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Uncertainty principle

G. B. Folland!: The uncertainty principle is partly a description of a
characteristic feature of quantum mechanical systems, partly a statement
about the limitations of one’s ability to perform measurements on a
system without disturbing it, and partly a meta-theorem in harmonic
analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

1G. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J.
Fourier Anal. Appl., 3, n. 3 (1997), 207-238.
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Uncertainty principle

G. B. Folland!: The uncertainty principle is partly a description of a
characteristic feature of quantum mechanical systems, partly a statement
about the limitations of one’s ability to perform measurements on a
system without disturbing it, and partly a meta-theorem in harmonic
analysis that can be summarized as follows: A nonzero function and its
Fourier transform cannot both be sharply localized.

Physical point of view: In quantum mechanics

@ the wave function of the position of a subatomic particle is the
Fourier transform of the wave function of the momentum (mass
times velocity)

@ Heisenberg's uncertainty principle: impossible to simultaneously
determine the particle’s position and its velocity

@ any attempt to measure precisely the velocity of the particle will
knock it about in an unpredictable way, so that a simultaneous
measurement of its position has no validity

@ if one forces a particle to be in a small region, then we cannot
measure its velocity

1G. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J.
Fourier Anal. Appl., 3, n. 3 (1997), 207-238.

D. Jornet Mean-Dispersion Principles and the Wigner Transform




From the mathematical point of view

Fourier transform: For f € L?(R)

1 —ix
(5):\/—2_W/Rf(x)e Sdx

>
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From the mathematical point of view

Fourier transform: For f € L?(R)

1 —ix
(5):\/—2_W/Rf(x)e Sdx

>

Uncertainty principle

The supports of a non-zero function and its Fourier transform cannot
both be sharply “concentrated”.
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From the mathematical point of view

Fourier transform: For f € L?(R)

1 —ix
(5):\/—2_W/Rf(x)e Sdx

>

Uncertainty principle

The supports of a non-zero function and its Fourier transform cannot
both be sharply “concentrated”.

Depending on the definition of “concentration”, one gets different
uncertainty principles.
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Heisenberg's uncertainty principle

For f € L>(R) with ||f||;2 = 1 we measure “concentration” in terms of
the standard deviation

[ (x=aP1rGopa
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Heisenberg's uncertainty principle

For f € L>(R) with ||f||;2 = 1 we measure “concentration” in terms of
the standard deviation

[ (x=aP1rGopa

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be.
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Heisenberg's uncertainty principle

For f € L>(R) with ||f||;2 = 1 we measure “concentration” in terms of
the standard deviation

[ (x=aP1rGopa

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a—¢,a+¢] and ¢ — 0
then [(x — a)?|f(x)[?dx — 0.
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Heisenberg's uncertainty principle

For f € L>(R) with ||f||;2 = 1 we measure “concentration” in terms of
the standard deviation

[ (x=aP1rGopa

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a—¢,a+¢] and ¢ — 0
then [(x — a)?|f(x)[?dx — 0.

Consider the analogous quantity for :

/ (€ — bRIF(©)Pde
R

Note that also |||,z = 1 by Plancharel.
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Heisenberg's uncertainty principle

For f € L>(R) with ||f||;2 = 1 we measure “concentration” in terms of
the standard deviation

[ (x=aP1rGopa

Remark: The more supp f is concentrated around a, the smaller the
standard deviation will be. If f has support in [a—¢,a+¢] and ¢ — 0
then [(x — a)?|f(x)|?dx — 0.

