Parametric ψ do with point-singularity in the covariable

Jörg Seiler Università degli Studi di Torino

28. November 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

General aim

Describe a calculus of parameter-dependent ψ do that allows the construction of a parametrix for Toeplitz type ψ do which coincides with the inverse for large values of the parameter.

As a by-product we obtain a calculus that allows to recover the Grubb-Seeley resolvent trace expansion.

We deal with operators on \mathbb{R}^n or closed Riemannian manifolds (of dimension ≥ 2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

General aim

Describe a calculus of parameter-dependent ψ do that allows the construction of a parametrix for Toeplitz type ψ do which coincides with the inverse for large values of the parameter.

As a by-product we obtain a calculus that allows to recover the Grubb-Seeley resolvent trace expansion.

We deal with operators on \mathbb{R}^n or closed Riemannian manifolds (of dimension ≥ 2).

Important notation:

- Parameter $\mu \in \overline{\mathbb{R}}_+ = [0, +\infty)$,
- Covariable $\xi \in \mathbb{R}^n$ (to variable x).

For the most part of the talk we consider operators with constant coefficients. The results hold in general for operators with smooth (bounded) coefficients.

Let
$$A = \sum_{|\alpha| \le d} a_{\alpha} D_x^{\alpha}$$
. Then $\mu^d - A$ has symbol
 $a(\xi, \mu) = \mu^d - \sum_{|\alpha| \le d} a_{\alpha} \xi^{\alpha}, \qquad a_d(\xi, \mu) = \mu^d - \sum_{|\alpha| = d} a_{\alpha} \xi^{\alpha}.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Let
$$A = \sum_{|\alpha| \le d} a_{\alpha} D_x^{\alpha}$$
. Then $\mu^d - A$ has symbol
 $a(\xi, \mu) = \mu^d - \sum_{|\alpha| \le d} a_{\alpha} \xi^{\alpha}, \qquad a_d(\xi, \mu) = \mu^d - \sum_{|\alpha| = d} a_{\alpha} \xi^{\alpha}.$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^d$, $d \in \mathbb{Z}$, if

$$|D^{\alpha}_{\xi}D^{j}_{\mu}a(\xi,\mu)| \lesssim \langle \xi,\mu \rangle^{d-|\alpha|-j}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let
$$A = \sum_{|\alpha| \le d} a_{\alpha} D_x^{\alpha}$$
. Then $\mu^d - A$ has symbol
 $a(\xi, \mu) = \mu^d - \sum_{|\alpha| \le d} a_{\alpha} \xi^{\alpha}, \qquad a_d(\xi, \mu) = \mu^d - \sum_{|\alpha| = d} a_{\alpha} \xi^{\alpha}.$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^d$, $d \in \mathbb{Z}$, if

$$|D^{lpha}_{\xi}D^{j}_{\mu}a(\xi,\mu)|\lesssim \langle \xi,\mu
angle^{d-|lpha|-j}.$$

 $a(\xi,\mu)\in S^d$ is polyhomogeneous/classical if

$$\mathbf{a} \sim \sum_{\ell} \chi(\xi, \mu) \mathbf{a}_{d-\ell}, \qquad \mathbf{a}_{d-\ell} \in \mathbf{S}_{hom}^{d-\ell}.$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in $(\xi, \mu) \neq 0$. (Homogeneous) principal symbol: $\sigma(a) = a_d$.

Let
$$A = \sum_{|\alpha| \le d} a_{\alpha} D_x^{\alpha}$$
. Then $\mu^d - A$ has symbol
 $a(\xi, \mu) = \mu^d - \sum_{|\alpha| \le d} a_{\alpha} \xi^{\alpha}, \qquad a_d(\xi, \mu) = \mu^d - \sum_{|\alpha| = d} a_{\alpha} \xi^{\alpha}.$

Definition (Hörmander class): $a(\xi, \mu) \in S_{1,0}^d$, $d \in \mathbb{Z}$, if

$$|D^{lpha}_{\xi}D^{j}_{\mu}a(\xi,\mu)|\lesssim \langle \xi,\mu
angle^{d-|lpha|-j}.$$

 $a(\xi,\mu)\in S^d$ is polyhomogeneous/classical if

$$\mathbf{a} \sim \sum_{\ell} \chi(\xi, \mu) \mathbf{a}_{d-\ell}, \qquad \mathbf{a}_{d-\ell} \in \mathbf{S}_{hom}^{d-\ell}.$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in $(\xi, \mu) \neq 0$. (Homogeneous) principal symbol: $\sigma(a) = a_d$.

Remark:
$$S^{-\infty} = \cap_{\ell} S^{-\ell} = \mathscr{S}(\overline{\mathbb{R}}_{+} \times \mathbb{R}^{n})$$

