CR Geometry and Analysis

Howard Jacobowitz
Rutgers University - Camden

$$
\begin{aligned}
& B=\left\{(z, w):|z|^{2}+|w|^{2}<1\right\} \\
& P=\{z, w):|z<1,|w|<1\}
\end{aligned}
$$

$$
\begin{aligned}
& B=\left\{(z, w):|z|^{2}+|w|^{2}<1\right\} \\
& P=\{z, w):|z<1,|w|<1\}
\end{aligned}
$$

Theorem (Poincare (1905))
There does not exist a biholomorphism

$$
F: B \rightarrow P
$$

$$
\begin{aligned}
& B=\left\{(z, w):|z|^{2}+|w|^{2}<1\right\} \\
& P=\{z, w):|z<1,|w|<1\}
\end{aligned}
$$

Theorem (Poincare (1905))
There does not exist a biholomorphism

$$
F: B \rightarrow P
$$

The identity component of the group of automorphism of P leaving the origin fixed is given by

$$
(z, w) \rightarrow e^{i \theta_{1}} z, e^{i \theta_{2}} w
$$

and is commutative.

Two elements in the identity component of the group of automorphism of B leaving the origin fixed are

$$
\begin{aligned}
\phi_{1} & =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
\phi_{2} & =\left(\begin{array}{cc}
0 & e^{i \sigma} \\
-e^{-i \sigma} & 0
\end{array}\right) .
\end{aligned}
$$

For $0<\sigma<\pi, \phi_{1}$ and ϕ_{2} do not commute.

Theorem (Poincare)
In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.

Theorem (Poincare)

In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.
A real hypersurface is given locally by a graph

$$
y_{2}=f\left(x_{1}, x_{2}, y_{1}\right) .
$$

The jet of order N depends on $\binom{N+3}{3}$ real parameters.

Theorem (Poincare)

In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.
A real hypersurface is given locally by a graph

$$
y_{2}=f\left(x_{1}, x_{2}, y_{1}\right) .
$$

The jet of order N depends on $\binom{N+3}{3}$ real parameters. For $F(z, w)$, the jet of order N depends on $2\binom{N+2}{2}$ real parameters.

Theorem (Poincare)

In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.
A real hypersurface is given locally by a graph

$$
y_{2}=f\left(x_{1}, x_{2}, y_{1}\right) .
$$

The jet of order N depends on $\binom{N+3}{3}$ real parameters. For $F(z, w)$, the jet of order N depends on $2\binom{N+2}{2}$ real parameters. When

$$
\binom{N+3}{3}>4\binom{N+2}{2}
$$

there are more hypersurfaces than biholomorphisms.

Theorem (Poincare)

In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.
A real hypersurface is given locally by a graph

$$
y_{2}=f\left(x_{1}, x_{2}, y_{1}\right) .
$$

The jet of order N depends on $\binom{N+3}{3}$ real parameters. For $F(z, w)$, the jet of order N depends on $2\binom{N+2}{2}$ real parameters. When

$$
\binom{N+3}{3}>4\binom{N+2}{2}
$$

there are more hypersurfaces than biholomorphisms.
The group of local biholomorphisms leaving the origin fixed does not act transitively on the 9 -jets of hypersurfaces through the origin. There are invariants of at most order 9 .

Theorem (Poincare)

In \mathbb{C}^{2}, there are more real hypersurfaces than biholomorphic maps.
A real hypersurface is given locally by a graph

$$
y_{2}=f\left(x_{1}, x_{2}, y_{1}\right) .
$$

The jet of order N depends on $\binom{N+3}{3}$ real parameters. For $F(z, w)$, the jet of order N depends on $2\binom{N+2}{2}$ real parameters. When

$$
\binom{N+3}{3}>4\binom{N+2}{2}
$$

there are more hypersurfaces than biholomorphisms.
The group of local biholomorphisms leaving the origin fixed does not act transitively on the 9 -jets of hypersurfaces through the origin. There are invariants of at most order 9 .
What are these invariants?

Élie Cartan

I resolved this question with an application of my general method of equivalence. The complete solution of Poincaré's problem led me to new geometric ideas.

For the real hypersurface

$$
M=\{(z, w): \phi(z, w)=0\}
$$

the complex vector field

$$
L=\phi_{\bar{w}} \frac{\partial}{\partial \bar{z}}-\phi_{\bar{z}} \frac{\partial}{\partial \bar{w}}
$$

is tangent to M.

