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Basic notions and notation

* (2: connected, smooth manifold;

* V C TcQ: involutive [V, V] C V of rank n;

e VI CTiQstue Vs < ulX)=0VX €V,
e N9= AU TcQ), NT=AY A/ V), g=0,1,...,n

C=(Q; A9) —%= C=(Q; A9H)

Co(Qi A7) — C(Q A7),
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Basic notions and notation

* (2: connected, smooth manifold;

* V C TcQ: involutive [V, V] C V of rank n;

e VI CTiQstue Vs < ulX)=0VX €V,
e N9= AU TcQ), NT=AY A/ V), g=0,1,...,n

C>=(Q; A7) —L5 C=2(Q; A7)

Coo(Q; Aq) _d’> COO(Q;Aq+1).

* (C>*(G; N\"),d’): differential complex;
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Basic notions and notation

* (2: connected, smooth manifold;

YV C T involutive [V, V] C V of rank n;
VECTiQstue V) < u(X)=0VX eV
N = NU(TcQ), A= AN (A/VE), g=0,1,....n

C>=(Q; A7) —L5 C=2(Q; A7)

Co(Qi A7) — C(Q A7),

(C>(G; \"),d): differential complex;
H*(Q2; V): associated cohomology space.
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Examples

Example 1

IfV = TcQ, then d’ = d and H*(2; V) corresponds to the De
Rham cohomology.
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Examples

Example 1

IfV = TcQ, then d’ = d and H*(2; V) corresponds to the De
Rham cohomology.

Example 2

If Vis such that V @ V = TcQ, then V defines a compelx
structure, d’ = 0, and H*(2; V) corresponds to the Dolbeault
cohomology.
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More examples

Example 3

If V is such that V N’V = {0}, then V defines an abstract CR
structure, d’ = 95, and H*(Q2; V) corresponds to the tangential
Dolbeault cohomology.
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More examples

Example 3

If V is such that V N’V = {0}, then V defines an abstract CR
structure, d’ = 95, and H*(Q2; V) corresponds to the tangential
Dolbeault cohomology.

Example 4

If Vis such that V = V, then V defines a real foliation of Q,
d’ = d “on the leaves”, and H*(2; V) corresponds to De Rham
cohomology of the leaves.
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Some fundamental questions

e What are the topological or geometrical conditions on €2 or
V so that HI(Q; V) = 0 or dim H(Q2; V) < oo or HY(Q; V)
is a Hausdorff space?
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Some fundamental questions

e What are the topological or geometrical conditions on €2 or
V so that HI(Q; V) = 0 or dim H(Q2; V) < oo or HY(Q; V)
is a Hausdorff space?

¢ Given x € €2, what are the topological or geometrical
conditions so that there is an open neighborhood U C 2 of
x so that HY(U; V) = 0 or dim H(U; V) < oo or HI(U; V)
is a Hausdorff space?
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* g€ G, Ly(x) =gx,Vx € G;
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In the context of Lie groups

* G: connected, compact Lie group and g = Lie(G);

V C T¢G: involutive structure of rank n;
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V is left-invariant:

Vx € G,YV € Vy : (Lg)«(V) € Vgui
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In the context of Lie groups

* G: connected, compact Lie group and g = Lie(G);

V C T¢G: involutive structure of rank n;

g€ G, Ly(x) =9x,Vx € G;

V is left-invariant:

Vx € G,YV € Vy : (Lg)«(V) € Vgui

differential complex: d’ : C=(G; A%) — C=(G; A%)
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In the context of Lie groups

* G: connected, compact Lie group and g = Lie(G);

V C T¢G: involutive structure of rank n;

g€ G, Ly(x) =9x,Vx € G;

V is left-invariant:

Vx € G,YV € Vy : (Lg)«(V) € Vgui

differential complex: d’ : C=(G; A%) — C=(G; A%)

cohomology spaces: HY(G; V)
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Left-invariant vector bundles and
Lie algebras

Fact

Left-invariant involutive structures V C TG are in a one-to-one
correspondence with subalgebras v =V, C gc.
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Left-invariant vector bundles and
Lie algebras

Fact

Left-invariant involutive structures V C TG are in a one-to-one
correspondence with subalgebras v =V, C gc.

