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Uncertainty principle

G. B. Folland1: The uncertainty principle is partly a description of a
characteristic feature of quantum mechanical systems, partly a statement
about the limitations of one’s ability to perform measurements on a
system without disturbing it, and partly a meta-theorem in harmonic
analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

1G. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J.
Fourier Anal. Appl., 3, n. 3 (1997), 207-238.
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system without disturbing it, and partly a meta-theorem in harmonic
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analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

Physical point of view: In quantum mechanics

the wave function of the position of a subatomic particle is the
Fourier transform of the wave function of the momentum (mass
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Uncertainty principle

G. B. Folland1: The uncertainty principle is partly a description of a
characteristic feature of quantum mechanical systems, partly a statement
about the limitations of one’s ability to perform measurements on a
system without disturbing it, and partly a meta-theorem in harmonic
analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

Physical point of view: In quantum mechanics

the wave function of the position of a subatomic particle is the
Fourier transform of the wave function of the momentum (mass
times velocity)

Heisenberg’s uncertainty principle: impossible to simultaneously
determine the particle’s position and its velocity

any attempt to measure precisely the velocity of the particle will
knock it about in an unpredictable way, so that a simultaneous
measurement of its position has no validity

1G. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J.
Fourier Anal. Appl., 3, n. 3 (1997), 207-238.
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Uncertainty principle

G. B. Folland1: The uncertainty principle is partly a description of a
characteristic feature of quantum mechanical systems, partly a statement
about the limitations of one’s ability to perform measurements on a
system without disturbing it, and partly a meta-theorem in harmonic
analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

Physical point of view: In quantum mechanics

the wave function of the position of a subatomic particle is the
Fourier transform of the wave function of the momentum (mass
times velocity)

Heisenberg’s uncertainty principle: impossible to simultaneously
determine the particle’s position and its velocity

any attempt to measure precisely the velocity of the particle will
knock it about in an unpredictable way, so that a simultaneous
measurement of its position has no validity

if one forces a particle to be in a small region, then we cannot
measure its velocity

1G. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J.
Fourier Anal. Appl., 3, n. 3 (1997), 207-238.
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From the mathematical point of view

Fourier transform: For f ∈ L2(R)

f̂ (ξ) =
1√
2π

󰁝

R
f (x)e−ixξdx
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From the mathematical point of view

Fourier transform: For f ∈ L2(R)

f̂ (ξ) =
1√
2π

󰁝

R
f (x)e−ixξdx

Uncertainty principle

The supports of a non-zero function and its Fourier transform cannot
both be sharply “concentrated”.
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From the mathematical point of view

Fourier transform: For f ∈ L2(R)

f̂ (ξ) =
1√
2π

󰁝

R
f (x)e−ixξdx

Uncertainty principle

The supports of a non-zero function and its Fourier transform cannot
both be sharply “concentrated”.

Depending on the definition of “concentration”, one gets different
uncertainty principles.
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Heisenberg’s uncertainty principle

For f ∈ L2(R) with 󰀂f 󰀂L2 = 1 we measure “concentration” in terms of
the standard deviation

󰁝

R
(x − a)2|f (x)|2dx
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Heisenberg’s uncertainty principle

For f ∈ L2(R) with 󰀂f 󰀂L2 = 1 we measure “concentration” in terms of
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󰁝

R
(x − a)2|f (x)|2dx

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be.
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Heisenberg’s uncertainty principle

For f ∈ L2(R) with 󰀂f 󰀂L2 = 1 we measure “concentration” in terms of
the standard deviation

󰁝

R
(x − a)2|f (x)|2dx

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a− ε, a+ ε] and ε → 0
then

󰁕
(x − a)2|f (x)|2dx → 0.
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Heisenberg’s uncertainty principle

For f ∈ L2(R) with 󰀂f 󰀂L2 = 1 we measure “concentration” in terms of
the standard deviation

󰁝

R
(x − a)2|f (x)|2dx

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a− ε, a+ ε] and ε → 0
then

󰁕
(x − a)2|f (x)|2dx → 0.

Consider the analogous quantity for f̂ :
󰁝

R
(ξ − b)2|f̂ (ξ)|2dξ

Note that also 󰀂f̂ 󰀂L2 = 1 by Plancharel.
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Heisenberg’s uncertainty principle

For f ∈ L2(R) with 󰀂f 󰀂L2 = 1 we measure “concentration” in terms of
the standard deviation

󰁝

R
(x − a)2|f (x)|2dx

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a− ε, a+ ε] and ε → 0
then

󰁕
(x − a)2|f (x)|2dx → 0.

