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General aim

Describe a calculus of parameter-dependent ψdo that allows the
construction of a parametrix for Toeplitz type ψdo which coincides
with the inverse for large values of the parameter.

As a by-product we obtain a calculus that allows to recover the
Grubb-Seeley resolvent trace expansion.

We deal with operators on Rn or closed Riemannian manifolds
(of dimension ≥ 2).

Important notation:

▶ Parameter µ ∈ R+ = [0,+∞),

▶ Covariable ξ ∈ Rn (to variable x).

For the most part of the talk we consider operators with constant
coefficients. The results hold in general for operators with smooth
(bounded) coefficients.
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Resolvents of differential operators

Let A =
∑

|α|≤d aαD
α
x . Then µ

d − A has symbol

a(ξ, µ) = µd −
∑

|α|≤daαξ
α, ad(ξ, µ) = µd −

∑
|α|=daαξ

α.

Definition (Hörmander class): a(ξ, µ) ∈ Sd
1,0, d ∈ Z, if

|Dα
ξ D

j
µa(ξ, µ)| ≲ ⟨ξ, µ⟩d−|α|−j .

a(ξ, µ) ∈ Sd is polyhomogeneous/classical if

a ∼
∑

ℓ χ(ξ, µ)ad−ℓ, ad−ℓ ∈ Sd−ℓ
hom .

with ad−ℓ positively homogeneous of degree d − ℓ in (ξ, µ) ̸= 0.

(Homogeneous) principal symbol: σ(a) = ad .

Remark: S−∞ = ∩ℓS
−ℓ = S (R+ × Rn)
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Resolvents of differential operators

Theorem: a ∈ Sd elliptic ⇒ Exists b ∈ S−d such that

a(D, µ)b(D, µ) = b(D, µ)a(D, µ) = 1, |µ| >> 1.

Observation: Above approach fails for ψdo: If

a(ξ, µ) = µd − a(ξ), a(ξ) ∈ Sd(Rn),

then, in general, for |α| > d ,

|Dα
ξ a(ξ, µ)| ≲ ⟨ξ⟩d−|α| (weaker estimate!)

There is a “breaking point” for the estimates, where one changes
from ⟨ξ, µ⟩ to ⟨ξ⟩.
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Grubb’s class and regularity number

Definition (Grubb 1980’s): a(ξ, µ) ∈ Sd ,ν
1,0 , d ∈ Z, ν ∈ R, if

|Dα
ξ D

j
µa(ξ, µ)| ≲ ⟨ξ, µ⟩d−|α|−j+⟨ξ⟩ν−|α|⟨ξ, µ⟩d−ν−j .

Sd ,ν subclass of polyhomogeneous symbols, i.e.,

a ∼
∑

ℓ χ(ξ)ad−ℓ, ad−ℓ ∈ Sd−ℓ,ν−ℓ
hom ,

with ad−ℓ positively homogeneous of degree d − ℓ in (ξ, µ), ξ ̸= 0,
and satisfying estimates with ⟨·⟩ replaced by | · |.
(Homogeneous) principal symbol: σ(a) = ad .

Remark: ▶ ν is the “breaking point” called regularity number.

▶ Sd−∞,ν−∞ = ∩ℓS
d−ℓ,ν−ℓ = Sd−ν(R+,S (Rn

ξ )).

▶ Sd = Sd ,+∞ = ∩ν≥0S
d ,ν (infinite regularity)
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Grubb’s class and regularity number

Remark: In general, homogeneous components are only defined

for ξ ̸= 0. If ν > 0, σ(a) extends by continuity to (ξ, µ) ̸= 0.

Definition: a ∈ Sd ,ν , ν > 0, is elliptic if σ(a) never vanishes for
(ξ, µ) ̸= 0.

Theorem: a ∈ Sd ,ν , ν > 0, elliptic ⇒ Exists b ∈ S−d ,ν such that

a(D, µ)b(D, µ) = b(D, µ)a(D, µ) = 1, |µ| >> 1.

Application: Resolvent of ψdo of positive integer order d .

In this case the regularity number is ν = d .