Consider the analogous quantity for f:
[ (e~ brifra
R

Note that also |||,z = 1 by Plancharel.
Heisenberg's uncertainty principle

No matter which point b € R we choose, the support of f cannot be
concentrated around b if the support of f is concentrated around a.
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A more precise mathematical formulation

Heisenberg's uncertainty principle

Let f € L?(R) with ||f][;2 = 1. Then

/R (x — a)2F(x)|2dx - / (€ — bRIF©)PdE > 1

and equality holds iff fzis a Gaussian, up to translations and modulations:
f(x) = ce®™ . e=7x=2)" for some c € C,y > 0
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A second mathematical formulation

Let £ € 12(R)\ {0},
- ﬁ/kﬂf(t)ﬁdt

1/2
dispersion associated to f: A(f) == Hf1||L2 (/R(t - u(f))2|f(t)2dt>

mean associated to f: wu(f)

(mimimum of the standard deviation)
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A second mathematical formulation

Let £ € 12(R)\ {0},
- ﬁ/Rﬂf(t)th

1/2
dispersion associated to f: A(f) == Hf1||L2 (/R(t - u(f))2|f(t)2dt>

mean associated to f: wu(f)

(mimimum of the standard deviation)

Heisenberg's uncertainty principle ’

Let f € L2(R)\ {0}. Then A(f)- A(f) > 1.
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A second mathematical formulation

Let £ € 12(R)\ {0},
- ﬁ/Rﬂf(t)th

1/2
dispersion associated to f: A(f) == Hf1||L2 (/R(t - u(f))2|f(t)2dt>

mean associated to f: wu(f)

(mimimum of the standard deviation)

Heisenberg's uncertainty principle

Let f € L2(R)\ {0}. Then A(f)- A(f) > 1.

From the quantum mechanics point of view

Position and velocity of a subatomic particle cannot be simultaneously
well predicted
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Benedicks's uncertainty principle

For f € L}(R) \ {0} think as “concentration” in terms of “living” entirely ’
on a set of finite measure.
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Benedicks's uncertainty principle

For f € L}(R) \ {0} think as “concentration” in terms of “living” entirely
on a set of finite measure.

Benedicks's uncertainty principle

If f € LY(R) \ {0} then the Lebesgue measure of the supports of f and f
cannot both be finite
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Benedicks's uncertainty principle

For f € L}(R) \ {0} think as “concentration” in terms of “living” entirely ’
on a set of finite measure.

If f € LY(R) \ {0} then the Lebesgue measure of the supports of f and f

Benedicks's uncertainty principle
cannot both be finite |

Note: If f is a C* function (or distribution) with compact support, this
was already known by the Paley-Wiener Theorem, since its Fourier
transform is an analytic function, hence the zeros of f are isolated.

D. Jornet Mean-Dispersion Principles and the Wigner Transform



Benedicks's uncertainty principle

For f € L}(R) \ {0} think as “concentration” in terms of “living” entirely ‘
on a set of finite measure.

Benedicks's uncertainty principle ‘

If f € LY(R) \ {0} then the Lebesgue measure of the supports of f and f
cannot both be finite

Note: If f is a C* function (or distribution) with compact support, this
was already known by the Paley-Wiener Theorem, since its Fourier
transform is an analytic function, hence the zeros of f are isolated.

Physical interpretation ‘

A non-zero signal cannot both be time limited and band limited J
f 7
t 3
time limited not band limited
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Donoho-Stark uncertainty principle

e-concentration on a measurable set

f € L2(R) \ {0} is e7-concentrated on a measurable set T C R if

1/2
(/R\Tlf(X)lde> < el fll 2wy
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~ Donoho-Stark uncertainty principle -

e-concentration on a measurable set

f € L2(R) \ {0} is e7-concentrated on a measurable set T C R if

1/2
(/R\T |f(X)|2dX> < erlfllem)

Donoho-Stark uncertainty principle

Let f € L2(R)\ {0}. If f is e7-concentrated on T and f is
eq-concentrated on €, then

m(T)-m(Q) > (1 —e7 — eq)>
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Donoho-Stark uncertainty principle

e-concentration on a measurable set

f € L2(R) \ {0} is e7-concentrated on a measurable set T C R if

1/2
(/R\T |f(X)|2dX> < erlfllem)

Donoho-Stark uncertainty principle

Let f € L2(R)\ {0}. If f is e7-concentrated on T and f is
eq-concentrated on €, then

m(T)-m(Q) > (1 —e7 — eq)>

Corollary

If f € L2(R)\ {0} with supp f C T and supp f C Q then
m(T) - m(Q)>1

sinceer =eq =0
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Hardy's uncertainty principle

