The Cauchy problem for p-evolution equations in Gevrey spaces

Marco Cappiello
Dipartimento di Matematica "G. Peano"
Università di Torino

Workshop on Global and Microlocal Analysis, Bologna

Joint research with Alexandre Arias Junior (Università di Torino) A. Ascanelli (Università di Ferrara)

The Cauchy problem

We consider the following Cauchy problem

$$
\left\{\begin{array}{l}
P\left(t, x, D_{t}, D_{x}\right) u(t, x)=f(t, x) \quad(t, x) \in[0, T] \times \mathbb{R} \tag{1}\\
u(0, x)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

where

$$
\begin{equation*}
P\left(t, x, D_{t}, D_{x}\right)=D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{j}(t, x) D_{x}^{p-j} \tag{2}
\end{equation*}
$$

where $D=-i \partial, a_{p-j} \in C\left([0, T], \mathcal{B}^{\infty}(\mathbb{R})\right), j=1, \ldots, p$, and a_{p} is independent of x and real valued.

The Cauchy problem

We consider the following Cauchy problem

$$
\left\{\begin{array}{l}
P\left(t, x, D_{t}, D_{x}\right) u(t, x)=f(t, x) \quad(t, x) \in[0, T] \times \mathbb{R} \tag{1}\\
u(0, x)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

where

$$
\begin{equation*}
P\left(t, x, D_{t}, D_{x}\right)=D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{j}(t, x) D_{x}^{p-j} \tag{2}
\end{equation*}
$$

where $D=-i \partial, a_{p-j} \in C\left([0, T], \mathcal{B}^{\infty}(\mathbb{R})\right), j=1, \ldots, p$, and a_{p} is independent of x and real valued. The latter condition guarantees that the assumptions of Lax-Mizohata Theorem are satisfied and that the principal symbol of P in the sense of Petrowski has the real characteristic root $\tau=-a_{p}(t) \xi^{p}$.

The Cauchy problem

We consider the following Cauchy problem

$$
\left\{\begin{array}{l}
P\left(t, x, D_{t}, D_{x}\right) u(t, x)=f(t, x) \quad(t, x) \in[0, T] \times \mathbb{R} \tag{1}\\
u(0, x)=g(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

where

$$
\begin{equation*}
P\left(t, x, D_{t}, D_{x}\right)=D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{j}(t, x) D_{x}^{p-j} \tag{2}
\end{equation*}
$$

where $D=-i \partial, a_{p-j} \in C\left([0, T], \mathcal{B}^{\infty}(\mathbb{R})\right), j=1, \ldots, p$, and a_{p} is independent of x and real valued. The latter condition guarantees that the assumptions of Lax-Mizohata Theorem are satisfied and that the principal symbol of P in the sense of Petrowski has the real characteristic root $\tau=-a_{p}(t) \xi^{p}$. Such an operator is known as p-evolution operator.

State of the art

References: Agliardi, Arias Junior, Ascanelli, Boiti, Cicognani, Colombini, Baba, Ichinose, Kajitani, Reissig, Zanghirati,...

State of the art

References: Agliardi, Arias Junior, Ascanelli, Boiti, Cicognani, Colombini, Baba, Ichinose, Kajitani, Reissig, Zanghirati,...
When the coefficients $a_{j}, j=0, \ldots, p-1$ are smooth and real valued the Cauchy problem for (1) is well posed in L^{2} and in every Sobolev space $H^{m}(\mathbb{R})$.

State of the art

References: Agliardi, Arias Junior, Ascanelli, Boiti, Cicognani, Colombini, Baba, Ichinose, Kajitani, Reissig, Zanghirati,...
When the coefficients $a_{j}, j=0, \ldots, p-1$ are smooth and real valued the Cauchy problem for (1) is well posed in L^{2} and in every Sobolev space $H^{m}(\mathbb{R})$.

When the coefficients a_{j} are complex valued some control on the behavior for $|x| \rightarrow \infty$ of the coefficients $a_{j}, j=0,1, \ldots, p-1$ is required in order to obtain well-posedness at least in $H^{\infty}=\cap_{m \in \mathbb{R}} H^{m}$. or in some Gevrey classes, in general with some loss of derivatives.

State of the art

References: Agliardi, Arias Junior, Ascanelli, Boiti, Cicognani, Colombini, Baba, Ichinose, Kajitani, Reissig, Zanghirati,...
When the coefficients $a_{j}, j=0, \ldots, p-1$ are smooth and real valued the Cauchy problem for (1) is well posed in L^{2} and in every Sobolev space $H^{m}(\mathbb{R})$.

When the coefficients a_{j} are complex valued some control on the behavior for $|x| \rightarrow \infty$ of the coefficients $a_{j}, j=0,1, \ldots, p-1$ is required in order to obtain well-posedness at least in $H^{\infty}=\cap_{m \in \mathbb{R}} H^{m}$. or in some Gevrey classes, in general with some loss of derivatives.
H^{∞} well posedness: A. Ascanelli, C. Boiti, L. Zanghirati, Well-posedness of the Cauchy problem for p-evolution equations. J. Differential Equations 253 (10) (2012), 2765-2795.
A. Ascanelli, C. Boiti, L. Zanghirati, A necessary condition for H^{∞} well-posedness of p-evolution equations. Adv. Diff. Equations 21 (2016), 1165-1196.

State of the art

References: Agliardi, Arias Junior, Ascanelli, Boiti, Cicognani, Colombini, Baba, Ichinose, Kajitani, Reissig, Zanghirati,...
When the coefficients $a_{j}, j=0, \ldots, p-1$ are smooth and real valued the Cauchy problem for (1) is well posed in L^{2} and in every Sobolev space $H^{m}(\mathbb{R})$.

When the coefficients a_{j} are complex valued some control on the behavior for $|x| \rightarrow \infty$ of the coefficients $a_{j}, j=0,1, \ldots, p-1$ is required in order to obtain well-posedness at least in $H^{\infty}=\cap_{m \in \mathbb{R}} H^{m}$. or in some Gevrey classes, in general with some loss of derivatives.
H^{∞} well posedness: A. Ascanelli, C. Boiti, L. Zanghirati, Well-posedness of the Cauchy problem for p-evolution equations. J. Differential Equations 253 (10) (2012), 2765-2795.
A. Ascanelli, C. Boiti, L. Zanghirati, A necessary condition for H^{∞} well-posedness of p-evolution equations. Adv. Diff. Equations 21 (2016), 1165-1196.
Gevrey well posedness: Only results for $p=2$ (Kajitani-Baba (1995), Cicognani and Reissig (2014), Dreher (2003)).

Sufficient conditions: the cases $p=2,3$
For $P=D_{t}+a_{2}(t) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x)$. Assume

$$
\operatorname{Im}_{1}(t, x)=\mathcal{O}\left(|x|^{-\sigma}\right), \quad|x| \rightarrow \infty
$$

for some $\sigma>0$. Then:

Sufficient conditions: the cases $p=2,3$

For $P=D_{t}+a_{2}(t) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x)$. Assume

$$
\operatorname{Ima}_{1}(t, x)=\mathcal{O}\left(|x|^{-\sigma}\right), \quad|x| \rightarrow \infty
$$

for some $\sigma>0$. Then:

- If $\sigma>1$ the Cauchy problem is L^{2} well posed, i.e. data in $H^{m} \Rightarrow$ solution in H^{m} for all $m \in \mathbb{R}$.

