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Short-time Fourier transform
De�nition

Given x, ω ∈ R, the corresponding translation, modulation and
time-frequency shift operators are de�ned as

Txf(t) = f(t− x), Mωf(t) = e2πiωtf(t), π(x, ω) = MωTx, t ∈ R.

Short-time Fourier transform

The short-time Fourier transform (Short-time Fourier transform)

with window ϕ ∈ L2(R) of the function f ∈ L2(R) is de�ned as:

Vϕf(x, ω) = ⟨f, π(x, ω)ϕ⟩ = F (fϕ(· − x))(ω).
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Short-time Fourier transform
Explaination of the de�nition and why the Gaussian window is �optimal�

t

1

f(t)

ϕ(t)
ϕ(t− x)

x

f(t)ϕ(t− x)

In order to have a good resolution for the STFT, the window function has to
be well localized both in time and frequency. According to Heisenberg's
uncertainty principle, Gaussian functions are optimal in this sense.
Therefore, from now on, we �x the window to be a L2-normalized Gaussian:

φ(t) = 21/4e−πt2 , t ∈ R.
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Time-frequency localization operators
Where do localization operators come from?

With the particular choice of an L2-normalized window, the STFT becomes
an isometry from L2(R) into L2(R2). Therefore, given f ∈ L2(R) with ∥f∥2,
we have ∥Vφf∥2 = 1, so the quantity |Vφf |2 can be seen as a time-frequency
energy density of the function f .

So, if we take Ω ⊂ R2, the quantity∫
Ω
|Vφf(x, ω)|2 dxdω

is the fraction of the energy of f �contained� in Ω. This can be written as∫
Ω
|Vφf(x, ω)|2 dxdω = ⟨χΩVφf,Vφf⟩ = ⟨V∗

φχΩVφf, f⟩.

Therefore, estimates on the norm of the operator V∗
φχΩVφ (i.e. the �rst

eigenvalue) are important because they lead to estimates for the energy
concentration of f .
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Time-frequency localization operators
De�nition

Time-frequency localization operators

Given a function F : R2 → C, the time-frequency localization operator

with window φ and weight F is de�ned as:

LF,φ := V∗
φFVφ : L2(R) → L2(R).

Localization operators are particular instances of pseudo-di�erential
operators. For example, if we use Weyl quantization

(Opw(a)f)(x) =

∫∫
R×R

e2πi(x−y)ωa

(
x+ y

2
, ω

)
f(y) dydω,

then we have that LF,φ = Opw(a) with

a = F ∗ Φ, Φ(x, ω) = 2e−2π(x2+ω2).
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Time-frequency localization operators
Properties

We present some properties of LF,φ:

if F ∈ Lp(R2) with p ∈ [1,+∞] then LF,φ is bounded and
∥LF,φ∥ ≤ ∥F∥p;

if F ∈ L1(R2) then LF,φ is a trace class operator;

if F ∈ L2(R2) then LF,φ is an Hilbert-Schmidt integral operator;

if F ∈ Lp(R2) then LF,φ is in the Schatten p-class Sp;

for more general results about boundedness and compactness see, for
example, [Cordero and Gröchenig 2003] or [Fernández and Galbis 2006];

if F is radially symmetric then the eigenfunctions of LF,φ are Hermite
functions.
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Optimal estimates
The problem

From now on we will present some estimates of the kind

∥LF,φ∥ ≤ C∥F∥B (1)

where B is some Banach space. For example, we already mentioned that
localization operators are bounded when F ∈ Lp(R2) and that
∥LF,φ∥ ≤ ∥F∥p, which is (1) with B = Lp(R2) and C = 1. However, here we
are interested in optimal constant C in (1) and in �nding optimal weight
functions F , for which equality occurs in (1).
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Optimal estimates
Dual version of Lieb's inequality

We start considering the optimal estimate for F ∈ Lp(R2). This can be
obtained through a duality argument using Lieb's inequality (from [Lieb
1978]), that is

∥Vφf∥pp ≤
2

p
∥f∥p2 (2)

for every p ≥ 2 and every f ∈ L2(R), while optimal functions were obtained
by Carlen in [Carlen 1991].
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Optimal estimates
Dual version of Lieb's inequality

Combining previous results leads to the following theorem.