For the real hypersurface

$$
M=\{(z, w): \phi(z, w)=0\}
$$

the complex vector field

$$
L=\phi_{\bar{w}} \frac{\partial}{\partial \bar{z}}-\phi_{\bar{z}} \frac{\partial}{\partial \bar{w}}
$$

is tangent to M. For the hyperquadric

$$
Q=\left\{(z, w): \Im w=|z|^{2}\right\}
$$

with $z=x+i y$ and $w=u+i v(x, y, u)$

$$
L=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}-2 i(x+i y) \frac{\partial}{\partial u}
$$

For the real hypersurface

$$
M=\{(z, w): \phi(z, w)=0\}
$$

the complex vector field

$$
L=\phi_{\bar{w}} \frac{\partial}{\partial \bar{z}}-\phi_{\bar{z}} \frac{\partial}{\partial \bar{w}}
$$

is tangent to M. For the hyperquadric

$$
Q=\left\{(z, w): \Im w=|z|^{2}\right\}
$$

with $z=x+i y$ and $w=u+i v(x, y, u)$

$$
L=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}-2 i(x+i y) \frac{\partial}{\partial u} .
$$

We will see this operator again.

In general, given a choice of L, choose a real-valued form ω and a complex-valued form ω_{1}

$$
\omega(L)=0, \quad \omega_{1}(L)=0, \quad \omega \wedge \omega_{1} \wedge \bar{\omega}_{1} \neq 0
$$

Normalize by $d \omega=i \omega_{1} \wedge \overline{\omega_{1}} \bmod \omega$.

In general, given a choice of L, choose a real-valued form ω and a complex-valued form ω_{1}

$$
\omega(L)=0, \quad \omega_{1}(L)=0, \quad \omega \wedge \omega_{1} \wedge \overline{\omega_{1}} \neq 0
$$

Normalize by $d \omega=i \omega_{1} \wedge \overline{\omega_{1}} \bmod \omega$. Set

$$
\Omega=|\lambda|^{2} \omega \text { and } \Omega_{1}=\lambda\left(\omega_{1}+\mu \omega\right)
$$

These are well-defined forms on a bundle of fiber dimension 4 over M^{3}.

In general, given a choice of L, choose a real-valued form ω and a complex-valued form ω_{1}

$$
\omega(L)=0, \quad \omega_{1}(L)=0, \quad \omega \wedge \omega_{1} \wedge \overline{\omega_{1}} \neq 0
$$

Normalize by $d \omega=i \omega_{1} \wedge \overline{\omega_{1}} \bmod \omega$. Set

$$
\Omega=|\lambda|^{2} \omega \text { and } \Omega_{1}=\lambda\left(\omega_{1}+\mu \omega\right)
$$

These are well-defined forms on a bundle of fiber dimension 4 over M^{3}. Set

$$
\Omega_{2}=\frac{d \lambda}{\lambda}+A \omega_{1}+B \bar{\omega}_{1}+C \omega
$$

and

$$
\Omega_{3}=\frac{1}{\bar{\lambda}}\left(d \mu+D \omega_{1}+E \overline{\omega_{1}}+F \omega\right) .
$$

Choose the coefficients to obtain

$$
d \Omega=i \Omega_{1} \wedge \bar{\Omega}_{1}+\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega
$$

and

$$
d \Omega_{1}=\Omega_{2} \wedge \Omega_{1}+\Omega_{3} \wedge \Omega
$$

Choose the coefficients to obtain

$$
d \Omega=i \Omega_{1} \wedge \bar{\Omega}_{1}+\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega
$$

and

$$
d \Omega_{1}=\Omega_{2} \wedge \Omega_{1}+\Omega_{3} \wedge \Omega
$$

Only

$$
\rho=\Re C
$$

remains undetermined. Set

$$
\Omega_{4}=\frac{1}{|\lambda|^{2}}\{d \rho+\ldots\}
$$

to obtain

$$
\begin{aligned}
d \Omega & =i \Omega_{1} \wedge \overline{\Omega_{1}}+\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega \\
d \Omega_{1} & =\Omega_{2} \wedge \Omega_{1}+\Omega_{3} \wedge \Omega \\
d \Omega_{2} & =2 i \Omega_{1} \wedge \bar{\Omega}_{3}+i \bar{\Omega}_{1} \wedge \Omega_{3}-\Omega \wedge \Omega_{4} \\
d \Omega_{3} & =-\Omega_{1} \wedge \Omega_{4}-\overline{\Omega_{2}} \wedge \Omega_{3}-R \Omega \wedge \overline{\Omega_{1}} \\
d \Omega_{4} & =i \Omega_{3} \wedge \overline{\Omega_{3}}-\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega_{4}-S \Omega \wedge \Omega_{1}-\bar{S} \Omega \wedge \overline{\Omega_{1}}
\end{aligned}
$$

R and S are relative invariants.