Sufficient conditions: the cases $p=2,3$

For $P=D_{t}+a_{2}(t) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x)$. Assume

$$
\operatorname{Ima}_{1}(t, x)=\mathcal{O}\left(|x|^{-\sigma}\right), \quad|x| \rightarrow \infty
$$

for some $\sigma>0$. Then:

- If $\sigma>1$ the Cauchy problem is L^{2} well posed, i.e. data in $H^{m} \Rightarrow$ solution in H^{m} for all $m \in \mathbb{R}$.
- If $\sigma=1$ the Cauchy problem is H^{∞} well posed, i.e. data in $H^{m} \Rightarrow$ solution in $H^{m-\delta}$ for some $\delta>0$.

Sufficient conditions: the cases $p=2,3$

For $P=D_{t}+a_{2}(t) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x)$. Assume

$$
\operatorname{Ima}_{1}(t, x)=\mathcal{O}\left(|x|^{-\sigma}\right), \quad|x| \rightarrow \infty
$$

for some $\sigma>0$. Then:

- If $\sigma>1$ the Cauchy problem is L^{2} well posed, i.e. data in $H^{m} \Rightarrow$ solution in H^{m} for all $m \in \mathbb{R}$.
- If $\sigma=1$ the Cauchy problem is H^{∞} well posed, i.e. data in $H^{m} \Rightarrow$ solution in $H^{m-\delta}$ for some $\delta>0$.
- If $\sigma \in(0,1)$ and a_{0}, a_{1} are Gevrey regular of order s_{0} for some $s_{o} \in(1,1 /(1-\sigma))$ then the problem is well posed in some Gevrey class of order θ with $\theta \in\left[s_{o}, 1 /(1-\sigma)\right)$.

Sufficient conditions: the cases $p=2,3$

For $P=D_{t}+a_{2}(t) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x)$. Assume

$$
\operatorname{Im}_{1}(t, x)=\mathcal{O}\left(|x|^{-\sigma}\right), \quad|x| \rightarrow \infty
$$

for some $\sigma>0$. Then:

- If $\sigma>1$ the Cauchy problem is L^{2} well posed, i.e. data in $H^{m} \Rightarrow$ solution in H^{m} for all $m \in \mathbb{R}$.
- If $\sigma=1$ the Cauchy problem is H^{∞} well posed, i.e. data in $H^{m} \Rightarrow$ solution in $H^{m-\delta}$ for some $\delta>0$.
- If $\sigma \in(0,1)$ and a_{0}, a_{1} are Gevrey regular of order s_{0} for some $s_{o} \in(1,1 /(1-\sigma))$ then the problem is well posed in some Gevrey class of order θ with $\theta \in\left[s_{o}, 1 /(1-\sigma)\right)$.
For $P=D_{t}+a_{3}(t) D_{x}^{3}+a_{2}(t, x) D_{x}^{2}+a_{1}(t, x) D_{x}+a_{0}(t, x), H^{\infty}$ well posedness assuming that

$$
\begin{gathered}
\left|\operatorname{Ima}_{2}(t, x)\right| \leq C a_{3}(t)\langle x\rangle^{-1} \\
\left.\left|\operatorname{Ima}_{1}(t, x)\right|+\mid \operatorname{Re}_{x} a_{2}\right)(t, x) \left\lvert\, \leq C a_{3}(t)\langle x\rangle^{-\frac{1}{2}}\right.
\end{gathered}
$$

Gevrey well-posedness for 3 -evolution equations

With the purpose of studying well-posedness for p-evolution equations we started focusing on the case $p=3$.

Gevrey well-posedness for 3 -evolution equations

With the purpose of studying well-posedness for p-evolution equations we started focusing on the case $p=3$.

Why?

Gevrey well-posedness for 3 -evolution equations

With the purpose of studying well-posedness for p-evolution equations we started focusing on the case $p=3$.

Why?

- Actually, this is the first step to study quasilinear 3-evolution equations which include interesting physical models like KdV equation and its generalizations. In order to treat the semilinear case, we need first to find energy estimates for the linearized problem.

Gevrey well-posedness for 3 -evolution equations

With the purpose of studying well-posedness for p-evolution equations we started focusing on the case $p=3$.

Why?

- Actually, this is the first step to study quasilinear 3-evolution equations which include interesting physical models like KdV equation and its generalizations. In order to treat the semilinear case, we need first to find energy estimates for the linearized problem.
- The analysis of general p-evolution operators generally relies on an iterative procedure but the argument in the Gevrey case is quite technical, based on the use of pseudodifferential operators of infinite order. We decided to test it first on the case $p=3$ and we are confident it may be applied with more iterations for higher order operators.

Gevrey-Sobolev spaces

For every $\theta \geq 1, m, \rho \in \mathbb{R}$ we denote by

$$
H_{\rho ; \theta}^{m}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}):\langle D\rangle^{m} e^{\rho\langle D\rangle^{\frac{1}{\theta}}} u \in L^{2}(\mathbb{R})\right\}
$$

where $e^{\rho\langle D\rangle^{\frac{1}{\theta}}}$ is the Fourier multiplier with symbol $e^{\rho\langle\xi\rangle^{\frac{1}{\theta}}}$.

Gevrey-Sobolev spaces

For every $\theta \geq 1, m, \rho \in \mathbb{R}$ we denote by

$$
H_{\rho ; \theta}^{m}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}):\langle D\rangle^{m} e^{\rho\langle D\rangle^{\frac{1}{\theta}}} u \in L^{2}(\mathbb{R})\right\}
$$

where $e^{\rho\langle D\rangle^{\frac{1}{\theta}}}$ is the Fourier multiplier with symbol $e^{\rho\langle\xi\rangle^{\frac{1}{\theta}}}$. We set

$$
H_{\theta}^{\infty}(\mathbb{R})=\bigcap_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R}), \quad \mathcal{H}_{\theta}^{\infty}(\mathbb{R})=\bigcup_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R})
$$

Gevrey-Sobolev spaces

For every $\theta \geq 1, m, \rho \in \mathbb{R}$ we denote by

$$
H_{\rho ; \theta}^{m}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}):\langle D\rangle^{m} e^{\rho\langle D\rangle^{\frac{1}{\theta}}} u \in L^{2}(\mathbb{R})\right\}
$$

where $e^{\rho\langle D\rangle^{\frac{1}{\theta}}}$ is the Fourier multiplier with symbol $e^{\rho\langle\xi\rangle^{\frac{1}{\theta}}}$. We set

$$
H_{\theta}^{\infty}(\mathbb{R})=\bigcap_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R}), \quad \mathcal{H}_{\theta}^{\infty}(\mathbb{R})=\bigcup_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R})
$$

Denote by $G^{\theta}(\mathbb{R})\left(\right.$ resp. $\left.\gamma^{\theta}(\mathbb{R})\right)$ the space of all smooth functions on \mathbb{R} satisfying the following condition:

$$
\sup _{\alpha \in \mathbb{N}} h^{-|\alpha|} \alpha!-\theta \sup _{x \in \mathbb{R}}\left|\partial^{\alpha} f(x)\right|<\infty
$$

for some (resp. for every $h>0$) and by $G_{0}^{\theta}(\mathbb{R})$ and $\gamma_{0}^{\theta}(\mathbb{R})$ the subspaces of compactly supported functions in $G^{\theta}(\mathbb{R})$ and $\gamma^{\theta}(\mathbb{R})$.