Consider the analogous quantity for f̂ :
󰁝

R
(ξ − b)2|f̂ (ξ)|2dξ

Note that also 󰀂f̂ 󰀂L2 = 1 by Plancharel.

Heisenberg’s uncertainty principle

No matter which point b ∈ R we choose, the support of f̂ cannot be
concentrated around b if the support of f is concentrated around a.
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A more precise mathematical formulation

Heisenberg’s uncertainty principle

Let f ∈ L2(R) with 󰀂f 󰀂L2 = 1. Then

󰁝

R
(x − a)2|f (x)|2dx ·

󰁝

R
(ξ − b)2|f̂ (ξ)|2dξ ≥ 1

and equality holds iff f is a Gaussian, up to translations and modulations:
f (x) = ce ibx · e−γ(x−a)2 for some c ∈ C, γ > 0
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A second mathematical formulation

Let f ∈ L2(R) \ {0},

mean associated to f : µ(f ) :=
1

󰀂f 󰀂2L2

󰁝

R
t|f (t)|2dt

dispersion associated to f : ∆(f ) :=
1

󰀂f 󰀂L2

󰀕󰁝

R
(t − µ(f ))2|f (t)|2dt

󰀖1/2

(mimimum of the standard deviation)
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A second mathematical formulation

Let f ∈ L2(R) \ {0},

mean associated to f : µ(f ) :=
1

󰀂f 󰀂2L2

󰁝

R
t|f (t)|2dt

dispersion associated to f : ∆(f ) :=
1

󰀂f 󰀂L2

󰀕󰁝

R
(t − µ(f ))2|f (t)|2dt

󰀖1/2

(mimimum of the standard deviation)

Heisenberg’s uncertainty principle

Let f ∈ L2(R) \ {0}. Then ∆(f ) ·∆(f̂ ) ≥ 1.
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A second mathematical formulation

Let f ∈ L2(R) \ {0},

mean associated to f : µ(f ) :=
1

󰀂f 󰀂2L2

󰁝

R
t|f (t)|2dt

dispersion associated to f : ∆(f ) :=
1

󰀂f 󰀂L2

󰀕󰁝

R
(t − µ(f ))2|f (t)|2dt

󰀖1/2

(mimimum of the standard deviation)

Heisenberg’s uncertainty principle

Let f ∈ L2(R) \ {0}. Then ∆(f ) ·∆(f̂ ) ≥ 1.

From the quantum mechanics point of view

Position and velocity of a subatomic particle cannot be simultaneously
well predicted
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Benedicks’s uncertainty principle

For f ∈ L1(R) \ {0} think as “concentration” in terms of “living” entirely
on a set of finite measure.

t

f

ξ

f̂

time limited not band limited
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Benedicks’s uncertainty principle

For f ∈ L1(R) \ {0} think as “concentration” in terms of “living” entirely
on a set of finite measure.

Benedicks’s uncertainty principle

If f ∈ L1(R) \ {0} then the Lebesgue measure of the supports of f and f̂
cannot both be finite

t

f

ξ

f̂

time limited not band limited
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Benedicks’s uncertainty principle

For f ∈ L1(R) \ {0} think as “concentration” in terms of “living” entirely
on a set of finite measure.

Benedicks’s uncertainty principle

If f ∈ L1(R) \ {0} then the Lebesgue measure of the supports of f and f̂
cannot both be finite

Note: If f is a C∞ function (or distribution) with compact support, this
was already known by the Paley-Wiener Theorem, since its Fourier
transform is an analytic function, hence the zeros of f̂ are isolated.

t

f

ξ

f̂

time limited not band limited
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Benedicks’s uncertainty principle

For f ∈ L1(R) \ {0} think as “concentration” in terms of “living” entirely
on a set of finite measure.

Benedicks’s uncertainty principle

If f ∈ L1(R) \ {0} then the Lebesgue measure of the supports of f and f̂
cannot both be finite

Note: If f is a C∞ function (or distribution) with compact support, this
was already known by the Paley-Wiener Theorem, since its Fourier
transform is an analytic function, hence the zeros of f̂ are isolated.