Note: No concept of ellipticity for regularity number ν ≤ 0.
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ψdo of Toeplitz type

Aim: We want to construct the inverse of ψdo of the form

P1 (µ
d − a(D))P0 : P0

(
Hs(Rn,CM)

)
−→ P1

(
Hs−d(Rn,CM)

)
with Pj = pj(D) zero-order projections, a(ξ) ∈ Sd(Rn,CM×M).

Problem: Here, the regularity number is ν = 0.

Cannot use Grubb’s class Sd ,0.
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Some background

Boutet de Monvel’s calculus for bvp (without parameter) allows

the construction of parametrices to Shapiro-Lopatinskij elliptic

(differential) bvp.

Then “elliptic = parametrix = Fredholm”.

The BdM calculus is made by operators of the form

(
A K
T Q

)
:

Hs(M,E0)
⊕

Hs(∂M,F0)
−→

Hs−µ(M,E1)
⊕

Hs−µ(∂M,F1)
.

Observation: Not every elliptic differential operator A can be

completed to an elliptic bvp

(
A
T

)
in BdM’s calculus.
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Some background

Example: D ⊂ R2 unit-disc and

(
∂

P ◦ ·|∂D

)
=

(
1 0
0 P

)(
∂

·|∂D

)
: Hs(D) −→

Hs−1(D)
⊕

P
(
Hs−1/2(∂D)

)
with Calderon-projector P ∈ L0(∂D) is Fredholm (isomorphism).

Schulze, Shatalov, Sternin (∼ 2000): Systematic study of
ellipticity and Fredholm property of operators(

A
P1T

)
,

(
1 0
0 P1

)(
A K
T Q

)(
1 0
0 P0

)
,

with zero-order projections Pj on the boundary.
This results in an “extended” BdM calculus.
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Some background

Example: The Stokes operator on a bounded domain Ω ⊂ Rn is

(
P 0
0 Q

)(
∆
·|∂Ω

)
P : Hs

σ(Ω,Cn) −→
Hs−2
σ (Ω,Cn)

⊕
H

s−1/2
ν (∂Ω,Cn)

with the solenoidal vector-fields on Ω and “tangential vector-fields”

on the boundary.

P is the Helmholtz projection, Q “projection along normal”.



Some background

Question: Given some kind of “calculus of ψdo”, what can we
say about Toeplitz type operators

A′ = P1 AP0

where Pj = P2
j are zero-order projections from the calculus?

Theorem: If the calculus is “nice” i.e.,

▶ ellipticity, existence of a parametrix, and Fredholm property

are equivant to the invertibility of principal symbol(s),

▶ the calculus is closed under taking the formal adjoint,

then all descents to the Toeplitz calculus, using principal symbol(s)

σ(A′) = σ(P1)σ(A)σ(P0) : rangeσ(P0) −→ rangeσ(P1).
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A “geometric” description of Sd ,ν

Homogeneous components:

Hörmander: |Dα
ξ D

j
µa(ξ, µ)| ≲ |ξ, µ|d−|α|−j , (ξ, µ) ̸= 0.

Grubb: |Dα
ξ D

j
µa(ξ, µ)| ≲ |ξ, µ|d−|α|−j + |ξ|ν−|α||ξ, µ|d−ν−j , ξ ̸= 0.

Positively homogeneous fctns in (ξ, µ) of degree d are of the form

a(ξ, µ) = |(ξ, µ)|d â
( (ξ, µ)

|(ξ, µ)|

)
.

Remark: If Sn+ = {(ξ, µ) | |ξ|2 + µ2 = 1, µ ≥ 0} then

Sd−ℓ
hom

∼= C∞(Sn+).

Question: To which space corresponds Sd−ℓ,ν−ℓ
hom ?



A “geometric” description of Sd ,ν

Homogeneous components:
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A “geometric” description of Sd ,ν

Consider the punctured semi-sphere Ŝn+
with (polar-)coordinates

r = r(ξ, µ) = |ξ|, ϕ = ϕ(ξ, µ) = ξ/|ξ|

µ

ξ

Definition: â ∈ C∞
B (Ŝn+) if â is smooth on Ŝn+ and (r∂r )

j∂αϕ â is

bounded for all orders j , α.