Gevrey-Sobolev spaces

For every $\theta \geq 1, m, \rho \in \mathbb{R}$ we denote by

$$
H_{\rho ; \theta}^{m}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}):\langle D\rangle^{m} e^{\rho\langle D\rangle^{\frac{1}{\theta}}} u \in L^{2}(\mathbb{R})\right\}
$$

where $e^{\rho\langle D\rangle^{\frac{1}{\theta}}}$ is the Fourier multiplier with symbol $e^{\rho\langle\xi\rangle^{\frac{1}{\theta}}}$. We set

$$
H_{\theta}^{\infty}(\mathbb{R})=\bigcap_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R}), \quad \mathcal{H}_{\theta}^{\infty}(\mathbb{R})=\bigcup_{\rho>0} H_{\rho, \theta}^{m}(\mathbb{R})
$$

Denote by $G^{\theta}(\mathbb{R})\left(\right.$ resp. $\left.\gamma^{\theta}(\mathbb{R})\right)$ the space of all smooth functions on \mathbb{R} satisfying the following condition:

$$
\sup _{\alpha \in \mathbb{N}} h^{-|\alpha|} \alpha!-\theta \sup _{x \in \mathbb{R}}\left|\partial^{\alpha} f(x)\right|<\infty
$$

for some (resp. for every $h>0$) and by $G_{0}^{\theta}(\mathbb{R})$ and $\gamma_{0}^{\theta}(\mathbb{R})$ the subspaces of compactly supported functions in $G^{\theta}(\mathbb{R})$ and $\gamma^{\theta}(\mathbb{R})$. It is easy to verify the following inclusions

$$
\begin{aligned}
\gamma_{0}^{\theta}(\mathbb{R}) & \subset H_{\theta}^{\infty}(\mathbb{R}) \subset \gamma^{\theta}(\mathbb{R}) \\
G_{0}^{\theta}(\mathbb{R}) & \subset \mathcal{H}_{\theta}^{\infty}(\mathbb{R}) \subset G^{\theta}(\mathbb{R})
\end{aligned}
$$

Theorem 1 (Ann. Scuola Norm. Sup. Pisa (2024?)) Let $s_{0}>1$ and $\sigma \in\left(\frac{1}{2}, 1\right)$ such that $s_{0}<\frac{1}{2(1-\sigma)}$. Let moreover $P\left(t, x, D_{t}, D_{x}\right)$ defined by (2). Assume that $a_{j} \in C\left([0, T] ; \mathcal{B}^{\infty}(\mathbb{R})\right)$ for $j=0,1,2$ and that
(i) $a_{3} \in C([0, T] ; \mathbb{R})$ and there exists $C_{a_{3}}>0$ such that

$$
\left|a_{3}(t)\right| \geq C_{a_{3}}, \quad t \in[0, T]
$$

(ii) there exists $C_{a_{2}}>0$ such that the coefficient $a_{2}(t, x)$ satisfy $\forall \beta \in \mathbb{N}_{0}$:

$$
\left|\partial_{x}^{\beta} a_{2}(t, x)\right| \leq C_{a_{2}}^{\beta+1} \beta!{ }^{s_{0}}\langle x\rangle^{-\sigma}, \quad t \in[0, T], x \in \mathbb{R} ;
$$

(iii) there exists $C_{a_{1}}$ such that

$$
\left|\operatorname{Im} a_{1}(t, x)\right| \leq C_{a_{1}}\langle x\rangle^{-\frac{\sigma}{2}}, \quad t \in[0, T], x \in \mathbb{R} .
$$

Then for every $\theta \in\left(s_{0}, \frac{1}{2(1-\sigma)}\right)$ and $\forall f \in C\left([0, T], H_{\rho ; \theta}^{m}(\mathbb{R})\right), g \in H_{\rho ; \theta}^{m}(\mathbb{R})$ there is a unique solution $u \in C^{1}\left([0, T], H_{\rho^{\prime} ; \theta}^{m}(\mathbb{R})\right)$ for some $\rho^{\prime} \in(0, \rho)$ such that

$$
\|u(t, \cdot)\|_{H_{\rho^{\prime} ; \theta}^{m}} \leq C\left(\|g\|_{H_{p ; \theta}^{m}}+\int_{0}^{t}\|f(\tau, \cdot)\|_{\rho_{p ; \theta}^{m}}\right) .
$$

In particular, the Cauchy problem (1) is well posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})=\bigcup_{\rho>0} H_{p ; \theta}^{m}(\mathbb{R})$.

Idea of the proof

As standard in this type of problems, we cannot obtain an energy estimate via a simple application of Gronwall inequality. Namely, if we set

$$
i P=\partial_{t}+i a_{3}(t) D_{x}^{p}+\sum_{j=0}^{2} i a_{j}(t, x) D_{x}^{j}
$$

since $a_{3}(t) \xi^{3}$ is real valued, we have

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|_{L^{2}}^{2} & =2 \operatorname{Re}\left(\partial_{t} u(t), u(t)\right)_{L^{2}} \\
& =2 \operatorname{Re}(i \operatorname{Pi} u(t), u(t))_{L^{2}}-2 \operatorname{Re}\left(i a_{3}(t) D_{x}^{3} u(t), u(t)\right)_{L^{2}} \\
& \left.-2 \sum_{j=0}^{2} \operatorname{Re}\left(a_{j}(t, x) D_{x}^{j}\right) u(t), u(t)\right)_{L^{2}} .
\end{aligned}
$$

Idea of the proof

As standard in this type of problems, we cannot obtain an energy estimate via a simple application of Gronwall inequality. Namely, if we set

$$
i P=\partial_{t}+i a_{3}(t) D_{x}^{p}+\sum_{j=0}^{2} i a_{j}(t, x) D_{x}^{j}
$$

since $a_{3}(t) \xi^{3}$ is real valued, we have

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|_{L^{2}}^{2} & =2 \operatorname{Re}\left(\partial_{t} u(t), u(t)\right)_{L^{2}} \\
& =2 \operatorname{Re}(i \operatorname{Pu} u(t), u(t))_{L^{2}}-2 \operatorname{Re}\left(i a_{3}(t) D_{x}^{3} u(t), u(t)\right)_{L^{2}} \\
& \left.-2 \sum_{j=0}^{2} \operatorname{Re}\left(a_{j}(t, x) D_{x}^{j}\right) u(t), u(t)\right)_{L^{2}} .
\end{aligned}
$$

However, the red term contains an operator of order 2, which cannot be neglected so we cannot derive an energy inequality in L^{2} from the estimate above.

Idea of the proof

As standard in this type of problems, we cannot obtain an energy estimate via a simple application of Gronwall inequality. Namely, if we set

$$
i P=\partial_{t}+i a_{3}(t) D_{x}^{p}+\sum_{j=0}^{2} i a_{j}(t, x) D_{x}^{j}
$$

since $a_{3}(t) \xi^{3}$ is real valued, we have

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|_{L^{2}}^{2} & =2 \operatorname{Re}\left(\partial_{t} u(t), u(t)\right)_{L^{2}} \\
& =2 \operatorname{Re}(i P u(t), u(t))_{L^{2}}-2 \operatorname{Re}\left(i a_{3}(t) D_{x}^{3} u(t), u(t)\right)_{L^{2}} \\
& \left.-2 \sum_{j=0}^{2} \operatorname{Re}\left(a_{j}(t, x) D_{x}^{j}\right) u(t), u(t)\right)_{L^{2}} .
\end{aligned}
$$

However, the red term contains an operator of order 2, which cannot be neglected so we cannot derive an energy inequality in L^{2} from the estimate above. The idea is then to conjugate the operator iP by an operator $Q(t, x, D)$ in order to obtain $i \widetilde{P}=Q(i P) Q^{-1}=\partial_{t}+i a_{3}(t) D_{x}^{3}+\widetilde{a}_{2}(t, x, D)+\widetilde{a}_{1}(t, x, D)$, where $\widetilde{a}_{j}, j=1,2$ have order j but with $\operatorname{Re} \widetilde{\mathrm{a}}_{j} \geq 0$.