Theorem: $a \in S^d$ elliptic \Rightarrow Exists $b \in S^{-d}$ such that

$$a(D,\mu)b(D,\mu) = b(D,\mu)a(D,\mu) = 1, \qquad |\mu| >> 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem: $a \in S^d$ elliptic \Rightarrow Exists $b \in S^{-d}$ such that

$$a(D,\mu)b(D,\mu) = b(D,\mu)a(D,\mu) = 1, \qquad |\mu| >> 1.$$

Observation: Above approach fails for ψ do: If

$$a(\xi,\mu) = \mu^d - a(\xi), \qquad a(\xi) \in S^d(\mathbb{R}^n),$$

then, in general, for $|\alpha| > d$,

$$|D_{\xi}^{lpha}a(\xi,\mu)| \lesssim \langle \xi
angle^{d-|lpha|}$$
 (weaker estimate!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem: $a \in S^d$ elliptic \Rightarrow Exists $b \in S^{-d}$ such that

$$a(D,\mu)b(D,\mu) = b(D,\mu)a(D,\mu) = 1, \qquad |\mu| >> 1.$$

Observation: Above approach fails for ψ do: If

$$\mathsf{a}(\xi,\mu)=\mu^d-\mathsf{a}(\xi),\qquad \mathsf{a}(\xi)\in S^d(\mathbb{R}^n),$$

then, in general, for $|\alpha| > d$,

$$|D_{\xi}^{lpha}a(\xi,\mu)| \lesssim \langle \xi
angle^{d-|lpha|}$$
 (weaker estimate!)

There is a "breaking point" for the estimates, where one changes from $\langle \xi, \mu \rangle$ to $\langle \xi \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Grubb 1980's): $a(\xi,\mu) \in S_{1,0}^{d,\nu}$, $d \in \mathbb{Z}$, $\nu \in \mathbb{R}$, if

$$|D^{\alpha}_{\xi}D^{j}_{\mu}\mathbf{a}(\xi,\mu)| \lesssim \langle \xi,\mu\rangle^{d-|\alpha|-j} + \langle \xi\rangle^{\nu-|\alpha|} \langle \xi,\mu\rangle^{d-\nu-j}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition (Grubb 1980's): $a(\xi,\mu) \in S_{1,0}^{d,\nu}$, $d \in \mathbb{Z}$, $\nu \in \mathbb{R}$, if

$$|D^{\alpha}_{\xi}D^{j}_{\mu}a(\xi,\mu)| \lesssim \langle \xi,\mu\rangle^{d-|\alpha|-j} + \langle \xi\rangle^{\nu-|\alpha|} \langle \xi,\mu\rangle^{d-\nu-j}.$$

 $S^{d,\nu}$ subclass of polyhomogeneous symbols, i.e.,

$$\mathsf{a} \sim \sum_{\ell} \chi(\xi) \mathsf{a}_{d-\ell}, \qquad \mathsf{a}_{d-\ell} \in \mathcal{S}_{hom}^{d-\ell, \nu-\ell},$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in (ξ, μ) , $\xi \neq 0$, and satisfying estimates with $\langle \cdot \rangle$ replaced by $|\cdot|$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Homogeneous) principal symbol: $\sigma(a) = a_d$.

Definition (Grubb 1980's): $a(\xi,\mu) \in S_{1,0}^{d,\nu}$, $d \in \mathbb{Z}$, $\nu \in \mathbb{R}$, if

$$|D^{\alpha}_{\xi}D^{j}_{\mu}a(\xi,\mu)| \lesssim \langle \xi,\mu\rangle^{d-|\alpha|-j} + \langle \xi\rangle^{\nu-|\alpha|} \langle \xi,\mu\rangle^{d-\nu-j}.$$

 $S^{d,\nu}$ subclass of polyhomogeneous symbols, i.e.,

$$\mathsf{a} \sim \sum_{\ell} \chi(\xi) \mathsf{a}_{d-\ell}, \qquad \mathsf{a}_{d-\ell} \in \mathcal{S}_{hom}^{d-\ell, \nu-\ell},$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in (ξ, μ) , $\xi \neq 0$, and satisfying estimates with $\langle \cdot \rangle$ replaced by $|\cdot|$. (Homogeneous) principal symbol: $\sigma(a) = a_d$.

Remark: \triangleright ν is the "breaking point" called regularity number.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition (Grubb 1980's): $a(\xi,\mu) \in S_{1,0}^{d,\nu}$, $d \in \mathbb{Z}$, $\nu \in \mathbb{R}$, if

$$|D_{\xi}^{\alpha}D_{\mu}^{j}a(\xi,\mu)| \lesssim \langle \xi,\mu\rangle^{d-|\alpha|-j} + \langle \xi\rangle^{\nu-|\alpha|} \langle \xi,\mu\rangle^{d-\nu-j}.$$

 $S^{d,\nu}$ subclass of polyhomogeneous symbols, i.e.,

$$\mathsf{a} \sim \sum_{\ell} \chi(\xi) \mathsf{a}_{d-\ell}, \qquad \mathsf{a}_{d-\ell} \in \mathcal{S}_{hom}^{d-\ell, \nu-\ell},$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in (ξ, μ) , $\xi \neq 0$, and satisfying estimates with $\langle \cdot \rangle$ replaced by $|\cdot|$. (Homogeneous) principal symbol: $\sigma(a) = a_d$.