$$
\begin{aligned}
d \Omega & =i \Omega_{1} \wedge \overline{\Omega_{1}}+\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega \\
d \Omega_{1} & =\Omega_{2} \wedge \Omega_{1}+\Omega_{3} \wedge \Omega \\
d \Omega_{2} & =2 i \Omega_{1} \wedge \overline{\Omega_{3}}+i \bar{\Omega}_{1} \wedge \Omega_{3}-\Omega \wedge \Omega_{4} \\
d \Omega_{3} & =-\Omega_{1} \wedge \Omega_{4}-\overline{\Omega_{2}} \wedge \Omega_{3}-R \Omega \wedge \overline{\Omega_{1}} \\
d \Omega_{4} & =i \Omega_{3} \wedge \overline{\Omega_{3}}-\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega_{4}-S \Omega \wedge \Omega_{1}-\bar{S} \Omega \wedge \overline{\Omega_{1}}
\end{aligned}
$$

R and S are relative invariants. $R=0$ on some open set implies that $S=0$ on that open set and that there is a biholomorphism taking a possibly smaller open set of M^{3} to the hyperquadric Q.
R is called the curvature of the CR structure. It is an invariant of order 6 , not 9 .

$$
\begin{aligned}
d \Omega & =i \Omega_{1} \wedge \overline{\Omega_{1}}+\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega \\
d \Omega_{1} & =\Omega_{2} \wedge \Omega_{1}+\Omega_{3} \wedge \Omega \\
d \Omega_{2} & =2 i \Omega_{1} \wedge \overline{\Omega_{3}}+i \bar{\Omega}_{1} \wedge \Omega_{3}-\Omega \wedge \Omega_{4} \\
d \Omega_{3} & =-\Omega_{1} \wedge \Omega_{4}-\overline{\Omega_{2}} \wedge \Omega_{3}-R \Omega \wedge \overline{\Omega_{1}} \\
d \Omega_{4} & =i \Omega_{3} \wedge \overline{\Omega_{3}}-\left(\Omega_{2}+\overline{\Omega_{2}}\right) \wedge \Omega_{4}-S \Omega \wedge \Omega_{1}-\bar{S} \Omega \wedge \overline{\Omega_{1}}
\end{aligned}
$$

R and S are relative invariants. $R=0$ on some open set implies that $S=0$ on that open set and that there is a biholomorphism taking a possibly smaller open set of M^{3} to the hyperquadric Q.
R is called the curvature of the CR structure. It is an invariant of order 6 , not 9 .
Now for some analysis.

Uniformly the experience of the investigated type has shown that speaking of existence in the local sense - there always were solutions, indeed smooth solutions, provided the equations were smooth enough. It was therefore a matter of considerable surprise to this author, to discover that this inference is in general erroneous. More precisely, there exist linear partial differential equations with coefficients in \mathcal{C}^{∞} which possess not a single smooth solution in any neighborhood.

Hans Lewy, An example of a smooth linear partial differential equation without solution, Annals of Mathematics 66 (1957).

Let $\phi\left(y_{1}\right)$ be a real-valued C^{1} function.
Theorem
If there exists a C^{1} solution to

$$
\left(-\left(\partial / \partial x_{1}\right)-i\left(\partial / \partial x_{2}\right)+2 i\left(x_{1}+i x_{2}\right)\left(\partial / \partial y_{1}\right)\right) u=2 \phi\left(y_{1}\right)
$$

in a neighborhood of a point $\left(0,0, y^{*}\right)$, then ϕ is analytic in some neighborhood of that point.

Set

$$
\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

and write

$$
L u=-u_{\bar{z}}+i z u_{y_{1}}
$$

Theorem
If $L u=\phi\left(y_{1}\right)$ has a C^{1} solution then ϕ is real analytic.
Let $w=y_{1}+i y_{2}$. For $y_{2}=|z|^{2}$, set

$$
U(w, \bar{w})=\int_{y_{2}=\text { constant }} u d z
$$

Set

$$
\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

and write

$$
L u=-u_{\bar{z}}+i z u_{y_{1}}
$$

Theorem

If $L u=\phi\left(y_{1}\right)$ has a C^{1} solution then ϕ is real analytic.
Let $w=y_{1}+i y_{2}$. For $y_{2}=|z|^{2}$, set

$$
U(w, \bar{w})=\int_{y_{2}=\text { constant }} u d z
$$

This is natural if we consider $u\left(x_{1}, x_{2}, y_{1}\right)$ as a function on $Q=\left\{w=y_{1}+i|z|^{2}\right\}$. Note that $U\left(y_{1}, 0\right)=0$.
Write $z=r e^{i \theta}$. So, $y_{2}=r^{2}$ and

$$
U(w, \bar{w})=\int_{0}^{2 \pi} i r e^{i \theta} u\left(r, \theta, y_{1}\right) d \theta
$$

Claim

$$
\frac{\partial U}{\partial \bar{w}}=\frac{1}{2} \int L u d \theta .
$$

Assume the Claim.

