# Parametric $\psi$ do with point-singularity in the covariable 

Jörg Seiler<br>Università degli Studi di Torino

28. November 2023

## General aim

Describe a calculus of parameter-dependent $\psi$ do that allows the construction of a parametrix for Toeplitz type $\psi$ do which coincides with the inverse for large values of the parameter.

As a by-product we obtain a calculus that allows to recover the Grubb-Seeley resolvent trace expansion.

We deal with operators on $\mathbb{R}^{n}$ or closed Riemannian manifolds (of dimension $\geq 2$ ).

## General aim

Describe a calculus of parameter-dependent $\psi$ do that allows the construction of a parametrix for Toeplitz type $\psi$ do which coincides with the inverse for large values of the parameter.

As a by-product we obtain a calculus that allows to recover the Grubb-Seeley resolvent trace expansion.

We deal with operators on $\mathbb{R}^{n}$ or closed Riemannian manifolds (of dimension $\geq 2$ ).

## Important notation:

- Parameter $\mu \in \overline{\mathbb{R}}_{+}=[0,+\infty)$,
- Covariable $\xi \in \mathbb{R}^{n}$ (to variable $x$ ).

For the most part of the talk we consider operators with constant coefficients. The results hold in general for operators with smooth (bounded) coefficients.

## Resolvents of differential operators

Let $A=\sum_{|\alpha| \leq d} a_{\alpha} D_{x}^{\alpha}$. Then $\mu^{d}-A$ has symbol

$$
a(\xi, \mu)=\mu^{d}-\sum_{|\alpha| \leq d} a_{\alpha} \xi^{\alpha}, \quad a_{d}(\xi, \mu)=\mu^{d}-\sum_{|\alpha|=d} a_{\alpha} \xi^{\alpha} .
$$

## Resolvents of differential operators

Let $A=\sum_{|\alpha| \leq d} a_{\alpha} D_{x}^{\alpha}$. Then $\mu^{d}-A$ has symbol

$$
a(\xi, \mu)=\mu^{d}-\sum_{|\alpha| \leq d} a_{\alpha} \xi^{\alpha}, \quad a_{d}(\xi, \mu)=\mu^{d}-\sum_{|\alpha|=d} a_{\alpha} \xi^{\alpha} .
$$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^{d}, d \in \mathbb{Z}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}
$$

## Resolvents of differential operators

Let $A=\sum_{|\alpha| \leq d} a_{\alpha} D_{x}^{\alpha}$. Then $\mu^{d}-A$ has symbol

$$
a(\xi, \mu)=\mu^{d}-\sum_{|\alpha| \leq d} a_{\alpha} \xi^{\alpha}, \quad a_{d}(\xi, \mu)=\mu^{d}-\sum_{|\alpha|=d} a_{\alpha} \xi^{\alpha} .
$$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^{d}, d \in \mathbb{Z}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}
$$

$a(\xi, \mu) \in S^{d}$ is polyhomogeneous/classical if

$$
a \sim \sum_{\ell} \chi(\xi, \mu) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu) \neq 0$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.

## Resolvents of differential operators

Let $A=\sum_{|\alpha| \leq d} a_{\alpha} D_{x}^{\alpha}$. Then $\mu^{d}-A$ has symbol

$$
a(\xi, \mu)=\mu^{d}-\sum_{|\alpha| \leq d} a_{\alpha} \xi^{\alpha}, \quad a_{d}(\xi, \mu)=\mu^{d}-\sum_{|\alpha|=d} a_{\alpha} \xi^{\alpha} .
$$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^{d}, d \in \mathbb{Z}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}
$$

$a(\xi, \mu) \in S^{d}$ is polyhomogeneous/classical if

$$
a \sim \sum_{\ell} \chi(\xi, \mu) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu) \neq 0$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.
Remark: $S^{-\infty}=\cap_{\ell} S^{-\ell}=\mathscr{S}\left(\overline{\mathbb{R}}_{+} \times \mathbb{R}^{n}\right)$

## Resolvents of differential operators

Theorem: $a \in S^{d}$ elliptic $\Rightarrow$ Exists $b \in S^{-d}$ such that

$$
a(D, \mu) b(D, \mu)=b(D, \mu) a(D, \mu)=1, \quad|\mu| \gg 1
$$

## Resolvents of differential operators

Theorem: $a \in S^{d}$ elliptic $\Rightarrow$ Exists $b \in S^{-d}$ such that

$$
a(D, \mu) b(D, \mu)=b(D, \mu) a(D, \mu)=1, \quad|\mu| \gg 1
$$

Observation: Above approach fails for $\psi$ do: If

$$
a(\xi, \mu)=\mu^{d}-a(\xi), \quad a(\xi) \in S^{d}\left(\mathbb{R}^{n}\right)
$$

then, in general, for $|\alpha|>d$,

$$
\left.\left|D_{\xi}^{\alpha} a(\xi, \mu)\right| \lesssim\langle\xi\rangle^{d-|\alpha|} \quad \text { (weaker estimate! }\right)
$$