Physical interpretation

A non-zero signal cannot both be time limited and band limited

t

f

ξ

f̂

time limited not band limited
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Donoho-Stark uncertainty principle

ε-concentration on a measurable set

f ∈ L2(R) \ {0} is εT -concentrated on a measurable set T ⊆ R if

󰀣󰁝

R\T
|f (x)|2dx

󰀤1/2

≤ εT󰀂f 󰀂L2(R)
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Donoho-Stark uncertainty principle

ε-concentration on a measurable set

f ∈ L2(R) \ {0} is εT -concentrated on a measurable set T ⊆ R if

󰀣󰁝

R\T
|f (x)|2dx

󰀤1/2

≤ εT󰀂f 󰀂L2(R)

Donoho-Stark uncertainty principle

Let f ∈ L2(R) \ {0}. If f is εT -concentrated on T and f̂ is
εΩ-concentrated on Ω, then

m(T ) ·m(Ω) ≥ (1− εT − εΩ)
2.
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Donoho-Stark uncertainty principle

ε-concentration on a measurable set

f ∈ L2(R) \ {0} is εT -concentrated on a measurable set T ⊆ R if

󰀣󰁝

R\T
|f (x)|2dx

󰀤1/2

≤ εT󰀂f 󰀂L2(R)

Donoho-Stark uncertainty principle

Let f ∈ L2(R) \ {0}. If f is εT -concentrated on T and f̂ is
εΩ-concentrated on Ω, then

m(T ) ·m(Ω) ≥ (1− εT − εΩ)
2.

Corollary

If f ∈ L2(R) \ {0} with supp f ⊆ T and supp f̂ ⊆ Ω then
m(T ) ·m(Ω) ≥ 1

since εT = εΩ = 0

D. Jornet Mean-Dispersion Principles and the Wigner Transform



Hardy’s uncertainty principle

Hardy’s Uncertainty Principle

Let a, b,C ,N > 0 and f ∈ L2(R) s.t. for almost all x , ξ ∈ R,

|f (x)| ≤ C(1 + |x |)Ne−aπx2 and |f̂ (ξ)| ≤ C(1 + |ξ|)Ne−bπξ2 . (1)

If a · b > 1 then f = 0.

If a · b = 1 then f (x) = P(x)e−aπx2 for a polynomial P of degree ≤ N.
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Hardy’s uncertainty principle

Hardy’s Uncertainty Principle

Let a, b,C ,N > 0 and f ∈ L2(R) s.t. for almost all x , ξ ∈ R,

|f (x)| ≤ C(1 + |x |)Ne−aπx2 and |f̂ (ξ)| ≤ C(1 + |ξ|)Ne−bπξ2 . (1)

If a · b > 1 then f = 0.

If a · b = 1 then f (x) = P(x)e−aπx2 for a polynomial P of degree ≤ N.

Beurling-Hörmander (1991), case a · b > 1

For f ∈ L1(R), we have

󰁝󰁝
|f (x)󰁥f (ξ)|e2π|xξ|dxdξ < ∞ =⇒ f = 0.
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Hardy’s uncertainty principle

Hardy’s Uncertainty Principle

Let a, b,C ,N > 0 and f ∈ L2(R) s.t. for almost all x , ξ ∈ R,

|f (x)| ≤ C(1 + |x |)Ne−aπx2 and |f̂ (ξ)| ≤ C(1 + |ξ|)Ne−bπξ2 . (1)

If a · b > 1 then f = 0.

If a · b = 1 then f (x) = P(x)e−aπx2 for a polynomial P of degree ≤ N.

Beurling-Hörmander (1991), case a · b > 1

For f ∈ L1(R), we have

󰁝󰁝
|f (x)󰁥f (ξ)|e2π|xξ|dxdξ < ∞ =⇒ f = 0.

Demange (2006), case a · b < 1

The class of L2-functions satisfying (1) is infinite-dimensional. However, it
cannot contain an infinite orthonormal sequence.
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Two Uncertainty Principles due to Shapiro

Shapiro’s Umbrella Theorem

Let ϕ,ψ ∈ L2(R). If {ek} ⊂ L2(R) is an orthonormal sequence of
functions s.t. for all k and almost all x , ξ ∈ R,

|ek(x)| ≤ |ϕ(x)| and | 󰁥ek(ξ)| ≤ |ψ(ξ)|,

then the sequence {ek} is finite.
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Two Uncertainty Principles due to Shapiro

Shapiro’s Umbrella Theorem

Let ϕ,ψ ∈ L2(R). If {ek} ⊂ L2(R) is an orthonormal sequence of
functions s.t. for all k and almost all x , ξ ∈ R,

|ek(x)| ≤ |ϕ(x)| and | 󰁥ek(ξ)| ≤ |ψ(ξ)|,

then the sequence {ek} is finite.