Hardy's Uncertainty Principle
Let a,b,C,N > 0 and f € L*(R) s.t. for almost all x,& € R,

F()] < CA+[x)Ye™ and  |F(€)| < C(L+IE)"e™™™ . (1)

@ Ifa-b>1then f=0.
@ If a- b=1 then f(x) = P(x)e’a’”2 for a polynomial P of degree < N.
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_Hardy’s uncertainty principle

Hardy's Uncertainty Principle
Let a,b,C,N > 0 and f € L*(R) s.t. for almost all x,& € R,

F()] < CA+[x)Ye™ and  |F(€)| < C(L+IE)"e™™™ . (1)

@ Ifa-b>1then f=0.
@ If a- b=1 then f(x) = P(x)e’a”2 for a polynomial P of degree < N.

Beurling-Hérmander (1991), case a- b > 1
For f € L'(R), we have

/ IF(x)F(€)|e™ ¢ ldxde < 00 => F=0.
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Hardy's uncertainty principle

Hardy's Uncertainty Principle
Let a,b,C,N > 0 and f € L*(R) s.t. for almost all x,& € R,

F()] < CA+[x)Ye™ and  |F(€)| < C(L+IE)"e™™™ . (1)

@ Ifa-b>1then f=0.
@ If a- b=1 then f(x) = P(x)e’a”2 for a polynomial P of degree < N.

Beurling-Hérmander (1991), case a- b > 1

For f € L'(R), we have

/ |F(x)F(€)|e™ ¢ ldxdE < 00 = F=0.

Demange (2006), case a- b < 1

The class of L>-functions satisfying (1) is infinite-dimensional. However, it
cannot contain an infinite orthonormal sequence.

v
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Two Uncertainty Principles due to Shapiro

Shapiro’s Umbrella Theorem

Let ,% € L?(R). If {ex} C L%(R) is an orthonormal sequence of
functions s.t. for all k and almost all x,¢£ € R,

lex(X)[ < lp(x)] and |e(§)] < [4(€)];

then the sequence {ex} is finite.
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~ Two Uncertainty Principles due to Shapiro

Shapiro’s Umbrella Theorem

Let ,% € L?(R). If {ex} C L%(R) is an orthonormal sequence of
functions s.t. for all k and almost all x,¢£ € R,

lex(X)[ < lp(x)] and |e(§)] < [4(€)];

then the sequence {ex} is finite.

Shapiro’s mean-dispersion principle (Shapiro, unpublished manuscript, 1991) |

There does not exist an infinite orthonormal sequence {fj } en, in L2(R)
such that means and dispersions u(fy), u(f), A(fc), A(f) are all
uniformly bounded
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Quantitative versions of Shapiro’s Uncertainty Principles

With the use of Rayleigh-Ritz techniques:

Sharp mean-dispersion principle (Jaming-Powell, JFA, 2007)
Let {fx}xen, be an orthonormal sequence in L2(R). Then for all n € Ny

n

S (B2(R) + A2 (F) + 12 (Fe) + 12 (F)) > (n+1)?
k=0
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Quantitative versions of Shapiro’s Uncertainty Principles

With the use of Rayleigh-Ritz techniques:

Sharp mean-dispersion principle (Jaming-Powell, JFA, 2007)
Let {fx}xen, be an orthonormal sequence in L2(R). Then for all n € Ny

n

S (B2(R) + A2 (F) + 12 (Fe) + 12 (F)) > (n+1)?
k=0

Using geometric combinatorics:

Sharp Umbrella Theorem (Jaming-Powell, JFA, 2007)

Let ,% € L?(R). If {ex}_; C L2(R) is an orthonormal sequence of
functions s.t. for all 1 < n < N and almost all x, £ € R,

lea(X)] < l@(x)| and |ex(§)] < [(E)],

then N is bounded by a quantity that depends on certain geometric
properties of ¢ and .
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Uncertainty principles and time-frequency analysis

In [BJOJ? we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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In [BJOJ? we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

Motivation

Time-frequency analysis combines the features of f and f into a single
function, a so-called time-frequency representation

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965
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~ Uncertainty principles and time-frequency analysis

In [BJOJ? we consider uncertainty principles of mean-dispersion type
involving time-frequency representations (in particular, the Wigner
distribution).