Idea of the proof

The operator Q used in the proof turns out to be an operator with symbol
with $\Lambda=\lambda_{2}+\lambda_{1} \in S_{\mu}^{2(1-\sigma)}$ for some $\mu>1, k>0, \rho^{\prime} \in(0, \rho)$ and $h \geq 1$ large enough. Here, for $m \in \mathbb{R}, \mu>1$, we denote by $S_{\mu}^{m}\left(\mathbb{R}^{2}\right)$ the space of all functions $a \in C^{\infty}\left(\mathbb{R}^{2}\right)$ for which there exists a constant $C>0$ such that

$$
\sup _{\alpha, \beta \in \mathbb{N}^{n}} \sup _{(x, \xi) \in \mathbb{R}^{2}} C^{-|\alpha|-|\beta|}(\alpha!\beta!)^{-\mu}\langle\xi\rangle^{-m+|\alpha|}\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi)\right|<+\infty
$$

Idea of the proof

The operator Q used in the proof turns out to be an operator with symbol

$$
Q_{\Lambda, k, \rho^{\prime}}(t, x, \xi)=e^{\left.\rho^{\prime}\langle D\rangle_{h}^{1 / \theta}+k(T-t)\langle D\rangle_{h}^{2(1-\sigma)} \circ e^{\wedge}(x, D)\right) .}
$$

with $\Lambda=\lambda_{2}+\lambda_{1} \in S_{\mu}^{2(1-\sigma)}$ for some $\mu>1, k>0, \rho^{\prime} \in(0, \rho)$ and $h \geq 1$ large enough. Here, for $m \in \mathbb{R}, \mu>1$, we denote by $S_{\mu}^{m}\left(\mathbb{R}^{2}\right)$ the space of all functions $a \in C^{\infty}\left(\mathbb{R}^{2}\right)$ for which there exists a constant $C>0$ such that

$$
\sup _{\alpha, \beta \in \mathbb{N}^{n}} \sup _{(x, \xi) \in \mathbb{R}^{2}} C^{-|\alpha|-|\beta|}(\alpha!\beta!)^{-\mu}\langle\xi\rangle^{-m+|\alpha|}\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi)\right|<+\infty .
$$

The role of each part of the transformation $Q_{\tilde{\lambda}, k, \rho^{\prime}}(t, x, D)$ will be, roughly speaking, the following:

- In the transformation $e^{\wedge}(x, D)$ the functions λ_{1} and λ_{2} will play two different roles: namely λ_{2} will not change $a_{3} D_{x}^{3}$, but it will change the operator $a_{2} D_{x}^{2}$ into the sum of a positive operator plus a remainder of order 1 which satisfies the same assumptions as $a_{1} D_{x}$, plus an error of order $2(1-\sigma)$ whereas λ_{1} will not change the terms of order 2 and 3 , but it will turn the terms of order 1 into the sum of a positive operator, plus a remainder of order zero, plus an error of order at least $2(1-\sigma)$;

Idea of the proof

- the transformation with $e^{k(T-t)\langle D\rangle_{h}^{2(1-\sigma)}}$ will not change the terms of order 1 , 2 and 3 , but it will correct the error of order $2(1-\sigma)$, changing it into the sum of a positive operator plus a remainder of order zero;
- Finally, the transformations with $e^{\rho^{\prime}\langle D\rangle_{h}^{\frac{1}{\theta}}}$ simply moves the setting of the Cauchy problem from Gevrey-Sobolev spaces spaces to standard Sobolev spaces: since $2(1-\sigma)<1 / \theta$ the leading part of $Q_{\tilde{\Lambda}, k, \rho^{\prime}}(t, x, \xi)$ is $e^{\rho^{\prime}\langle\xi\rangle_{h}^{\frac{1}{\theta}}}$, then the inverse of $Q_{\tilde{\Lambda}, k, \rho^{\prime}}(t, x, D)$ possess regularizing properties with respect to the spaces $H_{\rho ; \theta}^{m}$, because $\rho^{\prime}>0$.
Remark. The change of variable is then expressed in terms of an operator of infinite order.

The functions $\lambda_{j}, j=1,2$ involved in the proof have the following form

$$
\begin{gather*}
\lambda_{2}(x, \xi)=M_{2} w\left(\frac{\xi}{h}\right) \int_{0}^{x}\langle y\rangle^{-\sigma} \psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{2}}\right) d y, \quad(x, \xi) \in \mathbb{R}^{2}, \tag{3}\\
\lambda_{1}(x, \xi)=M_{1} w\left(\frac{\xi}{h}\right)\langle\xi\rangle_{h}^{-1} \int_{0}^{x}\langle y\rangle^{-\frac{\sigma}{2}} \psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{2}}\right) d y, \quad(x, \xi) \in \mathbb{R}^{2}, \tag{4}
\end{gather*}
$$

where M_{1}, M_{2} are constants to be chosen suitably large and

$$
w(\xi)=\left\{\begin{array}{ll}
0, & |\xi| \leq 1 \\
-\operatorname{sgn} a_{3}, & |\xi|>R_{a_{3}}
\end{array} \quad, \quad \psi(y)= \begin{cases}1, & |y| \leq \frac{1}{2} \\
0, & |y| \geq 1\end{cases}\right.
$$

$\left|\partial^{\alpha} w(\xi)\right| \leq C_{w}^{\alpha+1} \alpha!^{\mu},\left|\partial^{\beta} \psi(y)\right| \leq C_{\psi}^{\beta+1} \beta!^{\mu}$. Starting from data $g \in H_{\rho ; \theta}^{m}$ and $f \in C\left([0, T], H_{\rho ; \theta}^{m}\right)$ for some $\rho>0$ we consider the auxiliary Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{P}_{\Lambda, k, \rho^{\prime}} v=f_{\Lambda, k, \rho^{\prime}} \tag{5}\\
v(0, x)=g_{\Lambda, k, \rho^{\prime}}
\end{array}\right.
$$

where

$$
\tilde{P}_{\Lambda, k, \rho^{\prime}}=Q_{\Lambda, k, \rho^{\prime}}(t, x, D) P\left(Q_{\Lambda, k, \rho^{\prime}}(t, x, D)\right)^{-1}
$$

and

$$
f_{\Lambda, k, \rho^{\prime}}=Q_{\Lambda, k, \rho^{\prime}}(t, x, D) f \in C\left([0, T], H^{m}\right), \quad g_{\Lambda, k, \rho^{\prime}}=Q_{\Lambda, k, \rho^{\prime}}(t, x, D) g \in \underline{\underline{\underline{H}}}^{m} .
$$

We have that
$i P_{\Lambda, k, \rho^{\prime}}=\partial_{t}+i a_{3}(t) D_{x}^{3}+b_{2}\left(t, x, D_{x}\right)+b_{1}\left(t, x, D_{x}\right)+b_{2(1-\sigma)}\left(t, x, D_{x}\right)+b_{0}\left(t, x, D_{x}\right)$, where $b_{j} \in C\left([0, T], S^{j}\left(\mathbb{R}^{2}\right)\right), j=0,1,2$ and $b_{2(1-\sigma)} \in C\left([0, T], S^{2(1-\sigma)}\left(\mathbb{R}^{2}\right)\right)$.