## Resolvents of differential operators

Theorem: $a \in S^{d}$ elliptic $\Rightarrow$ Exists $b \in S^{-d}$ such that

$$
a(D, \mu) b(D, \mu)=b(D, \mu) a(D, \mu)=1, \quad|\mu| \gg 1
$$

Observation: Above approach fails for $\psi$ do: If

$$
a(\xi, \mu)=\mu^{d}-a(\xi), \quad a(\xi) \in S^{d}\left(\mathbb{R}^{n}\right)
$$

then, in general, for $|\alpha|>d$,

$$
\left|D_{\xi}^{\alpha} a(\xi, \mu)\right| \lesssim\langle\xi\rangle^{d-|\alpha|} \quad \text { (weaker estimate!) }
$$

There is a "breaking point" for the estimates, where one changes from $\langle\xi, \mu\rangle$ to $\langle\xi\rangle$.

Grubb's class and regularity number Definition (Grubb 1980's): $a(\xi, \mu) \in S_{1,0}^{d, \nu}, d \in \mathbb{Z}, \nu \in \mathbb{R}$, if $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}+\langle\xi\rangle^{\nu-|\alpha|}\langle\xi, \mu\rangle^{d-\nu-j}$.

## Grubb's class and regularity number

Definition (Grubb 1980's): $a(\xi, \mu) \in S_{1,0}^{d, \nu}, d \in \mathbb{Z}, \nu \in \mathbb{R}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}+\langle\xi\rangle^{\nu-|\alpha|}\langle\xi, \mu\rangle^{d-\nu-j}
$$

$S^{d, \nu}$ subclass of polyhomogeneous symbols, i.e.,

$$
a \sim \sum_{\ell} \chi(\xi) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell, \nu-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu), \xi \neq 0$, and satisfying estimates with $\langle\cdot\rangle$ replaced by $|\cdot|$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.

## Grubb's class and regularity number

Definition (Grubb 1980's): $a(\xi, \mu) \in S_{1,0}^{d, \nu}, d \in \mathbb{Z}, \nu \in \mathbb{R}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}+\langle\xi\rangle^{\nu-|\alpha|}\langle\xi, \mu\rangle^{d-\nu-j} .
$$

$S^{d, \nu}$ subclass of polyhomogeneous symbols, i.e.,

$$
a \sim \sum_{\ell} \chi(\xi) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell, \nu-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu), \xi \neq 0$, and satisfying estimates with $\langle\cdot\rangle$ replaced by $|\cdot|$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.
Remark: $\nu$ is the "breaking point" called regularity number.

## Grubb's class and regularity number

Definition (Grubb 1980's): $a(\xi, \mu) \in S_{1,0}^{d, \nu}, d \in \mathbb{Z}, \nu \in \mathbb{R}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}+\langle\xi\rangle^{\nu-|\alpha|}\langle\xi, \mu\rangle^{d-\nu-j} .
$$

$S^{d, \nu}$ subclass of polyhomogeneous symbols, i.e.,

$$
a \sim \sum_{\ell} \chi(\xi) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell, \nu-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu), \xi \neq 0$, and satisfying estimates with $\langle\cdot\rangle$ replaced by $|\cdot|$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.
Remark: $\nu$ is the "breaking point" called regularity number.
$-S^{d-\infty, \nu-\infty}=\cap_{\ell} S^{d-\ell, \nu-\ell}=S^{d-\nu}\left(\overline{\mathbb{R}}_{+}, \mathscr{S}\left(\mathbb{R}_{\xi}^{n}\right)\right)$.

## Grubb's class and regularity number

Definition (Grubb 1980's): $a(\xi, \mu) \in S_{1,0}^{d, \nu}, d \in \mathbb{Z}, \nu \in \mathbb{R}$, if

$$
\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim\langle\xi, \mu\rangle^{d-|\alpha|-j}+\langle\xi\rangle^{\nu-|\alpha|}\langle\xi, \mu\rangle^{d-\nu-j} .
$$

$S^{d, \nu}$ subclass of polyhomogeneous symbols, i.e.,

$$
a \sim \sum_{\ell} \chi(\xi) a_{d-\ell}, \quad a_{d-\ell} \in S_{\text {hom }}^{d-\ell, \nu-\ell}
$$

with $a_{d-\ell}$ positively homogeneous of degree $d-\ell$ in $(\xi, \mu), \xi \neq 0$, and satisfying estimates with $\langle\cdot\rangle$ replaced by $|\cdot|$.
(Homogeneous) principal symbol: $\sigma(a)=a_{d}$.
Remark: $\nu$ is the "breaking point" called regularity number.

- $S^{d-\infty, \nu-\infty}=\cap_{\ell} S^{d-\ell, \nu-\ell}=S^{d-\nu}\left(\overline{\mathbb{R}}_{+}, \mathscr{S}\left(\mathbb{R}_{\xi}^{n}\right)\right)$.
- $S^{d}=S^{d,+\infty}=\cap_{\nu \geq 0} S^{d, \nu} \quad$ (infinite regularity)


## Grubb's class and regularity number

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu>0, \sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

## Grubb's class and regularity number

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu>0, \sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

Definition: $a \in S^{d, \nu}, \nu>0$, is elliptic if $\sigma(a)$ never vanishes for $(\xi, \mu) \neq 0$.