Remark: \triangleright ν is the "breaking point" called regularity number.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\triangleright \ S^{d-\infty,\nu-\infty} = \cap_{\ell} S^{d-\ell,\nu-\ell} = S^{d-\nu}(\overline{\mathbb{R}}_+,\mathscr{S}(\mathbb{R}^n_{\xi})).$$

Definition (Grubb 1980's): $a(\xi,\mu) \in S_{1,0}^{d,\nu}$, $d \in \mathbb{Z}$, $\nu \in \mathbb{R}$, if

$$|D_{\xi}^{\alpha}D_{\mu}^{j}a(\xi,\mu)| \lesssim \langle \xi,\mu\rangle^{d-|\alpha|-j} + \langle \xi\rangle^{\nu-|\alpha|} \langle \xi,\mu\rangle^{d-\nu-j}.$$

 $S^{d,\nu}$ subclass of polyhomogeneous symbols, i.e.,

$$\mathsf{a} \sim \sum_{\ell} \chi(\xi) \mathsf{a}_{d-\ell}, \qquad \mathsf{a}_{d-\ell} \in \mathcal{S}_{hom}^{d-\ell, \nu-\ell},$$

with $a_{d-\ell}$ positively homogeneous of degree $d - \ell$ in (ξ, μ) , $\xi \neq 0$, and satisfying estimates with $\langle \cdot \rangle$ replaced by $|\cdot|$. (Homogeneous) principal symbol: $\sigma(a) = a_d$.

Remark: \triangleright ν is the "breaking point" called regularity number.

(日) (日) (日) (日) (日) (日) (日) (日)

$$\triangleright S^{d-\infty,\nu-\infty} = \cap_{\ell} S^{d-\ell,\nu-\ell} = S^{d-\nu}(\overline{\mathbb{R}}_{+},\mathscr{S}(\mathbb{R}_{\xi}^{n})).$$

► $S^d = S^{d,+\infty} = \cap_{\nu \ge 0} S^{d,\nu}$ (infinite regularity)

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu > 0$, $\sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu > 0$, $\sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

Definition: $a \in S^{d,\nu}$, $\nu > 0$, is elliptic if $\sigma(a)$ never vanishes for $(\xi, \mu) \neq 0$.

Theorem: $a \in S^{d,\nu}$, $\nu > 0$, elliptic \Rightarrow Exists $b \in S^{-d,\nu}$ such that

$$a(D,\mu)b(D,\mu) = b(D,\mu)a(D,\mu) = 1, \qquad |\mu| >> 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark: In general, homogeneous components are only defined for $\xi \neq 0$. If $\nu > 0$, $\sigma(a)$ extends by continuity to $(\xi, \mu) \neq 0$.

Definition: $a \in S^{d,\nu}$, $\nu > 0$, is elliptic if $\sigma(a)$ never vanishes for $(\xi, \mu) \neq 0$.

Theorem: $a \in S^{d,\nu}$, $\nu > 0$, elliptic \Rightarrow Exists $b \in S^{-d,\nu}$ such that

$$\mathsf{a}(D,\mu)\mathsf{b}(D,\mu)=\mathsf{b}(D,\mu)\mathsf{a}(D,\mu)=1, \qquad |\mu|>>1.$$

Application: Resolvent of ψ do of positive integer order *d*. In this case the regularity number is $\nu = d$.

Note: No concept of ellipticity for regularity number $\nu \leq 0$.

$\psi {\rm do}~{\rm of}~{\rm Toeplitz}~{\rm type}$

Aim: We want to construct the inverse of ψ do of the form

$$P_{1}(\mu^{d} - a(D)) P_{0}: P_{0}(H^{s}(\mathbb{R}^{n}, \mathbb{C}^{M})) \longrightarrow P_{1}(H^{s-d}(\mathbb{R}^{n}, \mathbb{C}^{M}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with $P_j = p_j(D)$ zero-order projections, $a(\xi) \in S^d(\mathbb{R}^n, \mathbb{C}^{M \times M})$.

ψ do of Toeplitz type

Aim: We want to construct the inverse of ψ do of the form

$$P_{1}\left(\mu^{d}-a(D)\right)P_{0}:\ P_{0}\left(H^{s}(\mathbb{R}^{n},\mathbb{C}^{M})\right)\longrightarrow P_{1}\left(H^{s-d}(\mathbb{R}^{n},\mathbb{C}^{M})\right)$$

with $P_j = p_j(D)$ zero-order projections, $a(\xi) \in S^d(\mathbb{R}^n, \mathbb{C}^{M \times M})$.

Problem: Here, the regularity number is $\nu = 0$. Cannot use Grubb's class $S^{d,0}$.

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.

Then "elliptic = parametrix = Fredholm".

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.

Then "elliptic = parametrix = Fredholm".

The BdM calculus is made by operators of the form

$$\begin{pmatrix} A & K \\ T & Q \end{pmatrix} : \begin{array}{c} H^{s}(M, E_{0}) & H^{s-\mu}(M, E_{1}) \\ \oplus & \oplus \\ H^{s}(\partial M, F_{0}) & H^{s-\mu}(\partial M, F_{1}) \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boutet de Monvel's calculus for bvp (without parameter) allows the construction of parametrices to Shapiro-Lopatinskij elliptic (differential) bvp.

Then "elliptic = parametrix = Fredholm".

The BdM calculus is made by operators of the form

$$\begin{pmatrix} A & K \\ T & Q \end{pmatrix} : \begin{array}{c} H^{s}(M, E_{0}) & H^{s-\mu}(M, E_{1}) \\ \oplus & \oplus \\ H^{s}(\partial M, F_{0}) & H^{s-\mu}(\partial M, F_{1}) \end{array}$$

Observation: Not every elliptic differential operator A can be completed to an elliptic bvp $\begin{pmatrix} A \\ T \end{pmatrix}$ in BdM's calculus.