We have that
$i P_{\wedge, k, \rho^{\prime}}=\partial_{t}+i a_{3}(t) D_{x}^{3}+b_{2}\left(t, x, D_{x}\right)+b_{1}\left(t, x, D_{x}\right)+b_{2(1-\sigma)}\left(t, x, D_{x}\right)+b_{0}\left(t, x, D_{x}\right)$, where $b_{j} \in C\left([0, T], S^{j}\left(\mathbb{R}^{2}\right)\right), j=0,1,2$ and $b_{2(1-\sigma)} \in C\left([0, T], S^{2(1-\sigma)}\left(\mathbb{R}^{2}\right)\right)$.

We can choose the constants M_{1}, M_{2}, k appearing in $Q_{\Lambda, k, \rho^{\prime}}$ such that

$$
\operatorname{Re} b_{j}(t, x, \xi) \geq 0, j=1,2, \quad b_{2(1-\sigma)}(t, x, \xi) \geq 0
$$

Then, applying sharp Gårding inequality to b_{1} and $b_{2(1-\sigma)}$ and Fefferman-Phong inequality to b_{2} we obtain that $b_{\wedge}(t, x, D)$ is a positive operator and that the Cauchy problem (5) is well posed in $H^{m}(\mathbb{R})$ for every $m \in \mathbb{R}$.

We have that
$i P_{\Lambda, k, \rho^{\prime}}=\partial_{t}+i a_{3}(t) D_{x}^{3}+b_{2}\left(t, x, D_{x}\right)+b_{1}\left(t, x, D_{x}\right)+b_{2(1-\sigma)}\left(t, x, D_{x}\right)+b_{0}\left(t, x, D_{x}\right)$, where $b_{j} \in C\left([0, T], S^{j}\left(\mathbb{R}^{2}\right)\right), j=0,1,2$ and $b_{2(1-\sigma)} \in C\left([0, T], S^{2(1-\sigma)}\left(\mathbb{R}^{2}\right)\right)$.

We can choose the constants M_{1}, M_{2}, k appearing in $Q_{\Lambda, k, \rho^{\prime}}$ such that

$$
\operatorname{Re} b_{j}(t, x, \xi) \geq 0, j=1,2, \quad b_{2(1-\sigma)}(t, x, \xi) \geq 0
$$

Then, applying sharp Gårding inequality to b_{1} and $b_{2(1-\sigma)}$ and Fefferman-Phong inequality to b_{2} we obtain that $b_{\Lambda}(t, x, D)$ is a positive operator and that the Cauchy problem (5) is well posed in $H^{m}(\mathbb{R})$ for every $m \in \mathbb{R}$. Moreover, the solution satisfies the energy estimate

$$
\|v(t, \cdot)\|_{H^{m}}^{2} \leq C\left(\|g\|_{H^{m}}^{2}+\int_{0}^{t}\|f(\tau, \cdot)\|_{H^{m}}^{2}\right)
$$

We have that
$i P_{\wedge, k, \rho^{\prime}}=\partial_{t}+i a_{3}(t) D_{x}^{3}+b_{2}\left(t, x, D_{x}\right)+b_{1}\left(t, x, D_{x}\right)+b_{2(1-\sigma)}\left(t, x, D_{x}\right)+b_{0}\left(t, x, D_{x}\right)$,
where $b_{j} \in C\left([0, T], S^{j}\left(\mathbb{R}^{2}\right)\right), j=0,1,2$ and $b_{2(1-\sigma)} \in C\left([0, T], S^{2(1-\sigma)}\left(\mathbb{R}^{2}\right)\right)$.
We can choose the constants M_{1}, M_{2}, k appearing in $Q_{\Lambda, k, \rho^{\prime}}$ such that

$$
\operatorname{Reb}_{j}(t, x, \xi) \geq 0, j=1,2, \quad b_{2(1-\sigma)}(t, x, \xi) \geq 0
$$

Then, applying sharp Gårding inequality to b_{1} and $b_{2(1-\sigma)}$ and Fefferman-Phong inequality to b_{2} we obtain that $b_{\Lambda}(t, x, D)$ is a positive operator and that the Cauchy problem (5) is well posed in $H^{m}(\mathbb{R})$ for every $m \in \mathbb{R}$. Moreover, the solution satisfies the energy estimate

$$
\|v(t, \cdot)\|_{H^{m}}^{2} \leq C\left(\|g\|_{H^{m}}^{2}+\int_{0}^{t}\|f(\tau, \cdot)\|_{H^{m}}^{2}\right) .
$$

Finally, taking $\left.u=Q_{\Lambda, k, \rho^{\prime}}(t, x, D)\right\}^{-1} v$, we obtain that this is a solution of the original Cauchy problem and it belongs to $C^{1}\left([0, T], H_{\rho-\delta}^{m}(\mathbb{R})\right)$ for every $\delta>0$. The uniqueness and the energy estimate follow by standard arguments.

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.
Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.
Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

- Are the new conditions also necessary for well-posedness?

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.
Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

- Are the new conditions also necessary for well-posedness?
- What can we say for arbitrary p ?

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.
Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

- Are the new conditions also necessary for well-posedness?
- What can we say for arbitrary p ?

Let us test our assumptions on the model operator

$$
\begin{equation*}
L_{p}=D_{t}+D_{x}^{p}+i a(x) D_{x}^{p-1} \tag{6}
\end{equation*}
$$

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.
Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

- Are the new conditions also necessary for well-posedness?
- What can we say for arbitrary p ?

Let us test our assumptions on the model operator

$$
\begin{equation*}
L_{p}=D_{t}+D_{x}^{p}+i a(x) D_{x}^{p-1} \tag{6}
\end{equation*}
$$

Theorem. Assume that there exist $C, R>0$ and $\sigma \in(0,1)$ such that $a(x) \geq C_{\sigma}\langle x\rangle^{-\sigma}$ for $x>R($ or $x<-R)$ and $\left|\partial_{x}^{\beta} a(x)\right| \leq C^{\beta+1} \beta!\langle x\rangle^{-\beta} \forall x \in \mathbb{R}$ and $\beta \in \mathbb{N}$. If the Cauchy problem for (6) is well-posed in $H_{\theta}^{\infty}(\mathbb{R})$ for some $\theta>1$, Then $(p-1)(1-\sigma) \leq \frac{1}{\theta}$.

Sharpness of decay assumptions

In the statement of Theorem 1 we assume that $a_{2} \sim\langle x\rangle^{-\sigma}$ and $\operatorname{Im} a_{1} \sim\langle x\rangle^{-\sigma / 2}$ with $\sigma \in(1 / 2,1)$ and we obtain well posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\theta \in\left[\theta_{0}, \frac{1}{2(1-\sigma)}\right)$.

Notice that in the case $p=2$ we had well-posedness in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ for $\sigma \in(0,1)$ and $\theta \in\left[\theta_{0}, \frac{1}{1-\sigma}\right)$.

- Are the new conditions also necessary for well-posedness?
- What can we say for arbitrary p ?

Let us test our assumptions on the model operator

$$
\begin{equation*}
L_{p}=D_{t}+D_{x}^{p}+i a(x) D_{x}^{p-1} \tag{6}
\end{equation*}
$$

Theorem. Assume that there exist $C, R>0$ and $\sigma \in(0,1)$ such that $a(x) \geq C_{\sigma}\langle x\rangle^{-\sigma}$ for $x>R($ or $x<-R)$ and $\left|\partial_{x}^{\beta} a(x)\right| \leq C^{\beta+1} \beta!\langle x\rangle^{-\beta} \forall x \in \mathbb{R}$ and $\beta \in \mathbb{N}$. If the Cauchy problem for (6) is well-posed in $H_{\theta}^{\infty}(\mathbb{R})$ for some $\theta>1$, Then $(p-1)(1-\sigma) \leq \frac{1}{\theta}$.
Notice that for $p=3$ the condition $2(1-\sigma) \leq \frac{1}{\theta}$ implies in turn that $2(1-\sigma)<1$ that is $\sigma>\frac{1}{2}$, hence for $\sigma \in\left(0, \frac{1}{2}\right]$ we cannot expect well-posedness.