Motivation |

Time-frequency analysis combines the features of f and f into a single
function, a so-called time-frequency representation

There are several type of time-frequency representations. But uncertainty
principles cannot be avoided and each time-frequency representation
entails its own peculiar version of the uncertainty principle.

Cross-Wigner distribution
For f, g € L?(R),

W(f,g)(x,§&): m/ (X - %)e‘itgdt, x, € €R.
Set W(f) = W(F, ).

2Boiti-Jornet-Oliaro, Mean-dispersion principles and the Wigner transform,
arXiv:2304.06965




Hermite functions

A particular orthonormal basis of L2(R):

Hermite functions

_ 1 —t2/2
hk(t) = WG Hk(t), te R, k e NO,
where Hy is the Hermite polynomial of degree k given by
() = (-1 ef Le? reR
k(t) = o ) .
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Hermite functions

A particular orthonormal basis of L2(R):

Hermite functions

_ 1 —t2/2
hk(t) = WG Hk(t), te R, k e NO,
where Hy is the Hermite polynomial of degree k given by
() = (-1 ef Le? reR
k(t) = o ) .

e hy are eigenfunctions of the Fourier transform (fh, = (—1)%h;)
o {hk}ken, form an orthonormal basis of L2(R)
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Hermite functions

A particular orthonormal basis of L2(R):

Hermite functions

_ 1 —t2/2
hk(t) = WG Hk(t), te R, k e No,
where Hy is the Hermite polynomial of degree k given by
() = (-1 ef Le? reR
k — dtk ) °

e hy are eigenfunctions of the Fourier transform (fh, = (—1)%h;)
o {hk}ken, form an orthonormal basis of L2(R)
@ hy are in the Schwartz class S(R) (and form an absolute basis of S)

D. Jornet Mean-Dispersion Principles and the Wigner Transform



Hermite functions

A particular orthonormal basis of L2(R):

Hermite functions

_ 1 —t2/2
hk(t) = WG Hk(t), te R, k e No,
where Hy is the Hermite polynomial of degree k given by
() = (-1 ef Le? reR
k — dtk ) °

e hy are eigenfunctions of the Fourier transform (fh, = (—1)%h;)

o {hk}ken, form an orthonormal basis of L2(R)

@ hy are in the Schwartz class S(R) (and form an absolute basis of S)
o {hjx:= F YW(h;, hi)}jken, form an orthonormal basis of L2(RR?)
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Hermite functions

A particular orthonormal basis of L2(R):

Hermite functions

_ 1 —t2/2
hk(t) = WG Hk(t), te R, k e No,
where Hy is the Hermite polynomial of degree k given by
() = (-1 ef Le? reR
k — dtk ) °

e hy are eigenfunctions of the Fourier transform (fh, = (—1)%h;)

o {hk}ken, form an orthonormal basis of L2(R)

@ hy are in the Schwartz class S(R) (and form an absolute basis of S)
o {hjx:= F YW(h;, hi)}jken, form an orthonormal basis of L2(RR?)
@ hj i are eigenfunctions of the twisted Laplacian:

Lhjk(y,t) = 2k + Dhjk(y,t), Vi, k€ No

132 112
where L := (Dy - Et) n (Dt n Ey)
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Further properties of Hermite functions

/A1j,k = W(h;, hy) € S(R?), form an orthonormal basis of L2(RR?) J
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Further properties of Hermite functions