Shapiro’s mean-dispersion principle (Shapiro, unpublished manuscript, 1991)

There does not exist an infinite orthonormal sequence {fk}k∈N0 in L2(R)
such that means and dispersions µ(fk), µ(f̂k), ∆(fk), ∆(f̂k) are all
uniformly bounded
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Quantitative versions of Shapiro’s Uncertainty Principles

With the use of Rayleigh-Ritz techniques:

Sharp mean-dispersion principle (Jaming-Powell, JFA, 2007)

Let {fk}k∈N0 be an orthonormal sequence in L2(R). Then for all n ∈ N0

n󰁛

k=0

(∆2(fk) +∆2(f̂k) + µ2(fk) + µ2(f̂k)) ≥ (n + 1)2
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Quantitative versions of Shapiro’s Uncertainty Principles

With the use of Rayleigh-Ritz techniques:

Sharp mean-dispersion principle (Jaming-Powell, JFA, 2007)

Let {fk}k∈N0 be an orthonormal sequence in L2(R). Then for all n ∈ N0

n󰁛

k=0

(∆2(fk) +∆2(f̂k) + µ2(fk) + µ2(f̂k)) ≥ (n + 1)2

Using geometric combinatorics:

Sharp Umbrella Theorem (Jaming-Powell, JFA, 2007)

Let ϕ,ψ ∈ L2(R). If {ek}Nn=1 ⊂ L2(R) is an orthonormal sequence of
functions s.t. for all 1 ≤ n ≤ N and almost all x , ξ ∈ R,

|en(x)| ≤ |ϕ(x)| and | 󰁥en(ξ)| ≤ |ψ(ξ)|,

then N is bounded by a quantity that depends on certain geometric
properties of ϕ and ψ.
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Uncertainty principles and time-frequency analysis

In [BJO]2 we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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Uncertainty principles and time-frequency analysis

In [BJO]2 we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

Motivation

Time-frequency analysis combines the features of f and f̂ into a single
function, a so-called time-frequency representation

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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Uncertainty principles and time-frequency analysis

In [BJO]2 we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

Motivation

Time-frequency analysis combines the features of f and f̂ into a single
function, a so-called time-frequency representation

There are several type of time-frequency representations. But uncertainty
principles cannot be avoided and each time-frequency representation
entails its own peculiar version of the uncertainty principle.

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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Uncertainty principles and time-frequency analysis

In [BJO]2 we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

Motivation

Time-frequency analysis combines the features of f and f̂ into a single
function, a so-called time-frequency representation

There are several type of time-frequency representations. But uncertainty
principles cannot be avoided and each time-frequency representation
entails its own peculiar version of the uncertainty principle.

Cross-Wigner distribution

For f , g ∈ L2(R),

W (f , g)(x , ξ) :=
1√
2π

󰁝

R
f
󰀓
x +

t

2

󰀔
g
󰀓
x − t

2

󰀔
e−itξdt, x , ξ ∈ R.

Set W (f ) = W (f , f ).

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.
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Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

hk are eigenfunctions of the Fourier transform (ĥk = (−1)khk)
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Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

hk are eigenfunctions of the Fourier transform (ĥk = (−1)khk)

{hk}k∈N0 form an orthonormal basis of L2(R)

D. Jornet Mean-Dispersion Principles and the Wigner Transform



Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

hk are eigenfunctions of the Fourier transform (ĥk = (−1)khk)

{hk}k∈N0 form an orthonormal basis of L2(R)
hk are in the Schwartz class S(R) (and form an absolute basis of S)
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Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

hk are eigenfunctions of the Fourier transform (ĥk = (−1)khk)

{hk}k∈N0 form an orthonormal basis of L2(R)
hk are in the Schwartz class S(R) (and form an absolute basis of S)
{hj,k := F−1W (hj , hk)}j,k∈N0 form an orthonormal basis of L2(R2)
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Hermite functions

A particular orthonormal basis of L2(R):
Hermite functions

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R, k ∈ N0,

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

hk are eigenfunctions of the Fourier transform (ĥk = (−1)khk)

{hk}k∈N0 form an orthonormal basis of L2(R)
hk are in the Schwartz class S(R) (and form an absolute basis of S)
{hj,k := F−1W (hj , hk)}j,k∈N0 form an orthonormal basis of L2(R2)

hj,k are eigenfunctions of the twisted Laplacian:

Lhj,k(y , t) = (2k + 1)hj,k(y , t), ∀j , k ∈ N0

where L :=
󰀓
Dy −

1

2
t
󰀔2

+
󰀓
Dt +

1

2
y
󰀔2
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Further properties of Hermite functions

ĥj,k = W (hj , hk) ∈ S(R2), form an orthonormal basis of L2(R2)
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Further properties of Hermite functions

ĥj,k = W (hj , hk) ∈ S(R2), form an orthonormal basis of L2(R2)

L̂ĥj,k = (2k + 1)ĥj,k

for L̂ :=
󰀓1
2
Dξ + x

󰀔2

+
󰀓1
2
Dx − ξ

󰀔2
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Further properties of Hermite functions