Claim

$$
\frac{\partial U}{\partial \bar{w}}=\frac{1}{2} \int L u d \theta .
$$

Assume the Claim.Let

$$
\psi^{\prime}\left(y_{1}\right)=\phi\left(y_{1}\right),
$$

So $L u=\psi^{\prime}\left(y_{1}\right)=2 \psi_{\bar{w}}$

Claim

$$
\frac{\partial U}{\partial \bar{W}}=\frac{1}{2} \int L u d \theta .
$$

Assume the Claim.Let

$$
\psi^{\prime}\left(y_{1}\right)=\phi\left(y_{1}\right),
$$

So $L u=\psi^{\prime}\left(y_{1}\right)=2 \psi_{\bar{w}}$ and is independent of θ. Thus

Claim

$$
\frac{\partial U}{\partial \bar{w}}=\frac{1}{2} \int L u d \theta .
$$

Assume the Claim.Let

$$
\psi^{\prime}\left(y_{1}\right)=\phi\left(y_{1}\right),
$$

So $L u=\psi^{\prime}\left(y_{1}\right)=2 \psi_{\bar{w}}$ and is independent of θ. Thus

$$
U_{\bar{w}}=2 \pi \psi_{\bar{w}} .
$$

Claim

$$
\frac{\partial U}{\partial \bar{w}}=\frac{1}{2} \int L u d \theta
$$

Assume the Claim.Let

$$
\psi^{\prime}\left(y_{1}\right)=\phi\left(y_{1}\right)
$$

So $L u=\psi^{\prime}\left(y_{1}\right)=2 \psi_{\bar{w}}$ and is independent of θ. Thus

$$
U_{\bar{w}}=2 \pi \psi_{\bar{w}}
$$

$V=U-2 \pi \psi$ is a holomorphic function of w in some set

$$
\left\{a<y_{1}<b, 0<y_{2}<c\right\}
$$

and real on the real axis. The Reflection Principle applies and V is holomorphic near the y_{1} axis. Thus ψ and ϕ are also real analytic as functions of y_{1}. So $L u=f$ is not always locally solvable.

The proof of the Claim is an integration by parts.

$$
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta . \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r}
\end{gathered}
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r} \\
U_{y_{2}}=\frac{1}{2 r}\left[\int u d z\right]_{r}
\end{gathered}
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r} \\
U_{y_{2}}=\frac{1}{2 r}\left[\int u d z\right]_{r} \\
=\frac{1}{2 r}\left[i r \int u e^{i \theta} d \theta\right]_{r}
\end{gathered}
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r} \\
U_{y_{2}}=\frac{1}{2 r}\left[\int u d z\right]_{r} \\
=\frac{1}{2 r}\left[i r \int u e^{i \theta} d \theta\right]_{r} \\
= \\
\frac{1}{2 r}\left[i \int u e^{i \theta} d \theta+i r \int u_{r} e^{i \theta} d \theta\right]
\end{gathered}
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r} \\
U_{y_{2}}=\frac{1}{2 r}\left[\int u d z\right]_{r} \\
=\frac{1}{2 r}\left[i r \int u e^{i \theta} d \theta\right]_{r} \\
= \\
\frac{1}{2 r}\left[i \int u e^{i \theta} d \theta+i r \int u_{r} e^{i \theta} d \theta\right] \\
= \\
\frac{1}{2 r}\left[i \int i u_{\theta} e^{i \theta} d \theta+i r \int u_{r} e^{i \theta} d \theta\right]
\end{gathered}
$$

The proof of the Claim is an integration by parts.

$$
\begin{gathered}
\int_{0}^{2 \pi} u e^{i \theta} d \theta=i \int_{0}^{2 \pi} u_{\theta} e^{i \theta} d \theta . \\
z=r e^{i \theta} \text { and } 2 \partial_{\bar{z}}=e^{i \theta}\left(\partial_{r}+\frac{1}{r} \partial_{\theta}\right) \\
y_{2}=r^{2} \text { and } \partial_{y_{2}}=\frac{1}{2 r} \partial_{r} \\
U_{y_{2}}=\frac{1}{2 r}\left[\int u d z\right]_{r} \\
= \\
=\frac{1}{2 r}\left[i r \int u e^{i \theta} d \theta\right]_{r} \\
= \\
=\frac{1}{2 r}\left[i \int u e^{i \theta} d \theta+i r \int u_{r} e^{i \theta} d \theta\right] \\
= \\
= \\
= \\
\end{gathered}
$$

$$
\begin{aligned}
2 U_{\bar{w}} & =U_{y_{1}}+i U_{y_{2}} \\
& =\int u_{y_{1}} d z+i\left(i \int u_{\bar{z}} d \theta\right) \\
& =\int u_{y_{1}} i z d \theta-\int u_{\bar{z}} d \theta \\
& =\int L u d \theta
\end{aligned}
$$