Theorem: $a \in S^{d, \nu}, \nu>0$, elliptic $\Rightarrow$ Exists $b \in S^{-d, \nu}$ such that

$$
a(D, \mu) b(D, \mu)=b(D, \mu) a(D, \mu)=1, \quad|\mu| \gg 1
$$

## Grubb's class and regularity number

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu>0, \sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

Definition: $a \in S^{d, \nu}, \nu>0$, is elliptic if $\sigma(a)$ never vanishes for $(\xi, \mu) \neq 0$.

Theorem: $a \in S^{d, \nu}, \nu>0$, elliptic $\Rightarrow$ Exists $b \in S^{-d, \nu}$ such that

$$
a(D, \mu) b(D, \mu)=b(D, \mu) a(D, \mu)=1, \quad|\mu| \gg 1
$$

Application: Resolvent of $\psi$ do of positive integer order $d$. In this case the regularity number is $\nu=d$.

Note: No concept of ellipticity for regularity number $\nu \leq 0$.

## $\psi$ do of Toeplitz type

Aim: We want to construct the inverse of $\psi$ do of the form

$$
P_{1}\left(\mu^{d}-a(D)\right) P_{0}: P_{0}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right) \longrightarrow P_{1}\left(H^{s-d}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right)
$$

with $P_{j}=p_{j}(D)$ zero-order projections, $a(\xi) \in S^{d}\left(\mathbb{R}^{n}, \mathbb{C}^{M \times M}\right)$.

## $\psi$ do of Toeplitz type

Aim: We want to construct the inverse of $\psi$ do of the form

$$
P_{1}\left(\mu^{d}-a(D)\right) P_{0}: P_{0}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right) \longrightarrow P_{1}\left(H^{s-d}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right)
$$

with $P_{j}=p_{j}(D)$ zero-order projections, $a(\xi) \in S^{d}\left(\mathbb{R}^{n}, \mathbb{C}^{M \times M}\right)$.

Problem: Here, the regularity number is $\nu=0$.
Cannot use Grubb's class $S^{d, 0}$.

## Some background

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.
Then "elliptic $=$ parametrix $=$ Fredholm".

## Some background

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.
Then "elliptic $=$ parametrix $=$ Fredholm".
The BdM calculus is made by operators of the form

$$
\left(\begin{array}{ll}
A & K \\
T & Q
\end{array}\right): \begin{gathered}
H^{s}\left(M, E_{0}\right) \\
\\
\\
\\
H^{s}\left(\partial M, F_{0}\right)
\end{gathered} \gg \begin{gathered}
H^{s-\mu}\left(M, E_{1}\right) \\
H^{s-\mu}\left(\partial M, F_{1}\right)
\end{gathered}
$$

## Some background

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.
Then "elliptic $=$ parametrix $=$ Fredholm".
The BdM calculus is made by operators of the form

$$
\left(\begin{array}{cc}
A & K \\
T & Q
\end{array}\right): \begin{gathered}
H^{s}\left(M, E_{0}\right) \\
\\
\\
H^{s}\left(\partial M, F_{0}\right)
\end{gathered} \longrightarrow \begin{gathered}
H^{s-\mu}\left(M, E_{1}\right) \\
H^{s-\mu}\left(\partial M, F_{1}\right)
\end{gathered}
$$

Observation: Not every elliptic differential operator $A$ can be completed to an elliptic bvp $\binom{A}{T}$ in BdM's calculus.

## Some background

Example: $D \subset \mathbb{R}^{2}$ unit-disc and

$$
\binom{\bar{\partial}}{\left.P \circ \cdot\right|_{\partial D}}=\left(\begin{array}{cc}
1 & 0 \\
0 & P
\end{array}\right)\binom{\bar{\partial}}{\left.\cdot\right|_{\partial D}}: H^{s}(D) \longrightarrow \begin{gathered}
H^{s-1}(D) \\
P\left(H^{s-1 / 2}(\partial D)\right)
\end{gathered}
$$

with Calderon-projector $P \in L^{0}(\partial D)$ is Fredholm (isomorphism).

## Some background

Example: $D \subset \mathbb{R}^{2}$ unit-disc and

$$
\binom{\bar{\partial}}{\left.P \circ \cdot\right|_{\partial D}}=\left(\begin{array}{cc}
1 & 0 \\
0 & P
\end{array}\right)\binom{\bar{\partial}}{\left.\cdot\right|_{\partial D}}: H^{s}(D) \longrightarrow \begin{gathered}
H^{s-1}(D) \\
P\left(H^{s-1 / 2}(\partial D)\right)
\end{gathered}
$$

with Calderon-projector $P \in L^{0}(\partial D)$ is Fredholm (isomorphism).
Schulze, Shatalov, Sternin (~ 2000): Systematic study of ellipticity and Fredholm property of operators

$$
\left.\begin{array}{|c}
\hline A \\
P_{1} T
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & P_{1}
\end{array}\right)\left(\begin{array}{cc}
A & K \\
T & Q
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & P_{0}
\end{array}\right),
$$

with zero-order projections $P_{j}$ on the boundary. This results in an "extended" BdM calculus.