Example: $D \subset \mathbb{R}^2$ unit-disc and

$$\begin{pmatrix} \overline{\partial} \\ P \circ \cdot |_{\partial D} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix} \begin{pmatrix} \overline{\partial} \\ \cdot |_{\partial D} \end{pmatrix} : H^{s}(D) \longrightarrow \begin{array}{c} H^{s-1}(D) \\ \oplus \\ P(H^{s-1/2}(\partial D)) \end{pmatrix}$$

with Calderon-projector $P \in L^0(\partial D)$ is Fredholm (isomorphism).

Example: $D \subset \mathbb{R}^2$ unit-disc and

$$\begin{pmatrix} \overline{\partial} \\ P \circ \cdot |_{\partial D} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix} \begin{pmatrix} \overline{\partial} \\ \cdot |_{\partial D} \end{pmatrix} : H^{s}(D) \longrightarrow \begin{array}{c} H^{s-1}(D) \\ \oplus \\ P(H^{s-1/2}(\partial D)) \end{pmatrix}$$

with Calderon-projector $P \in L^0(\partial D)$ is Fredholm (isomorphism).

Schulze, Shatalov, Sternin (~ 2000): Systematic study of ellipticity and Fredholm property of operators

$$\begin{pmatrix} A \\ P_1 T \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & P_1 \end{pmatrix} \begin{pmatrix} A & K \\ T & Q \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & P_0 \end{pmatrix},$$

with zero-order projections P_j on the boundary. This results in an "extended" BdM calculus.

Example: The Stokes operator on a bounded domain $\Omega \subset \mathbb{R}^n$ is

$$\begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} \Delta \\ \cdot |_{\partial \Omega} \end{pmatrix} P : \ H^{s}_{\sigma}(\Omega, \mathbb{C}^{n}) \longrightarrow \begin{array}{c} H^{s-2}_{\sigma}(\Omega, \mathbb{C}^{n}) \\ \oplus \\ H^{s-1/2}_{\nu}(\partial \Omega, \mathbb{C}^{n}) \end{array}$$

with the solenoidal vector-fields on Ω and "tangential vector-fields" on the boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

P is the Helmholtz projection, Q "projection along normal".

Question: Given some kind of "calculus of ψ do", what can we say about Toeplitz type operators

$$A'=P_1\,A\,P_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $P_j = P_j^2$ are zero-order projections from the calculus?

Question: Given some kind of "calculus of ψ do", what can we say about Toeplitz type operators

$$A'=P_1\,A\,P_0$$

where $P_j = P_j^2$ are zero-order projections from the calculus?

Theorem: If the calculus is "nice" i.e.,

- ellipticity, existence of a parametrix, and Fredholm property are equivant to the invertibility of principal symbol(s),
- the calculus is closed under taking the formal adjoint,

then all descents to the Toeplitz calculus, using principal symbol(s)

 $\sigma(A') = \sigma(P_1) \, \sigma(A) \, \sigma(P_0) : \text{ range } \sigma(P_0) \longrightarrow \text{ range } \sigma(P_1).$

Homogeneous components:

$$\begin{split} & \text{Hörmander: } |D_{\xi}^{\alpha}D_{\mu}^{j}\textbf{\textit{a}}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j}, \quad (\xi,\mu) \neq 0. \\ & \text{Grubb: } |D_{\xi}^{\alpha}D_{\mu}^{j}\textbf{\textit{a}}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j} + |\xi|^{\nu-|\alpha|}|\xi,\mu|^{d-\nu-j}, \quad \xi \neq 0. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Homogeneous components:

$$\begin{split} & \mathsf{H\ddot{o}rmander:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j}, \quad (\xi,\mu) \neq 0. \\ & \mathsf{Grubb:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j} + |\xi|^{\nu-|\alpha|}|\xi,\mu|^{d-\nu-j}, \quad \xi \neq 0. \end{split}$$

Positively homogeneous fctns in (ξ, μ) of degree d are of the form

$$\boldsymbol{a}(\xi,\mu) = |(\xi,\mu)|^d \,\,\widehat{\boldsymbol{a}}\Big(\frac{(\xi,\mu)}{|(\xi,\mu)|}\Big).$$

Homogeneous components:

$$\begin{split} & \mathsf{H\ddot{o}rmander:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j}, \qquad (\xi,\mu) \neq 0. \\ & \mathsf{Grubb:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j} + |\xi|^{\nu-|\alpha|}|\xi,\mu|^{d-\nu-j}, \quad \xi \neq 0. \end{split}$$

Positively homogeneous fctns in (ξ, μ) of degree d are of the form

$$\mathbf{a}(\xi,\mu) = |(\xi,\mu)|^d \,\,\widehat{\mathbf{a}}\Big(\frac{(\xi,\mu)}{|(\xi,\mu)|}\Big).$$

Remark: If $\mathbb{S}^{n}_{+} = \{(\xi, \mu) \mid |\xi|^{2} + \mu^{2} = 1, \ \mu \geq 0\}$ then

$$S^{d-\ell}_{hom}\cong C^\infty(\mathbb{S}^n_+).$$

Homogeneous components:

$$\begin{split} & \mathsf{H\ddot{o}rmander:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j}, \qquad (\xi,\mu) \neq 0. \\ & \mathsf{Grubb:} \ |D_{\xi}^{\alpha}D_{\mu}^{j}\mathbf{a}(\xi,\mu)| \lesssim |\xi,\mu|^{d-|\alpha|-j} + |\xi|^{\nu-|\alpha|}|\xi,\mu|^{d-\nu-j}, \quad \xi \neq 0. \end{split}$$

Positively homogeneous fctns in (ξ, μ) of degree d are of the form

$$a(\xi,\mu) = |(\xi,\mu)|^d \ \widehat{a}\left(\frac{(\xi,\mu)}{|(\xi,\mu)|}\right).$$

Remark: If $\mathbb{S}^{n}_{+} = \{(\xi, \mu) \mid |\xi|^{2} + \mu^{2} = 1, \ \mu \geq 0\}$ then

$$S^{d-\ell}_{hom}\cong C^\infty(\mathbb{S}^n_+).$$

Question: To which space corresponds $S_{hom}^{d-\ell,\nu-\ell}$?

Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$r = r(\xi, \mu) = |\xi|, \ \phi = \phi(\xi, \mu) = \xi/|\xi|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider the punctured semi-sphere $\widehat{\mathbb{S}}^{n}_{+}$ with (polar-)coordinates

$$r = r(\xi, \mu) = |\xi|, \ \phi = \phi(\xi, \mu) = \xi/|\xi|$$

Definition: $\hat{a} \in C^{\infty}_{B}(\widehat{\mathbb{S}}^{n}_{+})$ if \hat{a} is smooth on $\widehat{\mathbb{S}}^{n}_{+}$ and $(r\partial_{r})^{j}\partial_{\phi}^{\alpha}\hat{a}$ is bounded for all orders j, α .

Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$r = r(\xi, \mu) = |\xi|, \ \phi = \phi(\xi, \mu) = \xi/|\xi|$$

Definition: $\hat{a} \in C^{\infty}_{\mathcal{B}}(\widehat{\mathbb{S}}^{n}_{+})$ if \hat{a} is smooth on $\widehat{\mathbb{S}}^{n}_{+}$ and $(r\partial_{r})^{j}\partial_{\phi}^{\alpha}\hat{a}$ is bounded for all orders j, α .

Theorem: $S_{hom}^{d,\nu} \cong C^{\infty}(\mathbb{S}^n_+) + r^{\nu} C_B^{\infty}(\widehat{\mathbb{S}}^n_+)$ (regularity = weight)

Consider the punctured semi-sphere $\widehat{\mathbb{S}}_{+}^{n}$ with (polar-)coordinates

$$r = r(\xi, \mu) = |\xi|, \ \phi = \phi(\xi, \mu) = \xi/|\xi|$$

Definition: $\hat{a} \in C^{\infty}_{\mathcal{B}}(\widehat{\mathbb{S}}^{n}_{+})$ if \hat{a} is smooth on $\widehat{\mathbb{S}}^{n}_{+}$ and $(r\partial_{r})^{j}\partial_{\phi}^{\alpha}\hat{a}$ is bounded for all orders j, α .

Theorem: $S^{d,\nu}_{hom} \cong C^{\infty}(\mathbb{S}^n_+) + r^{\nu} C^{\infty}_B(\widehat{\mathbb{S}}^n_+)$ (regularity = weight)

Definition: $\widetilde{S}_{hom}^{d,\nu} \cong r^{\nu} C_{B}^{\infty}(\widehat{\mathbb{S}}_{+}^{n})$. \rightsquigarrow Yields full class $\widetilde{S}^{d,\nu}$.

Theorem: $S^{d,\nu} = S^d + \widetilde{S}^{d,\nu}$. In particular: $S^{d,\nu} = \widetilde{S}^{d,\nu}$ whenever $\nu \leq 0$.

Remark: $\widetilde{S}_{hom}^{d,0} \cong C_B^{\infty}(\widehat{\mathbb{S}}^n_+)$ is not closed under taking inverses.

・ロト・日本・日本・日本・日本・今日の

Remark: $\widetilde{S}_{hom}^{d,0} \cong C_B^{\infty}(\widehat{\mathbb{S}}^n_+)$ is not closed under taking inverses.

Definition: $\widehat{a} \in C^{\infty}_{\mathsf{T}}(\widehat{\mathbb{S}}^n_+)$ if $\widehat{a} \in C^{\infty}_B(\widehat{\mathbb{S}}^n_+)$ and

$$\widehat{a}(r,\phi) \sim_{r \to 0+} \sum_{k \ge 0} r^k \widehat{a}_k(\phi).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: $\widetilde{S}_{hom}^{d,0} \cong C_B^{\infty}(\widehat{\mathbb{S}}^n_+)$ is not closed under taking inverses.

Definition: $\widehat{a} \in C^{\infty}_{\mathsf{T}}(\widehat{\mathbb{S}}^n_+)$ if $\widehat{a} \in C^{\infty}_B(\widehat{\mathbb{S}}^n_+)$ and

$$\widehat{a}(r,\phi) \sim_{r \to 0+} \sum_{k \ge 0} r^k \widehat{a}_k(\phi).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma: Let $\hat{a} \in r^{\nu} C^{\infty}_{\mathbf{T}}(\widehat{\mathbb{S}}^{n}_{+})$. Then $1/\hat{a} \in r^{-\nu} C^{\infty}_{\mathbf{T}}(\widehat{\mathbb{S}}^{n}_{+})$ iff

•
$$\widehat{a}$$
 never vanishes on $\widehat{\mathbb{S}}^n_+$ and

$$ullet \ \widehat{a_0}$$
 never vanishes on \mathbb{S}^{n-1}

Remark: $\widetilde{S}_{hom}^{d,0} \cong C_B^{\infty}(\widehat{\mathbb{S}}^n_+)$ is not closed under taking inverses.