A similar result holds for any strictly pseudo-convex hypersurface in \mathbb{C}^{2} : The associated linear partial derivative operator is not always solvable.

Abstract CR manifolds

(H, J) is an abstract CR structure on M^{3}

- $H \subset T M$ is a two-plane distribution
- J is an anti-involution on H

$$
J: H \rightarrow H, \quad J^{2}=-I
$$

Abstract CR manifolds

(H, J) is an abstract CR structure on M^{3}

- $H \subset T M$ is a two-plane distribution
- J is an anti-involution on H

$$
J: H \rightarrow H, \quad J^{2}=-I
$$

For $M^{3} \subset \mathbb{C}^{2}$ and $J_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$

$$
H_{p}=T_{p}(M) \cap J_{0} T_{p}(M)=\text { the complex line tangent to } M \text { at } p
$$

and

$$
J=\left.J_{0}\right|_{H} .
$$

Abstract CR manifolds

(H, J) is an abstract CR structure on M^{3}

- $H \subset T M$ is a two-plane distribution
- J is an anti-involution on H

$$
J: H \rightarrow H, \quad J^{2}=-I
$$

For $M^{3} \subset \mathbb{C}^{2}$ and $J_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$

$$
H_{p}=T_{p}(M) \cap J_{0} T_{p}(M)=\text { the complex line tangent to } M \text { at } p
$$

and

$$
J=\left.J_{0}\right|_{H} .
$$

A complex vector field L on M^{3} is an abstract CR structure if $\Re L$ and $\Im L$ are everywhere independent.

Abstract CR manifolds

(H, J) is an abstract CR structure on M^{3}

- $H \subset T M$ is a two-plane distribution
- J is an anti-involution on H

$$
J: H \rightarrow H, \quad J^{2}=-I
$$

For $M^{3} \subset \mathbb{C}^{2}$ and $J_{0}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$

$$
H_{p}=T_{p}(M) \cap J_{0} T_{p}(M)=\text { the complex line tangent to } M \text { at } p
$$

and

$$
J=\left.J_{0}\right|_{H} .
$$

A complex vector field L on M^{3} is an abstract CR structure if $\Re L$ and $\Im L$ are everywhere independent. Then

$$
H=\{\Re L, \Im L\} .
$$

and

$$
J L=-i L .
$$

Cartan's construction also applies to abstract CR manifolds.

Realization (embedding) problem

Is every abstract three-dimensional CR manifold locally realizable as a real hypersurface in \mathbb{C}^{2} ?

Realization (embedding) problem

Is every abstract three-dimensional CR manifold locally realizable as a real hypersurface in \mathbb{C}^{2} ?
Can every abstract three-dimensional CR manifold be locally embedded into \mathbb{C}^{2} ?

Realization (embedding) problem

Is every abstract three-dimensional CR manifold locally realizable as a real hypersurface in \mathbb{C}^{2} ?
Can every abstract three-dimensional CR manifold be locally embedded into \mathbb{C}^{2} ?
Note that

$$
\phi=\left.z\right|_{M}
$$

satisfies

$$
L \phi=0 .
$$

Realization (embedding) problem

Is every abstract three-dimensional CR manifold locally realizable as a real hypersurface in \mathbb{C}^{2} ?
Can every abstract three-dimensional CR manifold be locally embedded into \mathbb{C}^{2} ?
Note that

$$
\phi=\left.z\right|_{M}
$$

satisfies

$$
L \phi=0 .
$$

Does every homogeneous linear partial differential equation have a non-trivial solution?

Theorem (Nirenberg 1972)

There exists a smooth $C R$ operator such that $L h=0$ in a neighborhood of some given point p implies that $d h(p)=0$. In fact, h is a constant near p.

False Analogy

False Analogy

Nirenberg's example is a perturbation of the CR operator for the hyperquadric Q. So Nirenberg's example has curvature equal to zero at the origin.

False Analogy

Nirenberg's example is a perturbation of the CR operator for the hyperquadric Q. So Nirenberg's example has curvature equal to zero at the origin.
(1) A two-dimensional Riemannian manifold is locally embeddable into \mathbb{R}^{3} near every point of non-zero curvature (Weingarten 1884).