## Some background

Example: The Stokes operator on a bounded domain $\Omega \subset \mathbb{R}^{n}$ is

$$
\left(\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right)\binom{\Delta}{\left.\cdot\right|_{\partial \Omega}} P: H_{\sigma}^{s}\left(\Omega, \mathbb{C}^{n}\right) \longrightarrow \begin{gathered}
H_{\sigma}^{s-2}\left(\Omega, \mathbb{C}^{n}\right) \\
H_{\nu}^{s-1 / 2}\left(\partial \Omega, \mathbb{C}^{n}\right)
\end{gathered}
$$

with the solenoidal vector-fields on $\Omega$ and "tangential vector-fields" on the boundary.
$P$ is the Helmholtz projection, $Q$ "projection along normal".

## Some background

Question: Given some kind of "calculus of $\psi$ do", what can we say about Toeplitz type operators

$$
A^{\prime}=P_{1} A P_{0}
$$

where $P_{j}=P_{j}^{2}$ are zero-order projections from the calculus?

## Some background

Question: Given some kind of "calculus of $\psi$ do", what can we say about Toeplitz type operators

$$
A^{\prime}=P_{1} A P_{0}
$$

where $P_{j}=P_{j}^{2}$ are zero-order projections from the calculus?
Theorem: If the calculus is "nice" i.e.,

- ellipticity, existence of a parametrix, and Fredholm property are equivant to the invertibility of principal symbol(s),
- the calculus is closed under taking the formal adjoint, then all descents to the Toeplitz calculus, using principal symbol(s)

$$
\sigma\left(A^{\prime}\right)=\sigma\left(P_{1}\right) \sigma(A) \sigma\left(P_{0}\right): \text { range } \sigma\left(P_{0}\right) \longrightarrow \text { range } \sigma\left(P_{1}\right)
$$

## A "geometric" description of $S^{d, \nu}$

Homogeneous components:
Hörmander: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}, \quad(\xi, \mu) \neq 0$.
Grubb: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}+|\xi|^{\nu-|\alpha|}|\xi, \mu|^{d-\nu-j}, \quad \xi \neq 0$.

## A "geometric" description of $S^{d, \nu}$

Homogeneous components:
Hörmander: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}, \quad(\xi, \mu) \neq 0$.
Grubb: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}+|\xi|^{\nu-|\alpha|}|\xi, \mu|^{d-\nu-j}, \quad \xi \neq 0$.
Positively homogeneous fctns in $(\xi, \mu)$ of degree $d$ are of the form

$$
a(\xi, \mu)=|(\xi, \mu)|^{d} \widehat{a}\left(\frac{(\xi, \mu)}{|(\xi, \mu)|}\right) .
$$

## A "geometric" description of $S^{d, \nu}$

Homogeneous components:
Hörmander: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}, \quad(\xi, \mu) \neq 0$.
Grubb: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}+|\xi|^{\nu-|\alpha|}|\xi, \mu|^{d-\nu-j}, \quad \xi \neq 0$.
Positively homogeneous fctns in $(\xi, \mu)$ of degree $d$ are of the form

$$
a(\xi, \mu)=|(\xi, \mu)|^{d} \widehat{a}\left(\frac{(\xi, \mu)}{|(\xi, \mu)|}\right) .
$$

Remark: If $\mathbb{S}_{+}^{n}=\left\{\left.(\xi, \mu)| | \xi\right|^{2}+\mu^{2}=1, \mu \geq 0\right\}$ then

$$
S_{h o m}^{d-\ell} \cong C^{\infty}\left(\mathbb{S}_{+}^{n}\right)
$$

## A "geometric" description of $S^{d, \nu}$

Homogeneous components:
Hörmander: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}, \quad(\xi, \mu) \neq 0$.
Grubb: $\left|D_{\xi}^{\alpha} D_{\mu}^{j} a(\xi, \mu)\right| \lesssim|\xi, \mu|^{d-|\alpha|-j}+|\xi|^{\nu-|\alpha|}|\xi, \mu|^{d-\nu-j}, \quad \xi \neq 0$.
Positively homogeneous fctns in $(\xi, \mu)$ of degree $d$ are of the form

$$
a(\xi, \mu)=|(\xi, \mu)|^{d} \widehat{a}\left(\frac{(\xi, \mu)}{|(\xi, \mu)|}\right) .
$$

Remark: If $\mathbb{S}_{+}^{n}=\left\{\left.(\xi, \mu)| | \xi\right|^{2}+\mu^{2}=1, \mu \geq 0\right\}$ then

$$
S_{h o m}^{d-\ell} \cong C^{\infty}\left(\mathbb{S}_{+}^{n}\right)
$$

Question: To which space corresponds $S_{\text {hom }}^{d-\ell, \nu-\ell}$ ?