/A1j,k = W(h;, hy) € S(R?), form an orthonormal basis of L2(RR?) J

Lhjx = 2k + 1)hjx

for [.= (%DE+X)2+(%DX—£)2
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Further properties of Hermite functions

hj x = W(hj, he) € S(R?), form an orthonormal basis of L2(RR?) J

Lhjx = 2k + 1)hjx

for I.= (%D§+X)2+(%DX—§)2

n

> (LW (hj, hi), W(hj, he)) = (n+1)?,  Vn e N,
k=0
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Further properties of Hermite functions

hj x = W(hj, he) € S(R?), form an orthonormal basis of L2(RR?) J

Lhjx = 2k + 1)hjx

for I.= (%D§+X)2+(%DX—§)2

n

> (LW (hj, hi), W(hj, he)) = (n+1)?,  Vn e N,

k=0
since
n n
D (LW (hy, i), W (hj, i)y = (Lhy i, i)
k=0 k=0
= ((2k + 1)hj 4, h Z(2k+1 (n+1)>
k=0
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Uncertainty principle for the Wigner transform

Theorem (Boiti-Jornet-Oliaro)

Let {fi}ken, in L2(R) with ||fc]| = 1 and {gk }«en, an orthonormal
sequence in L?(R). Then

n

> (LW (fi gk), W(fi, &) > (n+1)°,  Vi,ne N
k=0
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Uncertainty principle for the Wigner transform

Theorem (Boiti-Jornet-Oliaro)

Let {fi}ken, in L2(R) with ||fc]| = 1 and {gk }«en, an orthonormal
sequence in L?(R). Then

n

> (LW (fi gk), W(fi, &) > (n+1)°,  Vi,ne N
k=0

Moreover, (LW(f;, gi), W(f, gi)) uniformly bounded = {gi} must be
finite (while {fx} may be infinite).
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Uncertainty principle for the Wigner transform

Theorem (Boiti-Jornet-Oliaro)

Let {fi}ken, in L2(R) with ||fc]| = 1 and {gk }«en, an orthonormal
sequence in L?(R). Then

n

> (LW (fi gk), W(fi, &) > (n+1)°,  Vi,ne N
k=0

Moreover, (LW(f;, gi), W(f, gi)) uniformly bounded = {gi} must be
finite (while {fx} may be infinite).

Proof: {h;x} = {W(h;, h)} is an orthonormal basis of L2(IR?):

ik)
fngk ZCJ([ )

j4=0

with
B — (W(F;, g), W(hy, o)) = (£, hj) gk, he)
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Then, from [ﬁj)g = (20 + 1)l/'\)j’£:

n

> (LW(f, gk), W Z Z P20 + 1)

k=0 k=0 j,¢=0
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Then, from Lh;, = (2¢ + 1)h; -

n

> (LW(f, g0), W Z Z P20 + 1)
k=0 k=0 j,0=0
n +oo +o00
= D> > WY ek ho)lP(26+1)
k=0 j=0 £=0
| —

=[fil*=1
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Then, from Lh;, = (2¢ + 1)h; -

n

> (LW(f, gk), W Z Z P20 + 1)

k=0 k=0j,6=0
n +oo +oo
= D> > WY ek ho)lP(26+1)
k=0 j=0 (=0
| —
=|Ifi]]?=1
+0co n
= >3 ek ho)P(20 +1)
£=0 k=0
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Then, from Lh;, = (2¢ + 1)h; -

n

> (LW(f, gk), W Z Z P20 + 1)

k=0 k=0 j, =0
n +oo +oo
= D> > WY ek ho)lP(26+1)
k=0 j=0 ¢=0
————
=lIf]12=1
+oo n +oo
= ) ek h)P(2L+1) =) (20 +1
£=0 k=0 £=0
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Then, from Lh;, = (2¢ + 1)h; -

n

> (LW(f, gk), W Z Z P20 + 1)

k=0 k=0 j,0=0
n +oo +oo
= D> > WY ek ho)lP(26+1)
k=0 j=0 =0
N———
=[fl2=1
+00 n “+o00
= ) ek h)P(2L+1) =) (20 +1
£=0 k=0 £=0
Ne7)
+o0o n —4oo
with 0 < oy < [|AJ> =1and Y ar=>"> g h)> =n+1
£=0 k=0 ¢=0
lgl>=1
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n+1—ao+ +an+zaz
£>n+1