False Analogy

Nirenberg's example is a perturbation of the CR operator for the hyperquadric Q. So Nirenberg's example has curvature equal to zero at the origin.
(1) A two-dimensional Riemannian manifold is locally embeddable into \mathbb{R}^{3} near every point of non-zero curvature (Weingarten 1884).
(2) There is an example of non-embeddability at a point of zero curvature (Pogorelov 1971).

False Analogy

Nirenberg's example is a perturbation of the CR operator for the hyperquadric Q. So Nirenberg's example has curvature equal to zero at the origin.
(1) A two-dimensional Riemannian manifold is locally embeddable into \mathbb{R}^{3} near every point of non-zero curvature (Weingarten 1884).
(2) There is an example of non-embeddability at a point of zero curvature (Pogorelov 1971).
(3) M is locally embeddable near p if $K(p)=0, \nabla K \neq O(\operatorname{Lin} 1986)$.

Theorem (Jacobowitz and Treves, 1982, 1983)

Let L be the $C R$ operator of any strictly pseudo-convex $M^{3} \subset \mathbb{C}^{2}$ and let $p \in M^{3}$. There exists a complex vector field \tilde{L} agreeing with L to infinite order at p such that $\tilde{L} h=0$ in a neighborhood of p implies that $d h(p)=0$. In fact, h is a constant near p.

Proof

For $M=\{\phi(z, w)=0\}, L=\phi_{\bar{w}} \partial_{\bar{z}}-\phi_{\bar{z}} \partial_{\bar{w}}$.

Proof

For $M=\{\phi(z, w)=0\}, L=\phi_{\bar{w}} \partial_{\bar{z}}-\phi_{\bar{z}} \partial_{\bar{w}}$.
A local biholomorphic change of coordinates yields $M=\{v=\rho(z, \bar{z}, u)\}$ with $\rho(0)=0, d \rho(0)=0$ and

$$
L=\left(1+i \rho_{u}\right) \partial_{\bar{z}}-i \rho_{\bar{z}} \partial_{u}
$$

Proof

For $M=\{\phi(z, w)=0\}, L=\phi_{\bar{w}} \partial_{\bar{z}}-\phi_{\bar{z}} \partial_{\bar{w}}$.
A local biholomorphic change of coordinates yields $M=\{v=\rho(z, \bar{z}, u)\}$ with $\rho(0)=0, d \rho(0)=0$ and

$$
L=\left(1+i \rho_{u}\right) \partial_{\bar{z}}-i \rho_{\bar{z}} \partial_{u}
$$

Set $\tilde{L}=L+f \partial_{z}+g \partial_{u}$. We want to choose f, vanishing to infinite order at 0 , such that $\tilde{L} h=0$ implies $h_{z}(0)=0$ and g such that $h_{u}(0)=0$.

Proof

For $M=\{\phi(z, w)=0\}, L=\phi_{\bar{w}} \partial_{\bar{z}}-\phi_{\bar{z}} \partial_{\bar{w}}$.
A local biholomorphic change of coordinates yields $M=\{v=\rho(z, \bar{z}, u)\}$ with $\rho(0)=0, d \rho(0)=0$ and

$$
L=\left(1+i \rho_{u}\right) \partial_{\bar{z}}-i \rho_{\bar{z}} \partial_{u}
$$

Set $\tilde{L}=L+f \partial_{z}+g \partial_{u}$. We want to choose f, vanishing to infinite order at 0 , such that $\tilde{L} h=0$ implies $h_{z}(0)=0$ and g such that $h_{u}(0)=0$. Again this reduces to an integration by parts.

Assume that for any neighborhood N of $0 \in \mathbb{R}^{3}$ there exist open sets $U \subset \Omega \subset N$, such that if $L h=\phi$ in Ω and $\operatorname{supp}(\phi) \subset U$, then

$$
\iiint_{U} \phi d x d y d u=0
$$

Assume that for any neighborhood N of $0 \in \mathbb{R}^{3}$ there exist open sets $U \subset \Omega \subset N$, such that if $L h=\phi$ in Ω and $\operatorname{supp}(\phi) \subset U$, then

$$
\iiint_{U} \phi d x d y d u=0
$$

Write $\tilde{L} h=0$ as $L h=-f h_{z}$ and take $g=0$. If $\operatorname{supp}(f) \subset U$ then

$$
\iiint_{U} f h_{z} d x d y d z=0
$$

Assume that for any neighborhood N of $0 \in \mathbb{R}^{3}$ there exist open sets $U \subset \Omega \subset N$, such that if $L h=\phi$ in Ω and $\operatorname{supp}(\phi) \subset U$, then

$$
\iiint_{U} \phi d x d y d u=0
$$

Write $\tilde{L} h=0$ as $L h=-f h_{z}$ and take $g=0$. If $\operatorname{supp}(f) \subset U$ then

$$
\iiint_{U} f h_{z} d x d y d z=0
$$

If also $f>0$ in U then $\Re h_{z}$ and $\Im h_{z}$ have zeroes in U.