Theorem: Sd ,ν
hom

∼= C∞(Sn+) + rνC∞
B (Ŝn+) (regularity = weight)

Definition: S̃d ,ν
hom

∼= rνC∞
B (Ŝn+). ⇝ Yields full class S̃d ,ν .

Theorem: Sd ,ν = Sd + S̃d ,ν .

In particular: Sd ,ν = S̃d ,ν whenever ν ≤ 0.
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B (Ŝn+) (regularity = weight)

Definition: S̃d ,ν
hom

∼= rνC∞
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B (Ŝn+) if â is smooth on Ŝn+ and (r∂r )

j∂αϕ â is

bounded for all orders j , α.

Theorem: Sd ,ν
hom

∼= C∞(Sn+) + rνC∞
B (Ŝn+) (regularity = weight)

Definition: S̃d ,ν
hom

∼= rνC∞
B (Ŝn+). ⇝ Yields full class S̃d ,ν .

Theorem: Sd ,ν = Sd + S̃d ,ν .

In particular: Sd ,ν = S̃d ,ν whenever ν ≤ 0.



Symbols with Taylor asymptotics

Remark: S̃d ,0
hom

∼= C∞
B (Ŝn+) is not closed under taking inverses.

Definition: â ∈ C∞
T (Ŝn+) if â ∈ C∞

B (Ŝn+) and

â(r , ϕ) ∼r→0+
∑
k≥0

rk âk(ϕ).

Lemma: Let â ∈ rνC∞
T (Ŝn+). Then 1/â ∈ r−νC∞

T (Ŝn+) iff

▶ â never vanishes on Ŝn+ and

▶ â0 never vanishes on Sn−1

Definition: S̃d ,ν
hom

∼= rνC∞
T (Ŝn+).
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▶ â never vanishes on Ŝn+ and
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rk âk(ϕ).

Lemma: Let â ∈ rνC∞
T (Ŝn+). Then 1/â ∈ r−νC∞
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Symbols with Taylor asymptotics

We could implement a symbol class S̃d ,ν
T ⊂ S̃d ,ν with

▶ principal symbol σ(a) ∈ S̃d ,ν
hom,

▶ principal angular symbol σ̂(a) = σ̂(σ(a)) ∈ Sν(Rn
ξ \ 0).

Lemma: Let a ∈ S̃d ,ν
T have non-vanishing principal symbols.

Then there exists a b ∈ S̃−d ,−ν
T such that

a(µ,D)b(µ,D) = 1 + r(µ,D), r ∈ S̃0−∞,0−∞ = S0(R+,S
−∞(Rn

ξ ).

Observation: We still need a condition at µ = +∞ such that we
get a remainder decaying in µ !
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The limit-operator

Key observation: Let a ∈ S̃d ,ν
hom. Then, for every N,

a(ξ, µ) =
N−1∑
j=0

|ξ|ν+j âj

( ξ

|ξ|

)
︸ ︷︷ ︸

=:a∞ν+j (ξ) ∈ Sν+j
hom (Rn\0)

|ξ, µ|d−ν−j︸ ︷︷ ︸
∈Sd−ν−j

hom

mod S̃d ,ν+N
hom .

All of this can be incorporated in a resulting symbol class:

Definition: a ∈ S̃d ,ν if

▶ has homogeneous components in S̃d−ℓ,ν−ℓ
hom ,

▶ admits an expansion a ∼
∑

j a
∞
ν+j(ξ) [ξ, µ]

d−ν−j with symbols

a∞ν+j ∈ Sν+j(Rn).

Definition: a∞ν (D) is the principal limit operator of a ∈ S̃d ,ν .
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The limit-operator

Remark: The homogeneous principal symbol of the principal
limit-operator coincides with the principal angular symbol.

Definition: a ∈ S̃d ,ν is called elliptic if its homogeneous principal
symbol never vanishes and its principle limit-operator is invertible.

Theorem: If a ∈ S̃d ,ν is elliptic then there exists a b ∈ S̃−d ,−ν

such that

a(µ,D)b(µ,D) = b(µ,D)a(µ,D) = 1, µ >> 1.