## A "geometric" description of $S^{d, \nu}$



Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$
r=r(\xi, \mu)=|\xi|, \phi=\phi(\xi, \mu)=\xi /|\xi|
$$

## A "geometric" description of $S^{d, \nu}$



Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$
r=r(\xi, \mu)=|\xi|, \phi=\phi(\xi, \mu)=\xi /|\xi|
$$

Definition: $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\hat{a}$ is smooth on $\widehat{\mathbb{S}}_{+}^{n}$ and $\left(r \partial_{r}\right)^{j} \partial_{\phi}^{\alpha} \widehat{a}$ is bounded for all orders $j, \alpha$.

## A "geometric" description of $S^{d, \nu}$



Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$
r=r(\xi, \mu)=|\xi|, \phi=\phi(\xi, \mu)=\xi /|\xi|
$$

Definition: $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\hat{a}$ is smooth on $\widehat{\mathbb{S}}_{+}^{n}$ and $\left(r \partial_{r}\right)^{j} \partial_{\phi}^{\alpha} \widehat{a}$ is bounded for all orders $j, \alpha$.

Theorem: $S_{\text {hom }}^{d, \nu} \cong C^{\infty}\left(\mathbb{S}_{+}^{n}\right)+r^{\nu} C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right) \quad$ (regularity $=$ weight)

## A "geometric" description of $S^{d, \nu}$



Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$
r=r(\xi, \mu)=|\xi|, \phi=\phi(\xi, \mu)=\xi /|\xi|
$$

Definition: $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\hat{a}$ is smooth on $\widehat{\mathbb{S}}_{+}^{n}$ and $\left(r \partial_{r}\right)^{j} \partial_{\phi}^{\alpha} \widehat{a}$ is bounded for all orders $j, \alpha$.

Theorem: $S_{\text {hom }}^{d, \nu} \cong C^{\infty}\left(\mathbb{S}_{+}^{n}\right)+r^{\nu} C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right) \quad$ (regularity $=$ weight)
Definition: $\widetilde{S}_{h o m}^{d, \nu} \cong r^{\nu} C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right) . \rightsquigarrow$ Yields full class $\widetilde{S}^{d, \nu}$.
Theorem: $S^{d, \nu}=S^{d}+\widetilde{S}^{d, \nu}$.
In particular: $S^{d, \nu}=\widetilde{S}^{d, \nu}$ whenever $\nu \leq 0$.

## Symbols with Taylor asymptotics

Remark: $\widetilde{S}_{h o m}^{d, 0} \cong C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ is not closed under taking inverses.

## Symbols with Taylor asymptotics

Remark: $\widetilde{S}_{h o m}^{d, 0} \cong C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ is not closed under taking inverses.
Definition: $\widehat{a} \in C_{T}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ and

$$
\widehat{a}(r, \phi) \sim_{r \rightarrow 0+} \sum_{k \geq 0} r^{k} \widehat{a}_{k}(\phi)
$$

## Symbols with Taylor asymptotics

Remark: $\widetilde{S}_{h o m}^{d, 0} \cong C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ is not closed under taking inverses.
Definition: $\widehat{a} \in C_{T}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ and

$$
\widehat{a}(r, \phi) \sim_{r \rightarrow 0+} \sum_{k \geq 0} r^{k} \widehat{a}_{k}(\phi)
$$

Lemma: Let $\widehat{a} \in r^{\nu} C_{\mathbf{T}}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$. Then $1 / \widehat{a} \in r^{-\nu} C_{\mathbf{T}}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ iff

- $\widehat{a}$ never vanishes on $\widehat{\mathbb{S}}_{+}^{n}$ and
- $\widehat{a}_{0}$ never vanishes on $\mathbb{S}^{n-1}$


## Symbols with Taylor asymptotics

Remark: $\widetilde{S}_{h o m}^{d, 0} \cong C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ is not closed under taking inverses.
Definition: $\widehat{a} \in C_{T}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ if $\widehat{a} \in C_{B}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ and

$$
\widehat{a}(r, \phi) \sim_{r \rightarrow 0+} \sum_{k \geq 0} r^{k} \widehat{a}_{k}(\phi)
$$

Lemma: Let $\widehat{a} \in r^{\nu} C_{\mathbf{T}}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$. Then $1 / \widehat{a} \in r^{-\nu} C_{\mathbf{T}}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$ iff

- $\widehat{a}$ never vanishes on $\widehat{\mathbb{S}}_{+}^{n}$ and
- $\widehat{a}_{0}$ never vanishes on $\mathbb{S}^{n-1}$

Definition: $\widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu} \cong r^{\nu} C_{\mathbf{T}}^{\infty}\left(\widehat{\mathbb{S}}_{+}^{n}\right)$.

## Symbols with Taylor asymptotics

We could implement a symbol class $\widetilde{S}_{T}^{d, \nu} \subset \widetilde{S}^{d, \nu}$ with

- principal symbol $\sigma(a) \in \widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu}$,
- principal angular symbol $\widehat{\sigma}(a)=\widehat{\sigma}(\sigma(a)) \in S^{\nu}\left(\mathbb{R}_{\xi}^{n} \backslash 0\right)$.


## Symbols with Taylor asymptotics

We could implement a symbol class $\widetilde{S}_{T}^{d, \nu} \subset \widetilde{S}^{d, \nu}$ with

- principal symbol $\sigma(a) \in \widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu}$,
- principal angular symbol $\widehat{\sigma}(a)=\widehat{\sigma}(\sigma(a)) \in S^{\nu}\left(\mathbb{R}_{\xi}^{n} \backslash 0\right)$.