Assume that for any neighborhood N of $0 \in \mathbb{R}^{3}$ there exist open sets $U \subset \Omega \subset N$, such that if $L h=\phi$ in Ω and $\operatorname{supp}(\phi) \subset U$, then

$$
\iiint_{U} \phi d x d y d u=0
$$

Write $\tilde{L} h=0$ as $L h=-f h_{z}$ and take $g=0$. If $\operatorname{supp}(f) \subset U$ then

$$
\iiint_{U} f h_{z} d x d y d z=0
$$

If also $f>0$ in U then $\Re h_{z}$ and $\Im h_{z}$ have zeroes in U. Next choose $N_{j} \rightarrow\{0\}$. Therefore Ω_{j} and $U_{j} \rightarrow\{0\}$ and so $h_{z}(0)=0$.

Start with

$$
M=\left\{v=|z|^{2}+O(3 ; z, \bar{z}, u)\right\}
$$

Start with

$$
M=\left\{v=|z|^{2}+O(3 ; z, \bar{z}, u)\right\}
$$

Define the curves

$$
\Gamma_{\lambda}=M \cap\{w=\lambda\} .
$$

Start with

$$
M=\left\{v=|z|^{2}+O(3 ; z, \bar{z}, u)\right\}
$$

Define the curves

$$
\Gamma_{\lambda}=M \cap\{w=\lambda\} .
$$

Compare to the hyperquadric

$$
w=y_{1}+i y_{2}, \quad y_{1}=\text { constant }, y_{2}=|z|^{2}
$$

Start with

$$
M=\left\{v=|z|^{2}+O(3 ; z, \bar{z}, u)\right\}
$$

Define the curves

$$
\Gamma_{\lambda}=M \cap\{w=\lambda\} .
$$

Compare to the hyperquadric

$$
w=y_{1}+i y_{2}, \quad y_{1}=\text { constant }, y_{2}=|z|^{2}
$$

There exists a curve γ in the λ-plane such that

- Below γ, Γ_{λ} is empty.
- On γ, Γ_{λ} is a point.
- Above γ, Γ_{λ} is a simple closed curve .

Start with

$$
M=\left\{v=|z|^{2}+O(3 ; z, \bar{z}, u)\right\}
$$

Define the curves

$$
\Gamma_{\lambda}=M \cap\{w=\lambda\} .
$$

Compare to the hyperquadric

$$
w=y_{1}+i y_{2}, \quad y_{1}=\text { constant }, y_{2}=|z|^{2}
$$

There exists a curve γ in the λ-plane such that

- Below γ, Γ_{λ} is empty.
- On γ, Γ_{λ} is a point.
- Above γ, Γ_{λ} is a simple closed curve .

Let $S=$ a torus foliated by curves Γ_{λ} and T the solid torus.

Lemma
If $L h=0$ in $\Omega-T$, then

$$
\int_{\Gamma_{\lambda}} h d z=0
$$

for $\Gamma_{\lambda} \subset \Omega-T$.

Lemma

If $L h=0$ in $\Omega-T$, then

$$
\int_{\Gamma_{\lambda}} h d z=0
$$

for $\Gamma_{\lambda} \subset \Omega-T$.

Proof.

Lh $=0$ implies

$$
\int_{\Gamma_{\lambda}} h d z
$$

is holomorphic in λ and vanishes on a curve.

Lemma

If $L h=0$ in $\Omega-T$, then

$$
\int_{\Gamma_{\lambda}} h d z=0
$$

for $\Gamma_{\lambda} \subset \Omega-T$.

Proof.

Lh $=0$ implies

$$
\int_{\Gamma_{\lambda}} h d z
$$

is holomorphic in λ and vanishes on a curve.
We want to show that

$$
\iiint_{T} L h d x d y d u=0
$$

if $\operatorname{supp}(L h) \subset T$.