This result is “inherited” by ψdo of Toeplitz type.
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Inverses of Toeplitz type ψdo
Consider an operators of the form

A(µ) = P1 a(D, µ)P0, a ∈ S̃d ,0.

Theorem: Assume invertibilty of

▶ σ(P1)σ(a)σ(P1) : σ(P0)(T
∗Rn×CM) → σ(P1)(T

∗Rn×CM)

▶ P1 a
∞
0 (D)P0 : P0(H

s(Rn,CM)) → P1(H
s(Rn,CM))

Then there exists B(µ) = P0 b(D, µ)P1 with b ∈ S̃−d ,0 s.t.

A(µ)B(µ) = P1, B(µ)A(µ) = P0, µ >> 1.

Remark: In case a(D, µ) = µd − a(D), a(ξ) ∈ Sd , the second
condition is equivalent to the invertibility of

P1 : P0(H
s(Rn,CM)) → P1(H

s(Rn,CM)).
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Resolvent trace asymptotics

Let P ∈ Sd(Rn), d ∈ N, be elliptic w.r.t. a closed sector Λ ⊂ C.
We are interested in

Tr
(
Q(λ− P)−N

)
, |λ| → ∞,

where Q ∈ Sω(Rn), ω ∈ R, and ω − Nd < −n.

Theorem (Grubb-Seeley ‘95): If k(x , y , λ) is the distributional
kernel of the above operator, there exist cj , c

′
j , c

′′
j ∈ C∞

b (Rn) such
that

k(x , x , λ) ∼
+∞∑
j=0

cj(x)λ
n+ω−j

d
−N +

+∞∑
j=0

(
c ′j (x) log λ+ c ′′j (x)

)
λ−N−j ,

uniformly for λ ∈ Λ with |λ| −→ +∞.
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Resolvent trace asymptotics

Lemma: a(ξ, µ) ∈ S̃d ,ν , d − ν ≤ 0, has a Grubb-Seeley expansion:

a(ξ, µ) ∼µ→+∞
∑

ℓ qℓ(ξ)µ
d−ν−ℓ, qℓ ∈ Sν+ℓ(Rn).

If also d < −n this results in an expansion

ka(x , x , µ) ∼
+∞∑
j=0

cj(x)µ
d−j+n +

+∞∑
ℓ=0

(
c ′ℓ(x) logµ+ c ′′j (x)

)
µd−ν−ℓ.



Resolvent trace asymptotics

Proof of the Lemma:

Start out from expansion the

a(ξ, µ) ∼
∑

j a
∞
ν+j(ξ) [ξ, µ]

d−ν−j , a∞ν+j(ξ) ∈ Sν+j ,

and insert expansions

[ξ, µ]m ∼
∑

ℓ ζm,j(ξ)µ
m−ℓ, m ≤ 0,

with homogeneous polynomials ζm,j of degree j .

Repeat the proof of Grubb-Seeley to get expansion of ka(x , x , µ).
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Resolvent trace asymptotics

Proof of the resolvent kernel expansion:

Using the S̃-calculus in the, one can show that

Q(µd − e iθ P)−N ∈ S̃ω−Nd ,ω

uniformly in θ with e iθ ∈ Λ.

Combine this with the previous lemma.



The manifold case

The calculus can be defined for any closed Riemannian manifold M

(and operators acting on sections of smooth vector bundles).

▶ Coordinate-invariance of S̃d ,ν .

▶ Standard patching of local operators with partion of unity.

Theorem: The above local expansion has a global analogue:

A(µ) ∼
∞∑
j=0

A∞
ν+j Λ

d−ν−j(µ), A∞
ν+j ∈ Lν+j(M),

where the Λα(µ) are ψdo of order α with principal symbol

σ(Λα)(ξ, µ) = (|ξ|2 + µ2)α/2.
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The manifold case

The ellipticity on M involves:

▶ homogeneous principal symbol,

▶ limit operator: A∞
ν (D) ∈ Lν(M).

As a subordinate principal symbol we have

▶ principal angular symbol σ(A∞
ν ).
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Thank you for your attention !