Question

How do we use algebraic properties of v to better understand
the analytic properties of V and (C*(G; A*),d")?
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Left-invariant complex

* C*(G; \?): left-invariant sections of C*(G; A\9);
o d'C(G; %) C CP(G; N,

* (C°(G; A"),d): left-invariant complex;
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Left-invariant complex

C°(G; \9): left-invariant sections of C*°(G; A%);
d'CR(GiAT) € C(G AT,
(C(G; A),d): left-invariant complex;

H](G; v): left-invariant cohomology spaces;
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Left-invariant complex

C°(G; \9): left-invariant sections of C*°(G; A%);
d'C(G; A% C CX(G; ATT;
(C(G; A),d): left-invariant complex;

H](G; v): left-invariant cohomology spaces;
* (C*(G;\"),d’) and H/(G; v) depend only on gc and v;
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Left-invariant complex

C°(G; \9): left-invariant sections of C*°(G; A%);
d'C(G; A% C CX(G; ATT;
(C(G; A),d): left-invariant complex;

H](G; v): left-invariant cohomology spaces;

* (CX(G;N\),d’") and H!(G; v) depend only on gc and v;
e algebraic construction via Chevalley-Eilenberg complex:
(C*(v; C),d) = (C*(G: AY), d)

and
H(gc; ) = H (G v).
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A natural homomorphism

Fact

The inclusion C;°(G; A7) € C>*(G; A7) induces a
homomorphism

¢ : H(gc; v) — HY(G;v).
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A natural homomorphism

Fact
The inclusion C;°(G; A7) € C>*(G; A7) induces a
homomorphism

¢ : H(gc; v) — HY(G;v). (1)

Question

What are the conditions to guarantee that the map ¢ is an
isomorphism?
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A natural homomorphism

Fact

The inclusion C;°(G; A7) € C>*(G; A7) induces a
homomorphism

¢ : H(gc; v) — HY(G;v). (1)

Question

What are the conditions to guarantee that the map ¢ is an
isomorphism?

Fact

G compact = ¢ injective.
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Some known cases in which ¢ is
an isomorphism
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Some known cases in which ¢ is
an isomorphism

¢ De Rham cohomology (v = gc¢), Chevalley and Eilenberg
(1948) [1];
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Some known cases in which ¢ is
an isomorphism

¢ De Rham cohomology (v = gc¢), Chevalley and Eilenberg
(1948) [1];

* Dolbeault cohomology of semisimple Lie groups
(v @b = g¢), Pittie (1988) [2];
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Some known cases in which ¢ is
an isomorphism

¢ De Rham cohomology (v = gc¢), Chevalley and Eilenberg
(1948) [1];

* Dolbeault cohomology of semisimple Lie groups
(v @b = g¢), Pittie (1988) [2];

¢ Elliptic structures (v + b = g¢) with certain algebraic and
topological properties, J. (2019, 2021) [3] and [4];
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Some known cases in which ¢ is
an isomorphism

¢ De Rham cohomology (v = gc¢), Chevalley and Eilenberg
(1948) [1];

* Dolbeault cohomology of semisimple Lie groups
(v @b = g¢), Pittie (1988) [2];

¢ Elliptic structures (v + b = g¢) with certain algebraic and
topological properties, J. (2019, 2021) [3] and [4];

¢ Levi-flat CR structures satisfying a division condition,
Jacobowitz and J. (2023) [5];
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Some known cases in which ¢ is
an isomorphism

¢ De Rham cohomology (v = gc¢), Chevalley and Eilenberg
(1948) [1];

* Dolbeault cohomology of semisimple Lie groups
(v @b = g¢), Pittie (1988) [2];

¢ Elliptic structures (v + b = g¢) with certain algebraic and
topological properties, J. (2019, 2021) [3] and [4];

¢ Levi-flat CR structures satisfying a division condition,
Jacobowitz and J. (2023) [5];

¢ Semisimple Elliptic structures; Araudjo (2019) [6].
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An important example in the CR
case
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An important example in the CR
case

* Consider S® ¢ C? with the CR structure inherited from C2.
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An important example in the CR
case

* Consider S® ¢ C? with the CR structure inherited from C2.

* |dentify S* with SU(2) and the CR structure on SU(2) is
left-invariant.
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An important example in the CR
case

* Consider S® ¢ C? with the CR structure inherited from C2.

* |dentify S* with SU(2) and the CR structure on SU(2) is
left-invariant.

e dim HI(SU(2); v) = oo for j = 0, 1.
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An important example in the CR
case

Consider S® ¢ C? with the CR structure inherited from C?.

Identify S® with SU(2) and the CR structure on SU(2) is
left-invariant.

dim HiI(SU(2); v) = oo for j = 0, 1.

The map ¢ cannot be an isomorphism!
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Left-invariant CR structures of
maximal rank

Let V C TcG be a left-invariant CR such that
2rankV +1 =dim G.
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Left-invariant CR structures of
maximal rank

Let V C TcG be a left-invariant CR such that
2rankV +1 =dim G.

Fact

By the classification theorem of Charbonnel-Kalgui [7], there is
a maximal torus T C G such that W; =V, N CT, T defines a
bi-invariant CR structure W = (J,.; W;on T.
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Left-invariant CR structures of
maximal rank

Let V C TcG be a left-invariant CR such that
2rankV +1 =dim G.