Sharpness of decay assumptions

In the general case the necessary condition is the following:

$$
\mathcal{H}_{\theta}^{\infty} \text { well-posedness } \Rightarrow(p-1)(1-\sigma) \leq \frac{1}{\theta}
$$

Note: if $\sigma \in\left(0, \frac{p-2}{p-1}\right]$, then $(p-1)(1-\sigma) \geq 1>\frac{1}{\theta}$ for all $\theta>1$
\leadsto no hope for $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ well-posedness when $\sigma \leq \frac{p-2}{p-1}$ (too slow decay)

- $a(x)=\langle x\rangle^{-\sigma}$ fulfills the assumptions. the Cauchy problem can be $\mathcal{H}_{\theta}^{\infty}$ well-posed only for σ large enough ($\sigma>\frac{p-2}{p-1}$).
- If $\lim _{|x| \rightarrow \infty}|a(x)|\langle x\rangle^{\sigma}=+\infty$ for every $\sigma \in(0,1)$, e.g. $a(x)=(\ln \langle x\rangle)^{-1}$.
$\forall \theta>1$ we can choose σ so small that $(p-1)(1-\sigma)>\frac{1}{\theta}$
\leadsto for every $\theta>1$, the Cauchy problem is not $\mathcal{H}_{\theta}^{\infty}$ well-posed.

Main ideas for the proof

We show that if the Cauchy problem is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$, then assuming $\frac{1}{\theta}<(p-1)(1-\sigma)$ leads to a contradiction.

Main ideas for the proof

We show that if the Cauchy problem is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$, then assuming $\frac{1}{\theta}<(p-1)(1-\sigma)$ leads to a contradiction.

Definition

We say that the Cauchy problem for the operator L_{p} in (6) is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ if for any given $\rho_{0}>0$ and $g \in H_{\rho_{0} ; \theta}^{0}(\mathbb{R})$ there exists a unique solution $u \in C^{1}\left([0, T] ; H_{\rho ; \theta}^{0}(\mathbb{R})\right)$ with $0<\rho \leq \rho_{0}$ satisfying the energy inequality

$$
\|u(t, \cdot)\|_{H_{p ; \theta}^{0}(\mathbb{R})} \leq C_{\rho_{0}, T}\|g\|_{\mu_{\rho_{0}: \theta}^{0}(\mathbb{R})}, \quad \forall t \in[0, T] .
$$

Main ideas for the proof

We show that if the Cauchy problem is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$, then assuming $\frac{1}{\theta}<(p-1)(1-\sigma)$ leads to a contradiction.

Definition

We say that the Cauchy problem for the operator L_{p} in (6) is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ if for any given $\rho_{0}>0$ and $g \in H_{\rho_{0} ; \theta}^{0}(\mathbb{R})$ there exists a unique solution $u \in C^{1}\left([0, T] ; H_{\rho ; \theta}^{0}(\mathbb{R})\right)$ with $0<\rho \leq \rho_{0}$ satisfying the energy inequality

$$
\|u(t, \cdot)\|_{H_{\rho ; \theta}^{0}(\mathbb{R})} \leq C_{\rho_{0}, T}\|g\|_{\mu_{\rho_{0} ; \theta}^{0}(\mathbb{R})}, \quad \forall t \in[0, T]
$$

- Choose $g \in G^{\theta}(\mathbb{R})$ such that $\widehat{g}(\xi)=e^{-2 \rho_{0}\langle\xi\rangle^{\frac{1}{\theta}}}$ for some $\rho_{0}>0$
- Define $g_{k}(x)=g\left(x-4 \nu_{k}^{p-1}\right), k \in \mathbb{N}_{0}$, where $\nu_{k} \rightarrow \infty$ sequence in \mathbb{R}^{+}.

Main ideas for the proof

We show that if the Cauchy problem is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$, then assuming $\frac{1}{\theta}<(p-1)(1-\sigma)$ leads to a contradiction.

Definition

We say that the Cauchy problem for the operator L_{p} in (6) is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$ if for any given $\rho_{0}>0$ and $g \in H_{\rho_{0} ; \theta}^{0}(\mathbb{R})$ there exists a unique solution $u \in C^{1}\left([0, T] ; H_{\rho ; \theta}^{0}(\mathbb{R})\right)$ with $0<\rho \leq \rho_{0}$ satisfying the energy inequality

$$
\|u(t, \cdot)\|_{H_{\rho ; \theta}^{0}(\mathbb{R})} \leq C_{\rho_{0}, T}\|g\|_{H_{\rho_{0}: \theta}^{0}(\mathbb{R})}, \quad \forall t \in[0, T] .
$$

- Choose $g \in G^{\theta}(\mathbb{R})$ such that $\widehat{g}(\xi)=e^{-2 \rho_{0}\langle\xi\rangle^{\frac{1}{\theta}}}$ for some $\rho_{0}>0$
- Define $g_{k}(x)=g\left(x-4 \nu_{k}^{p-1}\right), k \in \mathbb{N}_{0}$, where $\nu_{k} \rightarrow \infty$ sequence in \mathbb{R}^{+}.
- $g_{k} \in H_{\rho ; ; \theta}^{0}(\mathbb{R})$ and (CP) $\mathcal{H}_{\theta}^{\infty}$ well-posed $\Rightarrow \exists!u_{k} \in C^{1}\left([0, T] ; H_{\rho ; \theta}^{0}(\mathbb{R})\right)$ $\left(\rho \leq \rho_{0}\right)$ solution, and $\left\|u_{k}(t, \cdot)\right\|_{\mu_{p ; \theta}^{0}(\mathbb{R})} \leq C_{\rho_{0}, T}\left\|g_{k}\right\|_{\mu_{\rho ;}^{0} ; \theta}^{(\mathbb{R})}, \forall t \in[0, T]$.

Main ideas for the proof

- Localization of the solutions, so that $(x, \xi) \sim\left(\nu_{k}^{p-1}, \nu_{k}\right)$: given $h \in G_{0}^{\theta_{h}}(\mathbb{R})$ a Gevrey cutoff function ($\theta_{h}>1$ close to $1, h(x)=1$ for $|x| \leq \frac{1}{2}, h(x)=0$ for $|x| \geq 1$), define

$$
\begin{gathered}
v_{k}^{(\alpha \beta)}(t, x):=w_{k}^{(\alpha \beta)}(x, D) u_{k}(t, x) \\
w_{k}^{(\alpha \beta)}(x, \xi):=h^{(\alpha)}\left(\frac{x-4 \nu_{k}^{p-1}}{\nu_{k}^{p-1}}\right) h^{(\beta)}\left(\frac{\xi-\nu_{k}}{\frac{1}{4} \nu_{k}}\right)
\end{gathered}
$$

On $\operatorname{supp} w_{k}^{(0,0)}: x \in\left[3 \nu_{k}^{p-1}, 5 \nu_{k}^{p-1}\right], \xi \in\left[\frac{3 \nu_{k}}{4}, \frac{5 \nu_{k}}{4}\right]$