Since $L z=0$ and $L w=0$, it follows that

$$
d(h d z d w)=-L u d z d \bar{z} d u .
$$

Since $L z=0$ and $L w=0$, it follows that

$$
d(h d z d w)=-L u d z d \bar{z} d u .
$$

Thus

$$
\begin{aligned}
-\iiint_{T}(L h) d z d \bar{z} d u & =\iiint_{T} d(h d z d w) \\
& =\iint_{S} h d z d w \\
& =\iint_{\Gamma_{\lambda}} h d z d \lambda \\
& =0
\end{aligned}
$$

Thus, if $\operatorname{Supp}(f) \subset T_{j}$ and $f>0$ in each T_{j}, then from

$$
\left(L+f \partial_{z}\right) h=0
$$

in a neighborhood of the origin we have that $h_{z}(0)=0$.

Thus, if $\operatorname{Supp}(f) \subset T_{j}$ and $f>0$ in each T_{j}, then from

$$
\left(L+f \partial_{z}\right) h=0
$$

in a neighborhood of the origin we have that $h_{z}(0)=0$. Using more open sets, an appropriate g, and a Baire category argument, we have

$$
\left(L+f \partial_{z}+g \partial_{u}\right) h=0
$$

in a neighborhood of the origin implies h is a constant.

A CR embedding $f_{0}:\left(M^{3}, V_{0}\right) \rightarrow \mathbb{C}^{N}$ is stable if

$$
\left\|V_{1}-V_{0}\right\| \text { small } \Rightarrow \exists f_{1}:\left(M^{3}, V_{1}\right) \rightarrow \mathbb{C}^{N} \text { with }\left\|f_{1}-f_{0}\right\| \text { small. }
$$

A CR embedding $f_{0}:\left(M^{3}, V_{0}\right) \rightarrow \mathbb{C}^{N}$ is stable if

$$
\left\|V_{1}-V_{0}\right\| \text { small } \Rightarrow \exists f_{1}:\left(M^{3}, V_{1}\right) \rightarrow \mathbb{C}^{N} \text { with }\left\|f_{1}-f_{0}\right\| \text { small. }
$$

No CR embedding is stable.

A CR embedding $f_{0}:\left(M^{3}, V_{0}\right) \rightarrow \mathbb{C}^{N}$ is stable if

$$
\left\|V_{1}-V_{0}\right\| \text { small } \Rightarrow \exists f_{1}:\left(M^{3}, V_{1}\right) \rightarrow \mathbb{C}^{N} \text { with }\left\|f_{1}-f_{0}\right\| \text { small. }
$$

No CR embedding is stable.

Theorem (Lempert 1994)

Let M^{3} be compact and $\left(M^{3}, V_{0}\right)$ be strictly pseudo-convex. Let $f_{0}:\left(M^{3}, V_{0}\right) \rightarrow \mathbb{C}^{2}$ be a CR embedding. If $\left(M^{3}, V_{1}\right)$ has a $C R$ embedding into some \mathbb{C}^{N} then it has an embedding into \mathbb{C}^{2} close to f_{0}.

Theorem (Caitlin, Lempert, 1992)

There exists a strictly pseudo-convex compact $C R$ manifold in \mathbb{C}^{3} that is not stable.

Theorem (Caitlin, Lempert, 1992)

There exists a strictly pseudo-convex compact $C R$ manifold in \mathbb{C}^{3} that is not stable.

Why this difference between \mathbb{C}^{2} and \mathbb{C}^{3} ?

Theorem (Caitlin, Lempert, 1992)

There exists a strictly pseudo-convex compact $C R$ manifold in \mathbb{C}^{3} that is not stable.

Why this difference between \mathbb{C}^{2} and \mathbb{C}^{3} ? Reasonable from a geometric point of view.

Theorem (Caitlin, Lempert, 1992)

There exists a strictly pseudo-convex compact $C R$ manifold in \mathbb{C}^{3} that is not stable.

Why this difference between \mathbb{C}^{2} and \mathbb{C}^{3} ? Reasonable from a geometric point of view. $\left(M^{3}, V_{1}\right)$ has a CR embedding into some \mathbb{C}^{N} is equivalent to $\bar{\partial}_{b}$ has closed range on functions. What other condition is necessary to distinguish between \mathbb{C}^{2} and \mathbb{C}^{3} ?

Theorem (most likely) (Siqi Fu, Weixia Zhu)

- Let $\left(M^{3}, V_{t}\right)$ be a smooth family of compact pseudo-convex CR manifolds of finite type. The existence of a uniform closed range estimate for $\bar{\partial}_{b}^{t}$ implies stability of the family.
- Let $\left(M^{3}, V_{t}\right)$ be a smooth family of compact pseudo-convex CR manifolds of finite type. If the Kohn Laplacian \square_{b}^{t} acting on functions has a uniform spectral gap, then the family is stable.

Conjecture
Lempert's result holds for strictly pseudo-convex replaced by pseudoconvex of finite type.

THANK YOU