Definition: $\widehat{a} \in C^{\infty}_{\mathsf{T}}(\widehat{\mathbb{S}}^n_+)$ if $\widehat{a} \in C^{\infty}_B(\widehat{\mathbb{S}}^n_+)$ and

$$\widehat{a}(r,\phi) \sim_{r \to 0+} \sum_{k \ge 0} r^k \widehat{a}_k(\phi).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma: Let $\widehat{a} \in r^{\nu} C^{\infty}_{\mathbf{T}}(\widehat{\mathbb{S}}^{n}_{+})$. Then $1/\widehat{a} \in r^{-\nu} C^{\infty}_{\mathbf{T}}(\widehat{\mathbb{S}}^{n}_{+})$ iff

•
$$\widehat{a}$$
 never vanishes on $\widehat{\mathbb{S}}^n_+$ and

•
$$\widehat{a}_0$$
 never vanishes on \mathbb{S}^{n-1}

Definition:
$$\widetilde{\mathbf{S}}_{hom}^{d,\nu} \cong r^{\nu} C^{\infty}_{\mathbf{T}}(\widehat{\mathbb{S}}_{+}^{n}).$$

We could implement a symbol class $\widetilde{S}_T^{d,\nu}\subset \widetilde{S}^{d,\nu}$ with

- principal symbol $\sigma(a) \in \widetilde{S}_{hom}^{d,\nu}$,
- ▶ principal angular symbol $\widehat{\sigma}(a) = \widehat{\sigma}(\sigma(a)) \in S^{\nu}(\mathbb{R}^{n}_{\xi} \setminus 0).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We could implement a symbol class $\widetilde{S}_T^{d,\nu}\subset \widetilde{S}^{d,\nu}$ with

- principal symbol $\sigma(a) \in \widetilde{S}_{hom}^{d,\nu}$,
- ▶ principal angular symbol $\widehat{\sigma}(a) = \widehat{\sigma}(\sigma(a)) \in S^{\nu}(\mathbb{R}^{n}_{\xi} \setminus 0).$

Lemma: Let $a \in \widetilde{S}_T^{d,\nu}$ have non-vanishing principal symbols. Then there exists a $b \in \widetilde{S}_T^{-d,-\nu}$ such that

$$a(\mu,D)b(\mu,D)=1+r(\mu,D), \quad r\in \widetilde{S}^{0-\infty,0-\infty}= {S}^0(\overline{\mathbb{R}}_+,S^{-\infty}(\mathbb{R}^n_\xi).$$

We could implement a symbol class $\widetilde{S}_T^{d,\nu}\subset \widetilde{S}^{d,\nu}$ with

- principal symbol $\sigma(a) \in \widetilde{\mathbf{S}}_{hom}^{d,\nu}$,
- ▶ principal angular symbol $\widehat{\sigma}(a) = \widehat{\sigma}(\sigma(a)) \in S^{\nu}(\mathbb{R}^{n}_{\xi} \setminus 0).$

Lemma: Let $a \in \widetilde{S}_T^{d,\nu}$ have non-vanishing principal symbols. Then there exists a $b \in \widetilde{S}_T^{-d,-\nu}$ such that

$$a(\mu,D)b(\mu,D)=1+r(\mu,D),\quad r\in\widetilde{S}^{0-\infty,0-\infty}=S^0(\overline{\mathbb{R}}_+,S^{-\infty}(\mathbb{R}^n_\xi).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Observation: We still need a condition at $\mu = +\infty$ such that we get a remainder decaying in μ !

Key observation: Let $a \in \widetilde{\mathbf{S}}_{hom}^{d,\nu}$. Then, for every N,

$$a(\xi,\mu) = \sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_j\left(\frac{\xi}{|\xi|}\right)}_{=:a_{\nu+j}^{\infty}(\xi) \in S_{hom}^{\nu+j}(\mathbb{R}^n \setminus 0)} \underbrace{|\xi,\mu|^{d-\nu-j}}_{\in S_{hom}^{d-\nu-j}} \mod \widetilde{S}_{hom}^{d,\nu+N}.$$

Key observation: Let $a \in \widetilde{\mathbf{S}}_{hom}^{d,\nu}$. Then, for every N,

$$a(\xi,\mu) = \sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_j\left(\frac{\xi}{|\xi|}\right)}_{=:a_{\nu+j}^{\infty}(\xi) \in S_{hom}^{\nu+j}(\mathbb{R}^n \setminus 0)} \underbrace{|\xi,\mu|^{d-\nu-j}}_{\in S_{hom}^{d-\nu-j}} \mod \widetilde{S}_{hom}^{d,\nu+N}.$$

All of this can be incorporated in a resulting symbol class: **Definition:** $a \in \widetilde{S}^{d,\nu}$ if