Lieb's inequality - dual form

Let p ∈ (1,+∞). Then, for every F ∈ Lp(R2) it holds

∥LF,φ∥ ≤
(
p− 1

p

) p−1
p

∥F∥p, (3)

with equality if and only if, for some c ∈ C and some z0 = (x0, ω0) ∈ R2,

F (z) = ce
− π

p−1
|z−z0|2 , z = (x, ω) ∈ R2. (4)
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Optimal estimates
Faber-Krahn inequality for the STFT

In [Nicola and Tilli 2022] the following theorem for the STFT was proved.

Faber-Krahn inequality for the STFT - Nicola and Tilli 2022

For every subset Ω ⊂ R2 with �nite measure and for every f ∈ L2(R) \ {0},
it holds ∫

Ω |Vφf(x, ω)|2 dxdω
∥f∥22

≤ 1− e−|Ω|,

with equality if and only if Ω is a ball and

f(t) = ce2πiω0tφ(t− x0),

where c ∈ C \ {0} and (x0, ω0) is the center of Ω.
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Optimal estimates
Faber-Krahn inequality for the STFT

An immediate corollary of previous theorem is the following estimate on the
norm of localization operators whose weight function is a characteristic
function.

Faber-Krahn inequality for the STFT - dual form

Let Ω ⊂ R2 be �nite and measurable. Then, letting LΩ,φ = V∗
φχΩVφ, it

holds:
∥LΩ,φ∥ ≤ 1− e−|Ω|,

with equality if and only if Ω is equivalent to a ball.
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Optimal estimates
The case F ∈ Lp ∩ L∞

Theorem - Nicola and Tilli 2023

Let p ∈ (1,+∞) and let F ∈ Lp(R2) ∩ L∞(R2) with F ̸= 0.

1 If ∥F∥p/∥F∥∞ ≤ (p− 1)/p estimate (3) is still optimal.

2 If ∥F∥p/∥F∥∞ > (p− 1)/p then

∥LF,φ∥ ≤

(
1− e(p−1)/p−(∥F∥p/∥F∥∞)p

p

)
∥F∥∞,

with equality if and only if, for some θ ∈ R, some z0 = (x0, ω0) ∈ R2

and some λ > ∥F∥∞,

F (z) = eiθ min{λe−
π

p−1
|z−z0|2 , ∥F∥∞}, z ∈ R2. (5)

F. Riccardi

Recent results on the norm of localization operators



STFT Localization operators Optimal estimates Possible research directions References

Optimal estimates
The case F ∈ Lp ∩ L∞

Theorem - Nicola and Tilli 2023

Let p ∈ (1,+∞) and let F ∈ Lp(R2) ∩ L∞(R2) with F ̸= 0.

1 If ∥F∥p/∥F∥∞ ≤ (p− 1)/p estimate (3) is still optimal.

2 If ∥F∥p/∥F∥∞ > (p− 1)/p then

∥LF,φ∥ ≤

(
1− e(p−1)/p−(∥F∥p/∥F∥∞)p

p

)
∥F∥∞,

with equality if and only if, for some θ ∈ R, some z0 = (x0, ω0) ∈ R2

and some λ > ∥F∥∞,

F (z) = eiθ min{λe−
π

p−1
|z−z0|2 , ∥F∥∞}, z ∈ R2. (5)

F. Riccardi

Recent results on the norm of localization operators



STFT Localization operators Optimal estimates Possible research directions References

Optimal estimates
The case F ∈ Lp ∩ Lq

Theorem - R. 2023

Let p, q ∈ (1,+∞) and let F ∈ Lp(R2) ∩ Lq(R2) with F ̸= 0. Then, there
exist two constants

r1 =

(
q − 1

q

) 1
q
− 1

p
(
p

q

) 1
p

, r2 =

(
p− 1

p

) 1
q
− 1

p
(
p

q

) 1
q

,

where r1 ≤ r2, such that:

1 if ∥F∥q/∥F∥p ≤ r1 or ∥F∥q/∥F∥p ≥ r2, then estimate (3), with p and q
respectively, is still optimal;
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Optimal estimates
The case F ∈ Lp ∩ Lq

Theorem - R. 2023

2 if r1 < ∥F∥q/∥F∥p < r2 then

∥LF,φ∥ ≤ T − λ1T
p/p− λ2T

q/q, (6)

where λ1, λ2 > 0 are uniquely determined by

p

∫ +∞

0
tp−1u(t) dt = Ap, q

∫ +∞

0
tq−1u(t) dt = Bq,

with
u(t) = max{− log(λ1t

p−1 + λ2t
q−1), 0} (7)

and T > 0 is such that λ1T
p−1 + λ2T

q−1 = 1. Finally, equality in (6) is
achieved if and only if F is (up to translations) radially symmetric and
has u as distribution function.