ĥj,k = W (hj , hk) ∈ S(R2), form an orthonormal basis of L2(R2)

L̂ĥj,k = (2k + 1)ĥj,k

for L̂ :=
󰀓1
2
Dξ + x

󰀔2

+
󰀓1
2
Dx − ξ

󰀔2

n󰁛

k=0

〈L̂W (hj , hk),W (hj , hk)〉 = (n + 1)2, ∀n ∈ N0,

since

n󰁛

k=0

〈L̂W (hj , hk),W (hj , hk)〉 =
n󰁛

k=0

〈L̂ĥj,k , ĥj,k〉

=
n󰁛

k=0

〈(2k + 1)ĥj,k , ĥj,k〉 =
n󰁛

k=0

(2k + 1) = (n + 1)2.
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Uncertainty principle for the Wigner transform

Theorem (Boiti-Jornet-Oliaro)

Let {fk}k∈N0 in L2(R) with 󰀂fk󰀂 = 1 and {gk}k∈N0 an orthonormal
sequence in L2(R). Then

n󰁛

k=0

〈L̂W (fi , gk),W (fi , gk)〉 ≥ (n + 1)2, ∀i , n ∈ N0
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finite (while {fk} may be infinite).
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Uncertainty principle for the Wigner transform

Theorem (Boiti-Jornet-Oliaro)

Let {fk}k∈N0 in L2(R) with 󰀂fk󰀂 = 1 and {gk}k∈N0 an orthonormal
sequence in L2(R). Then

n󰁛

k=0

〈L̂W (fi , gk),W (fi , gk)〉 ≥ (n + 1)2, ∀i , n ∈ N0

Moreover, 〈L̂W (fi , gk),W (fi , gk)〉 uniformly bounded ⇒ {gk} must be
finite (while {fk} may be infinite).

Proof: {ĥj,k} = {W (hj , hk)} is an orthonormal basis of L2(R2):

W (fi , gk) =
+∞󰁛

j,ℓ=0

c
(i,k)
j,ℓ W (hj , hℓ)

with
c
(i,k)
j,ℓ = 〈W (fi , gk),W (hj , hℓ)〉 = 〈fi , hj〉〈gk , hℓ〉
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Proof

Then, from L̂ĥj,ℓ = (2ℓ+ 1)ĥj,ℓ:

n󰁛

k=0

〈L̂W (fi , gk),W (fj , gk)〉 =
n󰁛

k=0

+∞󰁛

j,ℓ=0

|c(i,k)j,ℓ |2(2ℓ+ 1)
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k=0

|〈gk , hℓ〉|2
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+∞󰁛

ℓ=0
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Proof

Then, from L̂ĥj,ℓ = (2ℓ+ 1)ĥj,ℓ:

n󰁛

k=0

〈L̂W (fi , gk),W (fj , gk)〉 =
n󰁛

k=0

+∞󰁛

j,ℓ=0

|c(i,k)j,ℓ |2(2ℓ+ 1)

=
n󰁛

k=0

+∞󰁛

j=0

|〈fi , hj〉|2

󰁿 󰁾󰁽 󰂀
=󰀂fi󰀂2=1

+∞󰁛

ℓ=0

|〈gk , hℓ〉|2(2ℓ+ 1)

=
+∞󰁛

ℓ=0

n󰁛

k=0

|〈gk , hℓ〉|2

󰁿 󰁾󰁽 󰂀
=:αℓ

(2ℓ+ 1) =
+∞󰁛

ℓ=0

αℓ(2ℓ+ 1).

with 0 ≤ αℓ ≤ 󰀂hℓ󰀂2 = 1 and
+∞󰁛

ℓ=0

αℓ =
n󰁛

k=0

+∞󰁛

ℓ=0

|〈gk , hℓ〉|2

󰁿 󰁾󰁽 󰂀
󰀂gk󰀂2=1

= n + 1
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Proof

n + 1 = α0󰁿󰁾󰁽󰂀
≤1

+ . . .+ αn󰁿󰁾󰁽󰂀
≤1

+
󰁛

ℓ≥n+1

αℓ

󰁿 󰁾󰁽 󰂀
=:Rn
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Proof
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Rn > 0: setting ck = (1− αk)/Rn
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ℓ=0

(2ℓ+ 1) = (n + 1)2

Rn > 0: setting ck = (1− αk)/Rn we have αk + ckRn = 1,
c0 + · · ·+ cn = 1
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n + 1 = α0󰁿󰁾󰁽󰂀
≤1
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(2ℓ+ 1) = (n + 1)2
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c0 + · · ·+ cn = 1