D. Jornet Mean-Dispersion Principles and the Wigner Transform



n+1—ao+ +an+zaz

<1 <1 £2nt1
< < .
=R,
@ R,=0:thenay=---=ap=1and ag=0forall £ > n+1,
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting cx = (1 — ax)/Rn
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting ck = (1 — a)/Rn we have ax + ckRy = 1,
o+ -+cn=1
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting ck = (1 — a)/Rn we have ax + ckRy = 1,
o+ -+cn=1

“+oo n
= > a(20+1) =) a2+1)+(0o+... ) Y a(2l+1)
=0 =0 £>n+1
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting ck = (1 — a)/Rn we have ax + ckRy = 1,
o+ -+cn=1

+oo n

= > a(20+1) =) a2+1)+(0o+... ) Y a(2l+1)
=0 =0 0>n+1

= > a2+t Y a(2+1)+...+cn > ar(2+1)
=0 e>nt1 a1 T

>1 = >2n+1
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n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting ck = (1 — a)/Rn we have ax + ckRy = 1,
o+ -+cn=1

+oo n

= > a(20+1) =) a2+1)+(0o+... ) Y a(2l+1)
=0 =0 0>n+1

= > a2+t Y a(2+1)+...+cn > ar(2+1)
=0 e>nt1 a1 T

>1 = >2n+1

> (w4 cRn) - 1+...+(an+cRn) - (2n+1)
N——r N——r

1 1

D. Jornet Mean-Dispersion Principles and the Wigner Transform



n+1—ao+ +an+zaz

<1 < £>n+1
= ——
=R,
@ R,=0:thenay=---=a,=1and ay =0 for all £ > n+ 1, therefore

Z (20 +1) 2(26 +1)=(n+1)°

£=0

@ R, > 0: setting ck = (1 — a)/Rn we have ax + ckRy = 1,
o+ -+cn=1

+oo n

= > a(20+1) =) a2+1)+(0o+... ) Y a(2l+1)
=0 =0 0>n+1

= > a2+t Y a(2+1)+...+cn > ar(2+1)
=0 e>nt1 a1 T

>1 - >2n+1

> (a0 +aRn) - 14...+ (an+ cRy)-(2n+1) = Z(2k+1 )=(n+1)?

1 1 O
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Mean-dispersion principle for the Wigner transform

Corollary (Boiti-Jornet-Oliaro) (same proof with i = gi)
If {fi}ken, is an orthonormal sequence in L2(R), then

n

> (LW(f), W(£)) > (n+1)%,  VneN,, (1)
k=0

and equality holds Vn < ng iff fx = cxhy, ek € C, || =1, 0 < k < no.

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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~ Mean-dispersion principle for the Wigner transform

Corollary (Boiti-Jornet-Oliaro) (same proof with i = gi)

If {fi}ken, is an orthonormal sequence in L2(R), then

n

> (LW(f), W(£)) > (n+1)%,  VneN,, (1)
k=0

and equality holds Vn < ng iff fx = cxhy, ek € C, || =1, 0 < k < no.

Remark

(1) may be interpreted as a mean-dispersion principle since

(LW (fi), W(f) = D%(f) + D2(F) + 12 (f) + 1P (F)

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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Mean-dispersion principle for the Wigner transform

Corollary (Boiti-Jornet-Oliaro) (same proof with i = gi)
If {fi}ken, is an orthonormal sequence in L2(R), then

n

> (LW(f), W(£)) > (n+1)%,  VneN,, (1)
k=0

and equality holds Vn < ng iff fx = cxhy, ek € C, || =1, 0 < k < no.

Remark

(1) may be interpreted as a mean-dispersion principle since

(LW (fi), W(f) = D%(f) + D2(F) + 12 (f) + 1P (F)

We have thus provided an elementary proof of Shapiro's mean-dispersion
principle (Jaming-Powell use in [JP]® the Rayleight-Ritz technique to
estimate eigenvalues of operators).