Main ideas for the proof

- Localization of the solutions, so that $(x, \xi) \sim\left(\nu_{k}^{p-1}, \nu_{k}\right)$: given $h \in G_{0}^{\theta_{h}}(\mathbb{R})$ a Gevrey cutoff function ($\theta_{h}>1$ close to $1, h(x)=1$ for $|x| \leq \frac{1}{2}, h(x)=0$ for $|x| \geq 1$), define

$$
\begin{gathered}
v_{k}^{(\alpha \beta)}(t, x):=w_{k}^{(\alpha \beta)}(x, D) u_{k}(t, x) \\
w_{k}^{(\alpha \beta)}(x, \xi):=h^{(\alpha)}\left(\frac{x-4 \nu_{k}^{p-1}}{\nu_{k}^{p-1}}\right) h^{(\beta)}\left(\frac{\xi-\nu_{k}}{\frac{1}{4} \nu_{k}}\right),
\end{gathered}
$$

On supp $w_{k}^{(0,0)}: x \in\left[3 \nu_{k}^{p-1}, 5 \nu_{k}^{p-1}\right], \xi \in\left[\frac{3 \nu_{k}}{4}, \frac{5 \nu_{k}}{4}\right]$

- Given $\lambda \in(0,1)$ to be chosen later, $\theta_{1}>\theta_{h}$, define $N_{k}:=\left\lfloor\nu_{k}^{\frac{\lambda}{\theta_{1}}}\right\rfloor$ and

$$
E_{k}(t)=\sum_{\alpha \leq N_{k}, \beta \leq N_{k}} \frac{1}{(\alpha!\beta!)^{\theta_{1}}}\left\|v_{k}^{(\alpha \beta)}(t, x)\right\|_{L^{2}(\mathbb{R})}=\sum_{\alpha \leq N_{k}, \beta \leq N_{k}} E_{k, \alpha, \beta}(t)
$$

- By the $\mathcal{H}_{\theta}^{\infty}$ well-posedness and $\theta_{1}>\theta_{h}, \forall t \in[0, T], k \in \mathbb{N}_{0}$ we have:

$$
E_{k}(t) \leq C_{T, \rho_{0}} \sum_{\alpha \leq N_{k}, \beta \leq N_{k}} C^{\alpha+\beta}(\alpha!\beta!)^{\theta_{h}-\theta_{1}}\left\|g_{k}\right\|_{\mu_{\rho_{0}, \theta}^{0}(\mathbb{R})} \leq C_{1} C_{T, \rho_{0}, g}
$$

Main ideas for the proof

- By condition $\frac{1}{\theta}<(p-1)(1-\sigma)$ we are going to find (using the energy method)

$$
E_{k}(t) \geq C_{3} e^{\frac{\tilde{\sigma}_{0}}{2} \nu_{k}^{(p-1)(1-\sigma)}} \longrightarrow_{k \rightarrow \infty}+\infty
$$

\Downarrow
CONTRADICTION!

Main ideas for the proof

- By condition $\frac{1}{\theta}<(p-1)(1-\sigma)$ we are going to find (using the energy method)

$$
E_{k}(t) \geq C_{3} e^{\frac{\tilde{c}_{0}}{2} \nu_{k}^{(p-1)(1-\sigma)}} \longrightarrow_{k \rightarrow \infty}+\infty
$$

\Downarrow

CONTRADICTION!

Since $\partial_{t} v_{k}^{(\alpha \beta)}=-i D_{x}^{p} v_{k}^{(\alpha \beta)}+a(x) D_{x}^{p-1} v_{k}^{(\alpha \beta)}+f_{k}^{(\alpha \beta)}$, with $f_{k}^{(\alpha \beta)}=\left[P, w_{k}^{(\alpha \beta)}\right]$, we compute

$$
\begin{aligned}
\frac{1}{2} \partial_{t}\left\{\left\|v_{k}^{(\alpha \beta)}\right\|^{2}\right\} & =\operatorname{Re}\left\langle\partial_{t} v_{k}^{(\alpha \beta)}, v_{k}^{(\alpha \beta)}\right\rangle \\
& =\operatorname{Re}\left\langle f_{k}^{(\alpha \beta)}, v_{k}^{(\alpha \beta)}\right\rangle \\
& \geq \underbrace{-\left\|f_{k}^{(\alpha \beta)}\right\|\left\|v_{k}^{(\alpha \beta)}\right\|}_{\text {negligible }}+\underbrace{\operatorname{Re}\left\langle a(x) D_{x}^{p-1} v_{k}^{(\alpha \beta)}, v_{k}^{\alpha \beta}\right\rangle}_{\text {important }}
\end{aligned}
$$

We decompose (choosing the constant $c_{0}=7^{-\sigma} / 4^{p-1}$)

$$
a(x) \xi^{p-1}=c_{0}\left\langle\nu_{k}^{p-1}\right\rangle^{-\sigma} \nu_{k}^{p-1}+\underbrace{I_{2, k}(x, \xi)}+\underbrace{I_{3, k}(x, \xi)}
$$

negligible by negligible by
slow decay condition support properties
where

$$
\begin{gathered}
I_{2, k}(x, \xi)=\left(a(x) \xi^{p-1}-c_{0}\left\langle\nu_{k}^{p-1}\right\rangle^{-\sigma} \nu_{k}^{p-1}\right) \psi_{k}(x) \chi_{k}(\xi) \\
I_{3, k}(x, \xi)=\left(a(x) \xi^{p-1}-c_{0}\left\langle\nu_{k}^{p-1}\right\rangle^{-\sigma} \nu_{k}^{p-1}\right)\left(1-\psi_{k}(x) \chi_{k}(\xi)\right) \\
\chi_{k}(\xi)=h\left(\frac{\xi-\nu_{k}}{\frac{3}{4} \nu_{k}}\right), \quad \psi_{k}(x)=h\left(\frac{x-4 \nu_{k}^{p-1}}{3 \nu_{k}^{p-1}}\right)
\end{gathered}
$$

The leading term in $\frac{1}{2} \partial_{t}\left\{\left\|v_{k}^{(\alpha \beta)}\right\|^{2}\right\}=\left\|v_{k}^{(\alpha \beta)}\right\| \partial_{t} v_{k}^{(\alpha \beta)} \|$ is so

$$
\left\langle c_{0}\left\langle\nu_{k}^{p-1}\right\rangle^{-\sigma} \nu_{k}^{p-1} v_{k}^{(\alpha \beta)}, v_{k}^{\alpha \beta}\right\rangle \geq c_{0} 2^{-\sigma / 2} \sigma_{k}^{(p-1)(1-\nu)}\left\|v_{k}^{(\alpha \beta)}\right\|^{2}
$$

Consequently, we have

$$
\begin{aligned}
\partial_{t} E_{k}(t) & =\sum_{\alpha \leq N_{k}, \beta \leq N_{k}} \frac{1}{(\alpha!\beta!)^{\theta_{1}}} \partial_{t}\left\|v_{k}^{(\alpha \beta)}(t, \cdot)\right\| \\
& \geq c_{1} \nu_{k}^{(p-1)(1-\sigma)} E_{k}(t)-\text { lower order terms }
\end{aligned}
$$

Precisely, thanks to the choice of N_{k}, we get for k large enough

$$
\partial_{t} E_{k}(t) \geq \frac{c_{1}}{2} \nu_{k}^{(p-1)(1-\sigma)} E_{k}(t)-C^{N+1} \nu_{k}^{C-c N}
$$

$C, c>0$ independent from k. By Gronwall inequality:

$$
\begin{aligned}
E_{k}(t) & \geq e^{\frac{c_{1}^{2}}{2} \nu_{k}^{(p-1)(1-\sigma)} t}\left\{E_{k}(0)-C^{N+1} \nu_{k}^{C-c N_{1}} t\right\} \\
& \geq C e^{\frac{c_{1}^{2}}{2} \nu_{k}^{(p-1)(1-\sigma)} t}\left[\nu_{k}^{-(p+2) / 2} e^{-c_{\rho_{0}} \nu_{k}^{\frac{1}{t}}}-t e^{-c \nu_{k}^{\frac{\lambda}{\theta_{1}}}}\right],
\end{aligned}
$$

provided that $\lambda<\min \{(p-1)(1-\sigma), 1\}$ and k being sufficiently large.