Fact

By the classification theorem of Charbonnel-Kalgui [7], there is
a maximal torus T C G such that W; =V, N CT, T defines a
bi-invariant CR structure W = (J,.; W;on T.

Definition
We call W the toric component of V (relative to the maximal

torus T). We usually denote the toric component W by its
corresponding Lie algebra m C Ct with t the Lie algebra of T.
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Division condition
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Division condition

Definition
We say that W (or m) satisfies the divisor condition (DC) if
there exist a basis {L4, ..., L,} for W (or m) and constants

C, p > 0 such that
max|L(€)] = C(1 + [¢)) ™, Ve ez,

with L; being the symbol of the vector field L; and N the
dimension of T.
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Theorem (Jacobowitz and J. (2023) [5])

Let G be a connected, odd-dimensional, and compact Lie
group endowed with a left-invariant Levi-flat CR structure V of
maximal rank. Suppose that WV, the toric part of V, satisfies the
(DC) condition, then there exist an isomorphism

HI(G; V) = HY(T; W).
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Theorem (Jacobowitz and J. (2023) [5])

Let G be a connected, odd-dimensional, and compact Lie
group endowed with a left-invariant Levi-flat CR structure V of
maximal rank. Suppose that WV, the toric part of V, satisfies the
(DC) condition, then there exist an isomorphism

HI(G; V) = HY(T; W).

Consequence

Under the same conditions, the map ¢ is an isomorphism.
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The Elliptic case
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The Elliptic case

Theorem (J.) [8]

Suppose that G is a semisimple Lie group, and let v C g¢ be
elliptic. Let G¢ be the universal complexification of G. If

V = expg.(v) C Gc is closed, then every cohomology class in
H9(G; v) has a left-invariant representative.

Moreover, the inclusion of the left-invariant complex into the
usual one induces an isomorphism in cohomology:

¢ H(gc; v) — HY(G; v).
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|dea of the proof

* H9(gc; v): always finite dimensional;
* G compact and v elliptic = H9(G; v) finite dimensional;

e surjectivity will follow from:

dim H9(gc; v) = dim HY(G; v);
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|dea of the proof

* H9(gc; v): always finite dimensional;

G compact and v elliptic = H9(G; v) finite dimensional;

e surjectivity will follow from:

dim H9(gc; v) = dim HY(G; v);

to show equality we use spectral sequences.
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General Idea of Spectral
Sequences
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e (C*, d): some abstract complex;
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General Idea of Spectral
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e (C*, d): some abstract complex;
* H*(C; d): associated cohomology space;

* (E/",d,): spectral sequence with “limit term” H*(C; d);
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General |dea of Spectral
Sequences

e (C*, d): some abstract complex;
* H*(C; d): associated cohomology space;
* (Ef",d,): spectral sequence with “limit term” H*(C; d);

* Each “page” E;”* gets “closer” to H*(C; d) as r / oc;

Involutive structures on Lie groups | Max Reinhold Jahnke
Page 16/20



General |dea of Spectral
Sequences

e (C*, d): some abstract complex;

H*(C; d): associated cohomology space;

(E; ", d,): spectral sequence with “limit term” H*(C; d);

Each “page” E;"* gets “closer” to H*(C; d) as r / oo;

Some E;, have a “useful” property that you use for some
construction;
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Hochschild-Serre Spectral
Sequence
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Hochschild-Serre Spectral
Sequence

* v C gc elliptic;
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Hochschild-Serre Spectral
Sequence

* v C gc elliptic;

e £ = p N b: the essentially real part of v;
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Hochschild-Serre Spectral
Sequence

* v C gc elliptic;
e £ = p N b: the essentially real part of v;

e (E/"*,d,): Hochschild-Serre Spectral Sequence of
(C*(v; C), d) with respect to £ and limit term H*(g¢; v) [9];
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Hochschild-Serre Spectral
Sequence

* v C gc elliptic;
e £ = p N b: the essentially real part of v;

e (E/"*,d,): Hochschild-Serre Spectral Sequence of
(C*(v; C), d) with respect to £ and limit term H*(g¢; v) [9];

e E* = Hi(¢;C) ® H*(v, t, C) the second page.