3P. Jaming, A.M. Powell, Uncertainty principles for orthonormal sequences, J.
Funct. Anal. 243 (2007), 611-630
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Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients
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Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients, since,
denoting by Mju(x1,x2) = xju(x1,x2), Dj = —idy, (M. D for functions of
1 variable), for all f € L?(R) with ||f][;2 = 1:

M;D;W(f),
D;M;W(f), W
MZW(F)

MEW(f),

f)):—%, j=12

)=
)=

(f
(f

bl

WA(F) + $%(F)
WA(F) + 302(F)

o (M?f,f) = p*(f) + A*(f)
o (D?f,f) = p2(f) + A%(F)
o (MW(f), W(F)) = u(f)
o (MW(F), W(f)) = u(f)
o (DiW(f), W(f)) =0, j=1,2
o (DIW(f), W(f)) = 24%(f)
o (DFW(f), W(f)) = 20%(f)
° (

°

° (

°

w(
(
w(f)
w(f)
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_Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients, since,
denoting by Mju(x1,x2) = xju(x1,x2), Dj = —idy, (M. D for functions of
1 variable), for all f € L?(R) with ||f][;2 = 1:

26, F) = 12(F) + AX(F) Example
D?f, f) = () + A%(F) Vn € No:

(M
(
M W(F), W(F)) = n 1)
§M2wif; ngii :ugf; kz_;/(xz+52)|w(fk)|2dXd5>( +21)
(DW(f),W(f)) =0, j=1,2

o/ nd equality holds Vn < ng iff
(DEW(F), W(F)) = 28°(F) fom cehe, & € C, o = 1
(D3W(f), W(f)) = 2A%(f) Y0 < k < no
(MiD;W(f),W(f)) =4, j=1,2
(DIM;W (), W(f))y =—4, j=1,2
(MEW(F) ) = p*(F) + 3 8%(F)
(MEW(f), ) = 12(F) + 34°%(F)

~— —

(f
(f

bl

®© © 6 6 6 6 6 o ¢ o o

w(
(
w(f)
w(f)

“;Z:
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_Different operators

Mean-dispersion principles may be also obtained by different linear
combination of differential operators with polynomial coefficients, since,
denoting by Mju(x1,x2) = xju(x1,x2), Dj = —idy, (M. D for functions of
1 variable), for all f € L?(R) with ||f][;2 = 1:

M;D;W(f),
D;M;W(f), W
MZW(F)

MEW(f),

f)):—%, j=12

)=
)=

If u(fi) = u(h) = 0 then

(* J(x2+€2)|W(f)|’dxd¢ is the trace

(f

bl

2 1A2
H (i)+ 2A (i) of the covariance matrix associ-
p2(F) + 10%(F) | ated to |W()|.

o (MF,f) = 1i(F) + A%(f) Example

o (D*f,f) = u?(f) + A2(F) Vn € No:

o (MW(F), W(F)) = u(f) (g1
o (MW(F), W(F) = u(F) Z/ R
o (DW(F),W(F) =0, j=1, | |

o (D2W(F), W(F)) = 22%(F) A L R

o (DRW(F), W(F)) = 20%(f) V0 < k < o

o

°

o (

°

w(
(
w(f)
w(f)
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Mean-dispersion principle for the Cohen class

Cohen class |

1
Q(f7g):EU*W(fag)a f,gGS,UES/
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Mean-dispersion principle for the Cohen class

Cohen class

1
Q(f7g):EU*W(fag)v fag6870-€8/

Theorem (Boiti-Jornet-Oliaro)

Let {fi }keno, {8k fken, € S(R) be two orthonormal sequences in L?(R).
Then

n

> (LQ(fi &) Q(fi.8)) = (n+1)°,  Vj,n € No,
k=0
for any linear partial differential operator [ of the form

- 2
L(My, Mo, Dy, D7) = (Ml + D> — ) ( - M + Pz)
with P1 = (IDllD)(Dl7 Dz), P2 (ID2P)(D]_, D2) P c R[g, 77],

pu :I_-—l(e—iP(fﬂl))’ Q(f ) = % o * W(f fi)
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Mean-dispersion principle for the Cohen class

Cohen class

1
Q(f7g):EU*W(fag)v fag6870-€8/

Theorem (Boiti-Jornet-Oliaro)