Lemma: Let $a \in \widetilde{S}_{T}^{d, \nu}$ have non-vanishing principal symbols.
Then there exists a $b \in \widetilde{S}_{T}^{-d,-\nu}$ such that

$$
a(\mu, D) b(\mu, D)=1+r(\mu, D), \quad r \in \widetilde{S}^{0-\infty, 0-\infty}=S^{0}\left(\overline{\mathbb{R}}_{+}, S^{-\infty}\left(\mathbb{R}_{\xi}^{n}\right)\right.
$$

## Symbols with Taylor asymptotics

We could implement a symbol class $\widetilde{S}_{T}^{d, \nu} \subset \widetilde{S}^{d, \nu}$ with

- principal symbol $\sigma(a) \in \widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu}$,
- principal angular symbol $\widehat{\sigma}(a)=\widehat{\sigma}(\sigma(a)) \in S^{\nu}\left(\mathbb{R}_{\xi}^{n} \backslash 0\right)$.

Lemma: Let $a \in \widetilde{S}_{T}^{d, \nu}$ have non-vanishing principal symbols.
Then there exists a $b \in \widetilde{S}_{T}^{-d,-\nu}$ such that

$$
a(\mu, D) b(\mu, D)=1+r(\mu, D), \quad r \in \widetilde{S}^{0-\infty, 0-\infty}=S^{0}\left(\overline{\mathbb{R}}_{+}, S^{-\infty}\left(\mathbb{R}_{\xi}^{n}\right)\right.
$$

Observation: We still need a condition at $\mu=+\infty$ such that we get a remainder decaying in $\mu$ !

## The limit-operator

Key observation: Let $a \in \widetilde{\mathbf{S}}_{h o m}^{d, \nu}$. Then, for every $N$,

$$
a(\xi, \mu)=\sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_{j}\left(\frac{\xi}{|\xi|}\right)}_{=: a_{\nu+j}^{\infty}(\xi) \in S_{\text {hom }}^{\nu+j}\left(\mathbb{R}^{n} \backslash 0\right)} \underbrace{|\xi, \mu|^{d-\nu-j-j}}_{\text {hom }} \bmod \widetilde{S}_{h o m}^{d, \nu+N}
$$

## The limit-operator

Key observation: Let $a \in \widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu}$. Then, for every $N$,

$$
a(\xi, \mu)=\sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_{j}\left(\frac{\xi}{|\xi|}\right)}_{=: a_{\nu+j}^{\infty}(\xi) \in S_{\text {hom }}^{\nu+j}\left(\mathbb{R}^{n} \backslash 0\right)} \underbrace{|\xi, \mu|^{d-\nu-j}}_{\text {hom }} \bmod \widetilde{S}_{\text {hom }}^{d, \nu+N}
$$

All of this can be incorporated in a resulting symbol class:
Definition: $a \in \widetilde{\mathbf{S}}^{d, \nu}$ if

- has homogeneous components in $\widetilde{\mathbf{S}}_{\text {hom }}^{d-\ell, \nu-\ell}$,
- admits an expansion $a \sim \sum_{j} a_{\nu+j}^{\infty}(\xi)[\xi, \mu]^{d-\nu-j}$ with symbols $a_{\nu+j}^{\infty} \in S^{\nu+j}\left(\mathbb{R}^{n}\right)$.


## The limit-operator

Key observation: Let $a \in \widetilde{\mathbf{S}}_{\text {hom }}^{d, \nu}$. Then, for every $N$,

$$
a(\xi, \mu)=\sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_{j}\left(\frac{\xi}{|\xi|}\right)}_{=: a_{\nu+j}^{\infty}(\xi) \in S_{\text {hom }}^{\nu+j}\left(\mathbb{R}^{n} \backslash 0\right)} \underbrace{|\xi, \mu|^{d-\nu-j}}_{\text {hom }} \bmod \widetilde{S}_{\text {hom }}^{d, \nu+N}
$$

All of this can be incorporated in a resulting symbol class:
Definition: $a \in \widetilde{\mathbf{S}}^{d, \nu}$ if

- has homogeneous components in $\widetilde{\mathbf{S}}_{\text {hom }}^{d-\ell, \nu-\ell}$,
- admits an expansion $a \sim \sum_{j} a_{\nu+j}^{\infty}(\xi)[\xi, \mu]^{d-\nu-j}$ with symbols $a_{\nu+j}^{\infty} \in S^{\nu+j}\left(\mathbb{R}^{n}\right)$.

Definition: $a_{\nu}^{\infty}(D)$ is the principal limit operator of $a \in \widetilde{\mathbf{S}}^{d, \nu}$.

## The limit-operator

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

## The limit-operator

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

Definition: $a \in \widetilde{\mathbf{S}}^{d, \nu}$ is called elliptic if its homogeneous principal symbol never vanishes and its principle limit-operator is invertible.