⇒
+∞󰁛

ℓ=0

αℓ(2ℓ+ 1) =
n󰁛

ℓ=0

αℓ(2ℓ+ 1) + (c0 + . . .+ cn)
󰁛

ℓ≥n+1

αℓ(2ℓ+ 1)
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ℓ≥n+1

αℓ(2ℓ+ 1)

=
n󰁛

ℓ=0

αℓ(2ℓ+ 1) + c0
󰁛

ℓ≥n+1

αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀

≥1

+ . . .+ cn
󰁛

ℓ≥n+1

αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀
≥2n+1
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αℓ(2ℓ+ 1) + c0
󰁛
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αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀

≥1

+ . . .+ cn
󰁛

ℓ≥n+1

αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀
≥2n+1

≥ (α0 + c0Rn󰁿 󰁾󰁽 󰂀
1

) · 1 + . . .+ (αn + cnRn󰁿 󰁾󰁽 󰂀
1

) · (2n + 1)
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Proof

n + 1 = α0󰁿󰁾󰁽󰂀
≤1

+ . . .+ αn󰁿󰁾󰁽󰂀
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+
󰁛

ℓ≥n+1

αℓ
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=:Rn

Rn = 0: then α0 = · · · = αn = 1 and αℓ = 0 for all ℓ ≥ n + 1, therefore
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ℓ=0
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n󰁛
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(2ℓ+ 1) = (n + 1)2
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c0 + · · ·+ cn = 1

⇒
+∞󰁛

ℓ=0

αℓ(2ℓ+ 1) =
n󰁛

ℓ=0

αℓ(2ℓ+ 1) + (c0 + . . .+ cn)
󰁛

ℓ≥n+1

αℓ(2ℓ+ 1)

=
n󰁛

ℓ=0

αℓ(2ℓ+ 1) + c0
󰁛

ℓ≥n+1

αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀

≥1

+ . . .+ cn
󰁛

ℓ≥n+1

αℓ (2ℓ+ 1)
󰁿 󰁾󰁽 󰂀
≥2n+1

≥ (α0 + c0Rn󰁿 󰁾󰁽 󰂀
1

) · 1 + . . .+ (αn + cnRn󰁿 󰁾󰁽 󰂀
1

) · (2n + 1) =
n󰁛

k=0

(2k + 1) = (n + 1)2

□
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Mean-dispersion principle for the Wigner transform

Corollary (Boiti-Jornet-Oliaro) (same proof with fk = gk)

If {fk}k∈N0 is an orthonormal sequence in L2(R), then

n󰁛

k=0

〈L̂W (fk),W (fk)〉 ≥ (n + 1)2, ∀n ∈ N0, (1)

and equality holds ∀n ≤ n0 iff fk = ckhk , ck ∈ C, |ck | = 1, 0 ≤ k ≤ n0.

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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Corollary (Boiti-Jornet-Oliaro) (same proof with fk = gk)

If {fk}k∈N0 is an orthonormal sequence in L2(R), then

n󰁛

k=0

〈L̂W (fk),W (fk)〉 ≥ (n + 1)2, ∀n ∈ N0, (1)

and equality holds ∀n ≤ n0 iff fk = ckhk , ck ∈ C, |ck | = 1, 0 ≤ k ≤ n0.

Remark

(1) may be interpreted as a mean-dispersion principle since

〈L̂W (fk),W (fk)〉 = ∆2(fk) +∆2(f̂k) + µ2(fk) + µ2(f̂k)

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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Mean-dispersion principle for the Wigner transform

Corollary (Boiti-Jornet-Oliaro) (same proof with fk = gk)

If {fk}k∈N0 is an orthonormal sequence in L2(R), then

n󰁛

k=0

〈L̂W (fk),W (fk)〉 ≥ (n + 1)2, ∀n ∈ N0, (1)

and equality holds ∀n ≤ n0 iff fk = ckhk , ck ∈ C, |ck | = 1, 0 ≤ k ≤ n0.

Remark

(1) may be interpreted as a mean-dispersion principle since

〈L̂W (fk),W (fk)〉 = ∆2(fk) +∆2(f̂k) + µ2(fk) + µ2(f̂k)

We have thus provided an elementary proof of Shapiro’s mean-dispersion
principle (Jaming-Powell use in [JP]3 the Rayleight-Ritz technique to
estimate eigenvalues of operators).