Let {fi }keno, {8k fken, € S(R) be two orthonormal sequences in L?(R).
Then

> (LQ(fi &) Q(fi.8)) = (n+1)°,  Vj,n € No,
k=0
for any linear partial differential operator [ of the form

. 2
L(My,M>, Dy, D) = (Ml + =D, — ) ( — M, + Pz)

with Py = (iD1P)(D1,D2), P> = (iD,P)(D1,D,), P € R[¢, ),
. 1
o=F e PEMY  Qf,f) = —= W(f;, f)

(LQ(f,8), Q(f.8)) = 1*(g) + 1*(8) + A%(g) + A*(8)



Two concrete examples

Example 1
Let P(Dy1, D,) = D1 D;. Then L= M2 + (Dy — M)2.
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Two concrete examples

Example 1
Let P(Dy1, D,) = 1D1D5. Then L= M2 + (Dy — M>)?.Therefore, we
obtain

n

Z<(M12 + (D1 — M2)®)Q(F, fi), Q(Fifi)) > (n+ 1), Vn € Np.
k=1
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Two concrete examples

Example 1
Let P(Dy1, D,) = 1D1D5. Then L= M2 + (Dy — M>)?.Therefore, we
obtain

n

Z<(M12 + (D1 — M2)?)Q(f;, i), Q(Fifk)) > (n+ 1), Vn € Np.
k=1

Example 2
Now, we consider the operator P(M;, M) = M? + M3, and by direct

computations

(M + M)W (F), W(F)) = (M — P1)* + (M2 — P2)*)Q(f), Q(f))
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Two concrete examples

Example 1
Let P(Dy1, D,) = 1D1D5. Then L= M2 + (Dy — M>)?.Therefore, we
obtain

n

Z<(M12 + (D1 — M2)?)Q(f;, i), Q(Fifk)) > (n+ 1), Vn € Np.
k=1

Example 2

Now, we consider the operator P(M;, M) = M? + M3, and by direct
computations

(M + M)W (F), W(F)) = (M — P1)* + (M2 — P2)*)Q(f), Q(f))

Then, in this case, we have, Vn € Ny,

Z"j«(/wl PR+ (Ms — PR)QUE ), QU6 ) > +2 )

k=1
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator. ’
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~ Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)

If {uk}reny, {Vk }ken, are Riesz bases for L2(R), then

oy U5 |2 n+1 )
(LW (uj, vic), W (ui, vie)) > —
2 (LWl v, Wluis v) 2 T | gt g

where U;(uk) = hk, Ua(vk) = hk, [x] denotes the integer part of x.
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)
If {uk}reny, {Vk }ken, are Riesz bases for L2(R), then

n

> (LW (i, vie), W(ui, vie)) >

k=0

|U;1||2{ n+1 }
AR EAER

where U;(uk) = hk, Ua(vk) = hk, [x] denotes the integer part of x.

Corollary (Boiti-Jornet-Oliaro)
If {uk}ken, is a Riesz basis for L2(R) with U(uk) = hg, then

! 1 n+1 2
A2 () +A2(0) + 12 (u) + 12 (0k)) > [ ]
2 (A% (u)+ A58+ () +4%80)) = e | RO
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Mean-dispersion principle for Riesz bases

A Riesz basis in a Hilbert space H is the image of an orthonormal basis
for H under an invertible linear bounded operator.

Theorem (Boiti-Jornet-Oliaro)
If {uk}reny, {Vk }ken, are Riesz bases for L2(R), then

n

> (LW (i, vie), W(ui, vie)) >
k=0

|U;1||2{ n+1 }
AR EAER

where U;(uk) = hk, Ua(vk) = hk, [x] denotes the integer part of x.

Corollary (Boiti-Jornet-Oliaro)
If {uk}ken, is a Riesz basis for L2(R) with U(uk) = hg, then

" A A 1 n4+1 2
2 (A% + A8+ () +12(80) 2 e [w”nuv]
k=0
Remark: If {ux} orthonormal then ||U||=||U~!||=1 and we obtain again

Shapiro’s mean-dispersion principle with the same estimate (n + 1)?
([JP]: 3(n+1)(2n+ 1))
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