Theorem: If $a \in \widetilde{\mathbf{S}}^{d, \nu}$ is elliptic then there exists a $b \in \widetilde{\mathbf{S}}^{-d,-\nu}$ such that

$$
a(\mu, D) b(\mu, D)=b(\mu, D) a(\mu, D)=1, \quad \mu \gg 1
$$

## The limit-operator

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

Definition: $a \in \widetilde{\mathbf{S}}^{d, \nu}$ is called elliptic if its homogeneous principal symbol never vanishes and its principle limit-operator is invertible.

Theorem: If $a \in \widetilde{\mathbf{S}}^{d, \nu}$ is elliptic then there exists a $b \in \widetilde{\mathbf{S}}^{-d,-\nu}$ such that

$$
a(\mu, D) b(\mu, D)=b(\mu, D) a(\mu, D)=1, \quad \mu \gg 1
$$

This result is "inherited" by $\psi$ do of Toeplitz type.

## Inverses of Toeplitz type $\psi$ do

Consider an operators of the form

$$
A(\mu)=P_{1} a(D, \mu) P_{0}, \quad a \in \widetilde{\mathbf{S}}^{d, 0} .
$$

## Inverses of Toeplitz type $\psi$ do

Consider an operators of the form

$$
A(\mu)=P_{1} a(D, \mu) P_{0}, \quad a \in \widetilde{\mathbf{S}}^{d, 0}
$$

Theorem: Assume invertibilty of

- $\sigma\left(P_{1}\right) \sigma(a) \sigma\left(P_{1}\right): \sigma\left(P_{0}\right)\left(T^{*} \mathbb{R}^{n} \times \mathbb{C}^{M}\right) \rightarrow \sigma\left(P_{1}\right)\left(T^{*} \mathbb{R}^{n} \times \mathbb{C}^{M}\right)$
- $P_{1} a_{0}^{\infty}(D) P_{0}: P_{0}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right) \rightarrow P_{1}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right)$

Then there exists $B(\mu)=P_{0} b(D, \mu) P_{1}$ with $b \in \widetilde{\mathbf{S}}^{-d, 0}$ s.t.

$$
A(\mu) B(\mu)=P_{1}, \quad B(\mu) A(\mu)=P_{0}, \quad \mu \gg 1
$$

## Inverses of Toeplitz type $\psi$ do

Consider an operators of the form

$$
A(\mu)=P_{1} a(D, \mu) P_{0}, \quad a \in \widetilde{\mathbf{S}}^{d, 0} .
$$

Theorem: Assume invertibilty of

- $\sigma\left(P_{1}\right) \sigma(a) \sigma\left(P_{1}\right): \sigma\left(P_{0}\right)\left(T^{*} \mathbb{R}^{n} \times \mathbb{C}^{M}\right) \rightarrow \sigma\left(P_{1}\right)\left(T^{*} \mathbb{R}^{n} \times \mathbb{C}^{M}\right)$
- $P_{1} a_{0}^{\infty}(D) P_{0}: P_{0}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right) \rightarrow P_{1}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right)$

Then there exists $B(\mu)=P_{0} b(D, \mu) P_{1}$ with $b \in \widetilde{\mathbf{S}}^{-d, 0}$ s.t.

$$
A(\mu) B(\mu)=P_{1}, \quad B(\mu) A(\mu)=P_{0}, \quad \mu \gg 1
$$

Remark: In case $a(D, \mu)=\mu^{d}-a(D), a(\xi) \in S^{d}$, the second condition is equivalent to the invertibility of

$$
P_{1}: P_{0}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right) \rightarrow P_{1}\left(H^{s}\left(\mathbb{R}^{n}, \mathbb{C}^{M}\right)\right)
$$

## Resolvent trace asymptotics

Let $P \in S^{d}\left(\mathbb{R}^{n}\right), d \in \mathbb{N}$, be elliptic w.r.t. a closed sector $\Lambda \subset \mathbb{C}$. We are interested in

$$
\operatorname{Tr}\left(Q(\lambda-P)^{-N}\right), \quad|\lambda| \rightarrow \infty
$$

where $Q \in S^{\omega}\left(\mathbb{R}^{n}\right), \omega \in \mathbb{R}$, and $\omega-N d<-n$.

## Resolvent trace asymptotics

Let $P \in S^{d}\left(\mathbb{R}^{n}\right), d \in \mathbb{N}$, be elliptic w.r.t. a closed sector $\Lambda \subset \mathbb{C}$. We are interested in

$$
\operatorname{Tr}\left(Q(\lambda-P)^{-N}\right), \quad|\lambda| \rightarrow \infty
$$

where $Q \in S^{\omega}\left(\mathbb{R}^{n}\right), \omega \in \mathbb{R}$, and $\omega-N d<-n$.
Theorem (Grubb-Seeley '95): If $k(x, y, \lambda)$ is the distributional kernel of the above operator, there exist $c_{j}, c_{j}^{\prime}, c_{j}^{\prime \prime} \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
k(x, x, \lambda) \sim \sum_{j=0}^{+\infty} c_{j}(x) \lambda^{\frac{n+\omega-j}{d}-N}+\sum_{j=0}^{+\infty}\left(c_{j}^{\prime}(x) \log \lambda+c_{j}^{\prime \prime}(x)\right) \lambda^{-N-j}
$$

uniformly for $\lambda \in \Lambda$ with $|\lambda| \longrightarrow+\infty$.