F. Riccardi

Recent results on the norm of localization operators



STFT Localization operators Optimal estimates Possible research directions References

Optimal estimates
Idea of the proof

The �rst step is to rewrite the problem in the form of a constrained
optimization problem:

Given A,B > 0 and p, q ∈ (1,+∞) �nd the best constant
C = C(p, q, A,B) > 0 such that

∥LF,φ∥ ≤ C

for every F satisfying the following constraints:

∥F∥p ≤ A, ∥F∥q ≤ B. (8)
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Optimal estimates
Idea of the proof

Then, we need the following theorem from [Nicola and Tilli 2023].

Theorem - Nicola and Tilli 2023

Let F ∈ Lp(R2) with p ∈ [1,+∞) and let µ(t) = |{|F | > t}| the distribution
function of |F |. Then, it holds

∥LF,φ∥ ≤
∫ +∞

0
(1− e−µ(t)) dt, (9)

with equality if and only if F is (up to translations) radially symmetric.

Since this estimate is sharp, we should seek for sharp upper bounds for the
right-hand side.
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Optimal estimates
Idea of the proof

The corresponding variational problem is the following

sup
v∈C

∫ +∞

0
(1− e−v(t)) dt,

where C is the set of non-increasing functions v : (0,+∞) → [0,+∞) that
satisfy

p

∫ +∞

0
tp−1v(t) dt ≤ Ap, q

∫ +∞

0
tq−1v(t) dt ≤ Bq. (10)
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Optimal estimates
Idea of the proof

Once existence of a solution is proved (Helly's selection theorem), one can
show that optimal functions are of the kind

u(t) =

{
− log

(
λ1t

p−1 + λ2t
q−1
)
, t ∈ (0,M)

0, t ∈ (M,+∞)

for some M > 0 and λ1, λ2 ∈ R.

u(t)

t
M

Example of optimal function
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Optimal estimates
Idea of the proof

Once that explicit expression of optimal functions is known, one can show
that these achieve equality in the constraints, that the multipliers λ1 and λ2

are both positive and that the extremal functions are indeed continuous.

Lastly, one has to prove that multipliers are unique, which means that the
system 

f(λ1, λ2) := p

∫ T

0
tp−1u(t;λ1, λ2) dt = Ap

g(λ1, λ2) := q

∫ T

0
tq−1u(t;λ1, λ2) dt = Bq

has a unique solution or, equivalently, that the level sets {f = Ap} and
{g = Bq} intersect in only a point.
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Optimal estimates
Idea of the proof

Thanks to the implicit function theorem one can show that these level sets
can be seen as the graph of two functions, ϕ and γ, respectively. The proof
is complete thanks to the following facts:

the condition r1 < B/A < r2 is equivalent to the fact ϕ− γ changes sign
in its domain;

whenever ϕ and γ intersect, ϕ′ < γ′.
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Optimal estimates
Optimal weights for A = B = 1, p = 1.5, q varies from 1.5 to 40
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An immediate corollary: Lieb's inequality for Lp + Lq

Given f ∈ L2(R) and p, q ∈ (1,+∞) one has

∥|Vφf |2∥Lp+Lq = max
∥F∥(Lp+Lq)′≤1

|⟨F, |Vφ|2⟩|

= max
∥F∥p′≤1, ∥F∥q′≤1

|⟨F, |Vφf |2⟩|

= max
∥F∥p′≤1, ∥F∥q′≤1

|⟨LF,φf, f⟩|

≤

(
sup

∥F∥p′≤1,∥F∥q′≤1
∥LF,φ∥

)
∥f∥22

so, using the previous theorem, we obtain an optimal estimate and the
characterization of those f that achieve equality.
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Possible research directions

The research on such optimal estimate is very active (see, for example,
[Kulikov 2022] or [Frank 2023]). Here are some possible directions for
further research:

estimates for more general spaces (e.g. modulation spaces);

estimates for other operator norms (e.g. Hilbert-Schmidt norm);

quantitative version of the estimate;

estimates for other types of localization operators (e.g. wavelet
localization operators).
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