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients
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Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients, since,
denoting by Mju(x1, x2) = xju(x1, x2), Dj = −i∂xj (M,D for functions of
1 variable), for all f ∈ L2(R) with 󰀂f 󰀂L2 = 1:

〈M2f , f 〉 = µ2(f ) +∆2(f )

〈D2f , f 〉 = µ2(f̂ ) +∆2(f̂ )

〈M1W (f ),W (f )〉 = µ(f )

〈M2W (f ),W (f )〉 = µ(f̂ )

〈DjW (f ),W (f )〉 = 0, j = 1, 2

〈D2
1W (f ),W (f )〉 = 2∆2(f̂ )

〈D2
2W (f ),W (f )〉 = 2∆2(f )

〈MjDjW (f ),W (f )〉 = i
2
, j = 1, 2

〈DjMjW (f ),W (f )〉 = − i
2
, j = 1, 2

〈M2
1W (f ),W (f )〉 = µ2(f ) + 1

2
∆2(f )

〈M2
2W (f ),W (f )〉 = µ2(f̂ ) + 1

2
∆2(f̂ )
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Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients, since,
denoting by Mju(x1, x2) = xju(x1, x2), Dj = −i∂xj (M,D for functions of
1 variable), for all f ∈ L2(R) with 󰀂f 󰀂L2 = 1:
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, j = 1, 2

〈DjMjW (f ),W (f )〉 = − i
2
, j = 1, 2

〈M2
1W (f ),W (f )〉 = µ2(f ) + 1

2
∆2(f )

〈M2
2W (f ),W (f )〉 = µ2(f̂ ) + 1

2
∆2(f̂ )

Example

∀n ∈ N0:

n󰁛

k=0

󰁝
(x2 + ξ2)|W (fk)|2dxdξ≥

(n+1)2

2

and equality holds ∀n ≤ n0 iff
fk = ckhk , ck ∈ C, |ck | = 1,
∀0 ≤ k ≤ n0
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2W (f ),W (f )〉 = µ2(f̂ ) + 1

2
∆2(f̂ )

Example

∀n ∈ N0:

n󰁛

k=0

󰁝
(x2 + ξ2)|W (fk)|2dxdξ≥

(n+1)2

2

and equality holds ∀n ≤ n0 iff
fk = ckhk , ck ∈ C, |ck | = 1,
∀0 ≤ k ≤ n0

N.B. If µ(fk) = µ(f̂k) = 0 then󰁕
(x2+ξ2)|W (fk)|2dxdξ is the trace

of the covariance matrix associ-
ated to |W (fk)|.
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Mean-dispersion principle for the Cohen class

Cohen class

Q(f , g) =
1√
2π

σ ∗W (f , g), f , g ∈ S,σ ∈ S ′
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Mean-dispersion principle for the Cohen class

Cohen class

Q(f , g) =
1√
2π

σ ∗W (f , g), f , g ∈ S,σ ∈ S ′

Theorem (Boiti-Jornet-Oliaro)

Let {fk}k∈N0 , {gk}k∈N0 ⊂ S(R) be two orthonormal sequences in L2(R).
Then

n󰁛

k=0

〈L̃Q(fj , gk),Q(fj , gk)〉 ≥ (n + 1)2, ∀j , n ∈ N0,

for any linear partial differential operator L̃ of the form

L̃(M1,M2,D1,D2) =
󰀓
M1 +

1

2
D2 − P1

󰀔2

+
󰀓1
2
D1 −M2 + P2

󰀔2

with P1 = (iD1P)(D1,D2), P2 = (iD2P)(D1,D2), P ∈ R[ξ, η],

σ = F−1(e−iP(ξ,η)), Q(fj , fk) =
1√
2π

σ ∗W (fj , fk)
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Mean-dispersion principle for the Cohen class

Cohen class

Q(f , g) =
1√
2π

σ ∗W (f , g), f , g ∈ S,σ ∈ S ′

Theorem (Boiti-Jornet-Oliaro)

Let {fk}k∈N0 , {gk}k∈N0 ⊂ S(R) be two orthonormal sequences in L2(R).
Then

n󰁛

k=0

〈L̃Q(fj , gk),Q(fj , gk)〉 ≥ (n + 1)2, ∀j , n ∈ N0,

for any linear partial differential operator L̃ of the form

L̃(M1,M2,D1,D2) =
󰀓
M1 +

1

2
D2 − P1

󰀔2

+
󰀓1
2
D1 −M2 + P2

󰀔2

with P1 = (iD1P)(D1,D2), P2 = (iD2P)(D1,D2), P ∈ R[ξ, η],

σ = F−1(e−iP(ξ,η)), Q(fj , fk) =
1√
2π

σ ∗W (fj , fk)