## Resolvent trace asymptotics

Lemma: $a(\xi, \mu) \in \widetilde{\mathbf{S}}^{d, \nu}, d-\nu \leq 0$, has a Grubb-Seeley expansion:

$$
a(\xi, \mu) \sim_{\mu \rightarrow+\infty} \sum_{\ell} q_{\ell}(\xi) \mu^{d-\nu-\ell}, \quad q_{\ell} \in S^{\nu+\ell}\left(\mathbb{R}^{n}\right)
$$

If also $d<-n$ this results in an expansion

$$
k_{a}(x, x, \mu) \sim \sum_{j=0}^{+\infty} c_{j}(x) \mu^{d-j+n}+\sum_{\ell=0}^{+\infty}\left(c_{\ell}^{\prime}(x) \log \mu+c_{j}^{\prime \prime}(x)\right) \mu^{d-\nu-\ell}
$$

## Resolvent trace asymptotics

## Proof of the Lemma:

Start out from expansion the

$$
a(\xi, \mu) \sim \sum_{j} a_{\nu+j}^{\infty}(\xi)[\xi, \mu]^{d-\nu-j}, \quad a_{\nu+j}^{\infty}(\xi) \in S^{\nu+j}
$$

and insert expansions

$$
[\xi, \mu]^{m} \sim \sum_{\ell} \zeta_{m, j}(\xi) \mu^{m-\ell}, \quad m \leq 0
$$

with homogeneous polynomials $\zeta_{m, j}$ of degree $j$.

## Resolvent trace asymptotics

## Proof of the Lemma:

Start out from expansion the

$$
a(\xi, \mu) \sim \sum_{j} a_{\nu+j}^{\infty}(\xi)[\xi, \mu]^{d-\nu-j}, \quad a_{\nu+j}^{\infty}(\xi) \in S^{\nu+j}
$$

and insert expansions

$$
[\xi, \mu]^{m} \sim \sum_{\ell} \zeta_{m, j}(\xi) \mu^{m-\ell}, \quad m \leq 0
$$

with homogeneous polynomials $\zeta_{m, j}$ of degree $j$.
Repeat the proof of Grubb-Seeley to get expansion of $k_{a}(x, x, \mu)$.

## Resolvent trace asymptotics

Proof of the resolvent kernel expansion:
Using the $\widetilde{\mathbf{S}}$-calculus in the, one can show that

$$
Q\left(\mu^{d}-e^{i \theta} P\right)^{-N} \in \widetilde{\mathbf{S}}^{\omega-N d, \omega}
$$

uniformly in $\theta$ with $e^{i \theta} \in \Lambda$.
Combine this with the previous lemma.

## The manifold case

The calculus can be defined for any closed Riemannian manifold $M$ (and operators acting on sections of smooth vector bundles).

- Coordinate-invariance of $\widetilde{\mathbf{S}}^{d, \nu}$.
- Standard patching of local operators with partion of unity.


## The manifold case

The calculus can be defined for any closed Riemannian manifold $M$ (and operators acting on sections of smooth vector bundles).

- Coordinate-invariance of $\widetilde{\mathbf{S}}^{d, \nu}$.
- Standard patching of local operators with partion of unity.

Theorem: The above local expansion has a global analogue:

$$
A(\mu) \sim \sum_{j=0}^{\infty} A_{\nu+j}^{\infty} \Lambda^{d-\nu-j}(\mu), \quad A_{\nu+j}^{\infty} \in L^{\nu+j}(M)
$$

where the $\Lambda^{\alpha}(\mu)$ are $\psi$ do of order $\alpha$ with principal symbol

$$
\sigma\left(\Lambda^{\alpha}\right)(\xi, \mu)=\left(|\xi|^{2}+\mu^{2}\right)^{\alpha / 2}
$$

## The manifold case

The ellipticity on $M$ involves:

- homogeneous principal symbol,
- limit operator: $A_{\nu}^{\infty}(D) \in L^{\nu}(M)$.

As a subordinate principal symbol we have

- principal angular symbol $\sigma\left(A_{\nu}^{\infty}\right)$.


## Some papers

- J. S., Parametric pseudodifferential operators with point-singularity in the covariable. Annals of Global Analysis and Geometry 61 (2022), 553-592.
- J. S., Singular Green operators in the edge algebra formalism. Journal of Mathematical Analysis and Applications 511 (2022), Paper No. 126041, 39 pp.
- B.-W. Schulze, J. S., Elliptic complexes on manifolds with boundary, Journal of Geometric Analysis 29 (2019), no. 1, 656-706.
- J. S., Parameter-dependent pseudodifferential operators of Toeplitz type. Annali di Matematica Pura ed Applicata 194 (2015), no. 1, 145-165.
- J. S., Ellipticity in pseudodifferential algebras of Toeplitz type. Journal of Functional Analysis 263 (2012), no. 5, 1408-1434.

Thank you for your attention!