- ► has homogeneous components in $\widetilde{\mathbf{S}}_{hom}^{d-\ell,\nu-\ell}$,
- admits an expansion $a \sim \sum_{j} a_{\nu+j}^{\infty}(\xi) [\xi, \mu]^{d-\nu-j}$ with symbols $a_{\nu+j}^{\infty} \in S^{\nu+j}(\mathbb{R}^n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Key observation: Let $a \in \widetilde{\mathbf{S}}_{hom}^{d,\nu}$. Then, for every N,

$$a(\xi,\mu) = \sum_{j=0}^{N-1} \underbrace{|\xi|^{\nu+j} \widehat{a}_j\left(\frac{\xi}{|\xi|}\right)}_{=:a_{\nu+j}^{\infty}(\xi) \in S_{hom}^{\nu+j}(\mathbb{R}^n \setminus 0)} \underbrace{|\xi,\mu|^{d-\nu-j}}_{\in S_{hom}^{d-\nu-j}} \mod \widetilde{S}_{hom}^{d,\nu+N}.$$

All of this can be incorporated in a resulting symbol class: **Definition:** $a \in \widetilde{S}^{d,\nu}$ if

- ► has homogeneous components in $\widetilde{\mathbf{S}}_{hom}^{d-\ell,\nu-\ell}$,
- admits an expansion $a \sim \sum_j a_{\nu+j}^{\infty}(\xi) [\xi, \mu]^{d-\nu-j}$ with symbols $a_{\nu+j}^{\infty} \in S^{\nu+j}(\mathbb{R}^n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition: $a_{\nu}^{\infty}(D)$ is the principal limit operator of $a \in \widetilde{S}^{d,\nu}$.

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

Definition: $a \in \widetilde{S}^{d,\nu}$ is called elliptic if its homogeneous principal symbol never vanishes and its principle limit-operator is invertible.

Theorem: If $a \in \widetilde{S}^{d,\nu}$ is elliptic then there exists a $b \in \widetilde{S}^{-d,-\nu}$ such that

$$a(\mu, D)b(\mu, D) = b(\mu, D)a(\mu, D) = 1, \qquad \mu >> 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: The homogeneous principal symbol of the principal limit-operator coincides with the principal angular symbol.

Definition: $a \in \widetilde{S}^{d,\nu}$ is called elliptic if its homogeneous principal symbol never vanishes and its principle limit-operator is invertible.

Theorem: If $a \in \widetilde{S}^{d,\nu}$ is elliptic then there exists a $b \in \widetilde{S}^{-d,-\nu}$ such that

$$a(\mu, D)b(\mu, D) = b(\mu, D)a(\mu, D) = 1, \qquad \mu >> 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This result is "inherited" by ψ do of Toeplitz type.

Inverses of Toeplitz type ψ do

Consider an operators of the form

$$A(\mu) = P_1 a(D,\mu) P_0, \qquad a \in \widetilde{\mathbf{S}}^{d,0}.$$

Inverses of Toeplitz type ψ do

Consider an operators of the form

 $A(\mu) = P_1 a(D, \mu) P_0, \qquad a \in \widetilde{\mathbf{S}}^{d,0}.$

Theorem: Assume invertibility of • $\sigma(P_1) \sigma(a) \sigma(P_1) : \sigma(P_0)(T^* \mathbb{R}^n \times \mathbb{C}^M) \to \sigma(P_1)(T^* \mathbb{R}^n \times \mathbb{C}^M)$ • $P_1 a_0^\infty(D) P_0 : P_0(H^s(\mathbb{R}^n, \mathbb{C}^M)) \to P_1(H^s(\mathbb{R}^n, \mathbb{C}^M))$ Then there exists $B(\mu) = P_0 b(D, \mu) P_1$ with $b \in \widetilde{\mathbf{S}}^{-d,0}$ s.t.

$$A(\mu)B(\mu) = P_1, \quad B(\mu)A(\mu) = P_0, \qquad \mu >> 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inverses of Toeplitz type ψ do

Consider an operators of the form

 $A(\mu) = P_1 a(D,\mu) P_0, \qquad a \in \widetilde{\mathbf{S}}^{d,0}.$

Theorem: Assume invertibility of • $\sigma(P_1) \sigma(a) \sigma(P_1) : \sigma(P_0)(T^* \mathbb{R}^n \times \mathbb{C}^M) \to \sigma(P_1)(T^* \mathbb{R}^n \times \mathbb{C}^M)$ • $P_1 a_0^\infty(D) P_0 : P_0(H^s(\mathbb{R}^n, \mathbb{C}^M)) \to P_1(H^s(\mathbb{R}^n, \mathbb{C}^M))$

Then there exists $B(\mu) = P_0 b(D, \mu) P_1$ with $b \in \widetilde{\mathbf{S}}^{-d,0}$ s.t.

 $A(\mu)B(\mu) = P_1, \quad B(\mu)A(\mu) = P_0, \qquad \mu >> 1.$

Remark: In case $a(D, \mu) = \mu^d - a(D)$, $a(\xi) \in S^d$, the second condition is equivalent to the invertibility of

$$P_1: P_0(H^s(\mathbb{R}^n, \mathbb{C}^M)) \to P_1(H^s(\mathbb{R}^n, \mathbb{C}^M)).$$

Let $P \in S^d(\mathbb{R}^n)$, $d \in \mathbb{N}$, be elliptic w.r.t. a closed sector $\Lambda \subset \mathbb{C}$. We are interested in

$$\operatorname{Tr}(Q(\lambda - P)^{-N}), \quad |\lambda| \to \infty,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $Q \in S^{\omega}(\mathbb{R}^n)$, $\omega \in \mathbb{R}$, and $\omega - Nd < -n$.