Idea of the proof:
〈L̃Q(f , g),Q(f , g)〉 = µ2(g) + µ2(ĝ) +∆2(g) +∆2(ĝ)
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Two concrete examples

Example 1

Let P(D1,D2) =
1
2D1D2. Then L̃ = M2

1 + (D1 −M2)
2.
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Two concrete examples

Example 1

Let P(D1,D2) =
1
2D1D2. Then L̃ = M2

1 + (D1 −M2)
2.Therefore, we

obtain

n󰁛

k=1

〈(M2
1 + (D1 −M2)

2)Q(fj , fk),Q(fj fk)〉 ≥ (n + 1)2, ∀n ∈ N0.
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Two concrete examples

Example 1

Let P(D1,D2) =
1
2D1D2. Then L̃ = M2

1 + (D1 −M2)
2.Therefore, we

obtain

n󰁛

k=1

〈(M2
1 + (D1 −M2)

2)Q(fj , fk),Q(fj fk)〉 ≥ (n + 1)2, ∀n ∈ N0.

Example 2

Now, we consider the operator P(M1,M2) = M2
1 +M2

2 , and by direct
computations

〈(M2
1 +M2

2 )W (f ),W (f )〉 = 〈((M1 − P1)
2 + (M2 − P2)

2)Q(f ),Q(f )〉
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Two concrete examples

Example 1

Let P(D1,D2) =
1
2D1D2. Then L̃ = M2

1 + (D1 −M2)
2.Therefore, we

obtain

n󰁛

k=1

〈(M2
1 + (D1 −M2)

2)Q(fj , fk),Q(fj fk)〉 ≥ (n + 1)2, ∀n ∈ N0.

Example 2

Now, we consider the operator P(M1,M2) = M2
1 +M2

2 , and by direct
computations

〈(M2
1 +M2

2 )W (f ),W (f )〉 = 〈((M1 − P1)
2 + (M2 − P2)

2)Q(f ),Q(f )〉

Then, in this case, we have, ∀n ∈ N0,

n󰁛

k=1

〈((M1 − P1)
2 + (M2 − P2)

2)Q(fj , fk),Q(fj fk)〉 ≥
(n + 1)2

2
.
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)

If {uk}k∈N0 , {vk}k∈N0 are Riesz bases for L2(R), then

n󰁛

k=0

〈L̂W (ui , vk),W (ui , vk)〉 ≥
󰀂U−1

2 󰀂2
󰀂U1󰀂2

󰀗
n + 1

󰀂U−1
2 󰀂2󰀂U2󰀂2

󰀘2

where U1(uk) = hk , U2(vk) = hk , [x ] denotes the integer part of x .
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)

If {uk}k∈N0 , {vk}k∈N0 are Riesz bases for L2(R), then

n󰁛

k=0

〈L̂W (ui , vk),W (ui , vk)〉 ≥
󰀂U−1

2 󰀂2
󰀂U1󰀂2

󰀗
n + 1

󰀂U−1
2 󰀂2󰀂U2󰀂2

󰀘2

where U1(uk) = hk , U2(vk) = hk , [x ] denotes the integer part of x .

Corollary (Boiti-Jornet-Oliaro)

If {uk}k∈N0 is a Riesz basis for L2(R) with U(uk) = hk , then
n󰁛

k=0

(∆2(uk)+∆2(ûk)+µ2(uk)+µ2(ûk)) ≥
1

󰀂U−1󰀂2󰀂U󰀂2

󰀗
n + 1

󰀂U−1󰀂2󰀂U󰀂2

󰀘2
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)

If {uk}k∈N0 , {vk}k∈N0 are Riesz bases for L2(R), then

n󰁛

k=0

〈L̂W (ui , vk),W (ui , vk)〉 ≥
󰀂U−1

2 󰀂2
󰀂U1󰀂2

󰀗
n + 1

󰀂U−1
2 󰀂2󰀂U2󰀂2

󰀘2

where U1(uk) = hk , U2(vk) = hk , [x ] denotes the integer part of x .

Corollary (Boiti-Jornet-Oliaro)

If {uk}k∈N0 is a Riesz basis for L2(R) with U(uk) = hk , then
n󰁛

k=0

(∆2(uk)+∆2(ûk)+µ2(uk)+µ2(ûk)) ≥
1

󰀂U−1󰀂2󰀂U󰀂2

󰀗
n + 1

󰀂U−1󰀂2󰀂U󰀂2

󰀘2

Remark: If {uk} orthonormal then 󰀂U󰀂=󰀂U−1󰀂=1 and we obtain again
Shapiro’s mean-dispersion principle with the same estimate (n + 1)2

([JP]: 1
2 (n + 1)(2n + 1))
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