(st —¢(s))-



Classes given by weight functions

A function f € C*°(Q) is ultradifferentiable of class {w} if for any
compact K C Q there are constants C, h > 0 such that

sup|D%u(x)| < Cet/he"(hlel) Va e Ng.
xeK

The space of ultradifferentiable functions of class {w} is £{}(Q).

A distribution u € D'(Q) is an {w}-vector of a differential operator
P (with £{}(Q)) if Pku € L2 _(Q), Yk € Ny, and for every

loc

compact set K C Q there are constants C, h > 0 such that
1 *
1P ull 2k) < Ce®?e") vk e N

The space of {w}-vectors of P is £1“}(Q; P).
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Remarks

| 2

>

Let s > 1. The weight function ws(t) = max{0,t* — 1}
generates the Gevrey class of order s, i.e. £{:}(Q) = G5(Q).
However, the class generated by os(t) = (logt)®, t > 1,
cannot be described by weight sequences.

The opposite is also true, there are Denjoy-Carleman classes
which cannot be described by weight functions.
[Bonet—Meise—Melikhov 2007] gave conditions when weight
functions and weight sequences describe the same classes.

In particular if a weight function w satisfies

dH>1Vt>0: 2w(t)<w(Ht)+H (4)

then there is a weight sequence M such that
el(Q) = eMH(Q).
£19HQ) N C3(Q) # {0} if
/ ) g < oo (5)
1

t2
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Problem of Iterates in BMT-Classes
Theorem (Juan-Huguet 2010)

Let w be a weight function. If P is an elliptic differential operator
with constant coefficients then

W P) = £H(Q).

Theorem (Boiti—Jornet 2016)

Let w be a subadditive weight function. If P is an elliptic operator
with £4}(Q)-coefficients then

e P) = ().

Theorem (F.—Schind| 2022)

Let w be a weight function. If P is an elliptic operator with
analytic coefficients in €2 then

sl p) = 19 (Q).



Comparison |

Theorem 2 (Juan-Huguet 2010)

Let P be a differential operator with constant coefficients and w a
non-quasianalytic weight function, i.e. it satisfies (5). If also (4)
holds then the following statements are equivalent:

> P s elliptic.
» £k (qQ; P) = £lWl(Q).

Theorem 3 (F.—Schindl 2022)

Let P be a analytic-hypoelliptic differential operator of principal
type in Q and w be a weight function satisfying

JH>0: w(t?) = O(w(Ht)), t— oco. (6)

Then £1}(Q; P) = £1w}(Q).
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Comparison I

» Theorem 2 is in some way a complement to Theorem A:

» Remember if w is a weight function which satisfies (4) then
there is a weight sequence M such that £{«} = £{M},
Moreover, there is a s > 1 such that £} C gs.

» On the other hand, if M is strongly non-quasianalytic then
there exists o > 1 such that g7 C £IM},

» However, Theorem 3 shows that Theorem A’ cannot hold in
the category of Braun-Meise-Taylor classes:
> According to [Bonet-Meise-Taylor 1992] the Borel map
associated to £1¢} is surjective if and only if

/100 ) e — o(uly)), v — o (7)

> But (6) implies (7).
» Moreover, if w satisfies (6) then

Joe@ cehq).

s>1
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