Let $P \in S^d(\mathbb{R}^n)$, $d \in \mathbb{N}$, be elliptic w.r.t. a closed sector $\Lambda \subset \mathbb{C}$. We are interested in

$$\operatorname{Tr}(Q(\lambda - P)^{-N}), \quad |\lambda| \to \infty,$$

where $Q \in S^{\omega}(\mathbb{R}^n)$, $\omega \in \mathbb{R}$, and $\omega - Nd < -n$.

Theorem (Grubb-Seeley '95): If $k(x, y, \lambda)$ is the distributional kernel of the above operator, there exist $c_j, c'_j, c''_j \in C^{\infty}_{b}(\mathbb{R}^n)$ such that

$$k(x,x,\lambda) \sim \sum_{j=0}^{+\infty} c_j(x) \lambda^{\frac{n+\omega-j}{d}-N} + \sum_{j=0}^{+\infty} \left(c_j'(x) \log \lambda + c_j''(x)\right) \lambda^{-N-j},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

uniformly for $\lambda \in \Lambda$ with $|\lambda| \longrightarrow +\infty$.

Lemma:
$$a(\xi, \mu) \in \widetilde{S}^{d,\nu}$$
, $d - \nu \leq 0$, has a Grubb-Seeley expansion:

$$a(\xi,\mu) \sim_{\mu \to +\infty} \sum_{\ell} q_{\ell}(\xi) \mu^{d-\nu-\ell}, \qquad q_{\ell} \in S^{\nu+\ell}(\mathbb{R}^n).$$

If also d < -n this results in an expansion

$$k_a(x, x, \mu) \sim \sum_{j=0}^{+\infty} c_j(x) \mu^{d-j+n} + \sum_{\ell=0}^{+\infty} (c'_\ell(x) \log \mu + c''_j(x)) \mu^{d-\nu-\ell}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of the Lemma:

Start out from expansion the

$$a(\xi,\mu)\sim \sum_j a_{\nu+j}^\infty(\xi) \ [\xi,\mu]^{d-\nu-j}, \qquad a_{\nu+j}^\infty(\xi)\in S^{\nu+j},$$

and insert expansions

$$[\xi,\mu]^m \sim \sum_{\ell} \zeta_{m,j}(\xi) \,\mu^{m-\ell}, \qquad m \leq 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with homogeneous polynomials $\zeta_{m,j}$ of degree *j*.

Proof of the Lemma:

Start out from expansion the

$$a(\xi,\mu)\sim \sum_j a_{\nu+j}^\infty(\xi) \ [\xi,\mu]^{d-\nu-j}, \qquad a_{\nu+j}^\infty(\xi)\in S^{\nu+j},$$

and insert expansions

$$[\xi,\mu]^m \sim \sum_{\ell} \zeta_{m,j}(\xi) \,\mu^{m-\ell}, \qquad m \leq 0,$$

with homogeneous polynomials $\zeta_{m,j}$ of degree *j*.

Repeat the proof of Grubb-Seeley to get expansion of $k_a(x, x, \mu)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the resolvent kernel expansion:

Using the $\widetilde{\boldsymbol{S}}\text{-calculus}$ in the, one can show that

$$Q(\mu^d - e^{i heta} P)^{-N} \in \widetilde{\mathbf{S}}^{\omega - Nd, \omega}$$

uniformly in θ with $e^{i\theta} \in \Lambda$.

Combine this with the previous lemma.

The manifold case

The calculus can be defined for any closed Riemannian manifold M (and operators acting on sections of smooth vector bundles).

• Coordinate-invariance of
$$\widetilde{\mathbf{S}}^{d,\nu}$$

Standard patching of local operators with partion of unity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The manifold case

The calculus can be defined for any closed Riemannian manifold *M* (and operators acting on sections of smooth vector bundles).

• Coordinate-invariance of
$$\widetilde{\mathbf{S}}^{d,\nu}$$

Standard patching of local operators with partion of unity.

Theorem: The above local expansion has a global analogue:

$$A(\mu) \sim \sum_{j=0}^{\infty} A_{\nu+j}^{\infty} \Lambda^{d-\nu-j}(\mu), \qquad A_{\nu+j}^{\infty} \in L^{\nu+j}(M),$$

where the $\Lambda^{\alpha}(\mu)$ are ψ do of order α with principal symbol

$$\sigma(\Lambda^{\alpha})(\xi,\mu) = (|\xi|^2 + \mu^2)^{\alpha/2}.$$

The manifold case

The ellipticity on M involves:

- homogeneous principal symbol,
- limit operator: $A^{\infty}_{\nu}(D) \in L^{\nu}(M)$.

As a subordinate principal symbol we have

• principal angular symbol $\sigma(A_{\nu}^{\infty})$.

Some papers

- J. S., Parametric pseudodifferential operators with point-singularity in the covariable. Annals of Global Analysis and Geometry 61 (2022), 553–592.
- J. S., Singular Green operators in the edge algebra formalism. Journal of Mathematical Analysis and Applications 511 (2022), Paper No. 126041, 39 pp.
- B.-W. Schulze, J. S., *Elliptic complexes on manifolds with boundary*, Journal of Geometric Analysis **29** (2019), no. 1, 656-706.
- J. S., Parameter-dependent pseudodifferential operators of Toeplitz type. Annali di Matematica Pura ed Applicata 194 (2015), no. 1, 145-165.
- J. S., Ellipticity in pseudodifferential algebras of Toeplitz type. Journal of Functional Analysis 263 (2012), no. 5, 1408-1434.

Thank you for your attention !

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