Involutive structures on Lie groups | Max Reinhold Jahnke
Page 17/20



Leray Spectral Sequence
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Leray Spectral Sequence
* V = exp G¢(v) closed by hypothesis;
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* V = exp G¢(v) closed by hypothesis;
* Q= G¢/V, projection map 7 : G¢ — ;
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Leray Spectral Sequence
* V = exp G¢(v) closed by hypothesis;
* Q= G¢/V, projection map 7 : G¢ — ;
* K = VN G: closed subgroup of G with Lie(K) = ¢ =0Nb;

Involutive structures on Lie groups | Max Reinhold Jahnke
Page 18/20



Leray Spectral Sequence

* V = exp G¢(v) closed by hypothesis;

* Q= G¢/V, projection map 7 : G¢ — ;

* K = VN G: closed subgroup of G with Lie(K) = ¢ =0Nb;
* Q = G/K, projection map ¢ : G¢c — £2;
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Leray Spectral Sequence

* V = exp G¢(v) closed by hypothesis;

Q = G¢/V, projection map 7 : Gc — Q;

K = V N G: closed subgroup of G with Lie(K) =t = v Nb;
Q2 = G/K, projection map ¢ : G¢c — £;

S sheaf assoc. U — S(U) = {f € C*(U);d'f =0},

U C G open;
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Leray Spectral Sequence

* V = exp G¢(v) closed by hypothesis;

Q = G¢/V, projection map 7 : Gc — Q;

K = V N G: closed subgroup of G with Lie(K) =t = v Nb;
Q2 = G/K, projection map ¢ : G¢c — £;

S sheaf assoc. U — S(U) = {f € C*(U);d'f =0},

U C G open;

H = ,7, H* sheaf obtained from

W C Q— H (o (W); Slo-1(w))-
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Leray Spectral Sequence

* V = exp G¢(v) closed by hypothesis;

Q = G¢/V, projection map 7 : Gc — Q;

K = V N G: closed subgroup of G with Lie(K) =t = v Nb;
Q2 = G/K, projection map ¢ : G¢c — £;

S sheaf assoc. U — S(U) = {f € C*(U);d'f =0},

U C G open;

H = ,7, H* sheaf obtained from

W C Q— H (o (W); Slo-1(w))-

e (E,,d,): Leray spectral sequence with
E}® = H'(Q; H®)
with limit term H*(G; S).
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The Second Page
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The Second Page

* Q: complex structure from ¢ : G — Q given by ¢.(v);
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The Second Page

* Q: complex structure from ¢ : G — Q given by ¢.(v);

e UcCQsmall,®:UxK— V=¢ (U)local
diffeomorphism;
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The Second Page

* Q: complex structure from ¢ : G — Q given by ¢.(v);

e UcCQsmall,®:UxK— V=¢ (U)local
diffeomorphism;

* U x K with the product structure ¢, (v)|y x &
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The Second Page

Q: complex structure from ¢ : G — Q given by ¢.(v);

UcQsmall,®: UxK— V= '(U)local
diffeomorphism;

U x K with the product structure ¢.(v)|y x €

The diffeomorphism satisfies .. (¢.(b) x €) = v|y;
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The Second Page

Q: complex structure from ¢ : G — Q given by ¢.(v);

UcQsmall,®: UxK— V= '(U)local
diffeomorphism;

U x K with the product structure ¢.(v)|y x €

The diffeomorphism satisfies .. (¢.(b) x €) = v|y;

HI(¢7'(U); S|p-1(1y) = O(U) ® HI(K, C);
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The Second Page

Q: complex structure from ¢ : G — Q given by ¢.(v);

UcQsmall,®: UxK— V= '(U)local
diffeomorphism;

U x K with the product structure ¢.(v)|y x €

The diffeomorphism satisfies .. (¢.(b) x €) = v|y;

HI(¢7'(U); S|p-1(1y) = O(U) ® HI(K, C);

E}® = H'(Q; H5) = H'(Q; 0) ® H3(K; C);
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Conclusion
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Conclusion

* Chevalley and Eilenberg (1948): H°(K,C) = H5(¢) [1];
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Conclusion

* Chevalley and Eilenberg (1948): H°(K,C) = H5(¢) [1];

¢ G semisimple (by hypothesis) allows us to apply a theorem
by Bott (1957): H'(Q2,O) = H'(v, ¢,C) [10];
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¢ G semisimple (by hypothesis) allows us to apply a theorem
by Bott (1957): H'(Q2,O) = H'(v, ¢,C) [10];

e E}* = H'(b,t,C) ® H5(¢; C);
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Conclusion

Chevalley and Eilenberg (1948): H*(K,C) = H%(¢) [1];

G semisimple (by hypothesis) allows us to apply a theorem
by Bott (1957): H'(Q2,O) = H'(v, ¢,C) [10];

E}® = H'(v,t,C) ® H3(¢; C);

E,~E, — H(gc; v) = HY(G; v);
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Conclusion

* Chevalley and Eilenberg (1948): H°(K,C) = H5(¢) [1];

¢ G semisimple (by hypothesis) allows us to apply a theorem
by Bott (1957): H'(Q2,O) = H'(v, ¢,C) [10];

e E}* = H'(b,t,C) ® H5(¢; C);

e £, E, — H(gc;v) = HI(G;v);

¢ : H(gc; v) — HI(G; ) is an isomorphism.
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