By a sharp choice of λ we get

$$
E_{k}(t) \geq C_{2} e^{\tilde{\tilde{c}}_{0} \nu_{k}^{(\rho-1)(1-\sigma)}} e^{-\tilde{\tau}_{\rho 0} \nu_{k}^{\frac{1}{f}}} \geq C_{3} e^{\frac{\tilde{\varepsilon}_{0}}{2} \nu_{k}^{(\rho-1)(1-\sigma)}} \rightarrow \infty
$$

and we have the contradiction.

By a sharp choice of λ we get

$$
E_{k}(t) \geq C_{2} e^{\tilde{\tilde{c}}_{0} \nu_{k}^{(\rho-1)(1-\sigma)}} e^{-\tilde{\tau}_{\rho 0} \nu_{k}^{\frac{1}{\varepsilon}}} \geq C_{3} e^{\frac{\tilde{\varepsilon}_{0}}{2} \nu_{k}^{(p-1)(1-\sigma)}} \rightarrow \infty
$$

and we have the contradiction.
What can we say for a general operator of the form

$$
D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{p-j}(t, x) D_{x}^{p-j}
$$

with $a_{p} \in C([0, T], \mathbb{R})$ and $a_{p-j} \in C\left([0, T], \mathcal{B}^{\infty}(\mathbb{R})\right)$?

Theorem 2 (Arias Jr, Ascanelli, C. 2023) Let $\theta>1$. Let P an operator of the form

$$
D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{p-j}(t, x) D_{x}^{p-j}
$$

with $a_{p} \in C([0, T] ; \mathbb{R})$ and $a_{p}(t) \neq 0 \forall t \in[0, T]$, and assume that the coefficients a_{p-j} satisfy the following conditions:
(i) there exist $R, A>0$ and $\sigma_{p-j} \in[0,1], j=1, \ldots, p-1$, such that

$$
\operatorname{Im} a_{p-j}(t, x) \geq A\langle x\rangle^{-\sigma_{p-j}}, \quad x>R(\text { or } x<-R), t \in[0, T], j=1, \ldots, p-1 ;
$$

(ii) there exists $C>0$ such that

$$
\left|\partial_{x}^{\beta} a_{p-j}(t, x)\right| \leq C^{\beta+1} \beta!\langle x\rangle^{-\beta}, \quad x \in \mathbb{R}, t \in[0, T], \quad j=1, \ldots, p .
$$

If the related Cauchy problem is well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$, then

$$
\begin{equation*}
\equiv:=\max _{j=1, \ldots, p-1}\left\{(p-1)\left(1-\sigma_{p-j}\right)-j+1\right\} \leq \frac{1}{\theta} \tag{7}
\end{equation*}
$$

Remark. Let us notice that since $(p-1)\left(1-\sigma_{p-1}\right)>0$ we always have $\equiv>0$. We also point out the following inequalities

$$
\begin{gathered}
(p-1)\left(1-\sigma_{p-j}\right)-j+1 \geq 1 \Longleftrightarrow \sigma_{p-j} \leq \frac{p-1-j}{p-1} \\
\quad(p-1)\left(1-\sigma_{p-j}\right)-j+1 \leq 0 \Longleftrightarrow \sigma_{p-j} \geq \frac{p-j}{p-1}
\end{gathered}
$$

Therefore, as a consequence of (7), when $\theta>1$ we conclude the following:

- If $\sigma_{p-j} \leq \frac{p-1-j}{p-1}$ for some $j=1, \ldots, p-1$, the Cauchy problem is not well-posed in $\mathcal{H}_{\theta}^{\infty}(\mathbb{R})$;
- If $\sigma_{p-j} \geq \frac{p-j}{p-1}$ for some $j=1, \ldots, p-1$, then the power σ_{p-j} has no effect on the $\mathcal{H}_{\theta}^{\infty}$ well-posedness;
- If $\sigma_{p-j} \in\left(\frac{p-1-j}{p-1}, \frac{p-j}{p-1}\right)$ for some $j=1, \ldots, p-1$, then the power σ_{p-j} imposes the restriction

$$
(p-1)\left(1-\sigma_{p-j}\right)-j+1 \leq \frac{1}{\theta}
$$

for the indices θ where $\mathcal{H}_{\theta}^{\infty}$ well-posedness can be found.

Sufficient conditions for general p-evolution operators

Our next purpose is to find sufficient conditions for Gevrey well posedness for the Cauchy problem related to the operator

$$
D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{p-j}(t, x) D_{x}^{p-j}
$$

taking into account the restrictions on the decay rates we obtained.

Sufficient conditions for general p-evolution operators

Our next purpose is to find sufficient conditions for Gevrey well posedness for the Cauchy problem related to the operator

$$
D_{t}+a_{p}(t) D_{x}^{p}+\sum_{j=1}^{p} a_{p-j}(t, x) D_{x}^{p-j}
$$

taking into account the restrictions on the decay rates we obtained. To achieve the result we need to perform a change of variables of the form

$$
Q_{\Lambda, k, \rho^{\prime}}(t, x, \xi)=e^{\left.\rho^{\prime}\langle D\rangle_{h}^{1 / \theta}+k(T-t)\langle D\rangle_{h}^{2(1-\sigma)} \circ e^{\wedge}(x, D)\right) .}
$$

with $\Lambda=\lambda_{p-1}+\lambda_{p-2}+\ldots+\lambda_{2}+\lambda_{1} \in S_{\mu}^{(p-1)(1-\sigma)}$ for some $\mu>1, k>0$, $\rho^{\prime} \in(0, \rho)$ and $h \geq 1$ large enough. Each term λ_{j} should act on the terms of order j of the operator transforming them into the sum of a positive operator plus remainder terms whose order and regularity must be controlled.

Quasilinear p-evolution equations

After that we may extend our results to quasilinear p-evolution equations. We already prove such a result for $p=3$, see
A. Arias Junior, A. Ascanelli, M.C., KdV-type equations in projective Gevrey spaces, J. Math. Pures Appl. 2023.

Quasilinear p-evolution equations

After that we may extend our results to quasilinear p-evolution equations. We already prove such a result for $p=3$, see
A. Arias Junior, A. Ascanelli, M.C., KdV-type equations in projective Gevrey spaces, J. Math. Pures Appl. 2023.

The method is based on deriving energy estimates for the linearized Cauchy problem and then to apply Nash-Moser inversion theorem to treat the nonlinear case.

Quasilinear p-evolution equations

After that we may extend our results to quasilinear p-evolution equations. We already prove such a result for $p=3$, see
A. Arias Junior, A. Ascanelli, M.C., KdV-type equations in projective Gevrey spaces, J. Math. Pures Appl. 2023.

The method is based on deriving energy estimates for the linearized Cauchy problem and then to apply Nash-Moser inversion theorem to treat the nonlinear case.

THANK YOU FOR YOUR ATTENTION!

