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Issues to be addressed

Let ξ : C([0, T ];Rn) → R be a Borel functional, let F = (Ft)t≥0
be a reference filtration generated by a multi-dimensional Brownian
motion. Let UT

t ; 0 ≤ t < T be the set of F-predictable controls
defined over (t, T ] and taking values on a compact subset A.

Let {Xu; u ∈ UT
0 } be a family of F-adapted controlled processes.

We are interested in the stochastic optimal control problem

sup
ϕ∈UT

0

E
[
ξ
(
X ϕ
)]

in the following sense:



Issues to be addressed

QUESTION: For a given error bound ϵ > 0, how to design a
numerical scheme to compute ϵ-optimal controls ϕ∗,ϵ, i.e.,

E
[
ξ
(
Xϕ∗,ϵ)] ≥ sup

ϕ∈UT
0

E
[
ξ
(
Xϕ)]− ϵ.

This is an old, classical and (at some extent) well-understood
question in case Xϕ is a controlled Markov process. Answer:

PDE techniques (Hamilton-Jacobi-Bellman) and Monte Carlo
schemes.
Markov chain approximations.
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Beyond Markovian case: Path-dependent SDEs driven by
Brownian motion

dX u(t) =
path-dependent functional︷ ︸︸ ︷

α(t, X u
t , u(t)) dt +

path-dependent functional︷ ︸︸ ︷
σ(t, X u

t , u(t)) dB(t),

where B is a Brownian motion and X u
t := {X u(s); 0 ≤ s ≤ t}.

▶ Characterizations of the value process.

2BSDEs: Nutz (2012)

Randomization approach: Fuhrman and Pham (2015)

2BSDE and path-dependent PDEs: Possamäı, Tan and Zhou
(2018).

Functional HJB-type equation: Qiu, J. (2018).



Beyond Markovian case: Path-dependent SDEs driven by
Brownian motion

▶ Numerical methods for path-dependent SDEs driven by Brownian
motion.

G-expectations: Dolinsky (2012).

Monte Carlo scheme: Tan (2014).

Monotone scheme for path-dependent PDE: Zhang and Zuo (2014),
Ren and Tan (2016).

Policy iteration algorithm: Possamäı and Tangpi (2024).



Controlled systems with non-trivial memory

In the fully non-Markovian case, feasible numerical approximation
schemes are very challenging !

Typical non-trivial example:

dX u(t) =
non-anticipative functional︷ ︸︸ ︷

α(t, X u
t , u(t)) dt +

fully non-Markovian︷ ︸︸ ︷
σ(t, X u

t , u(t))dBH(t)

where BH is a fractional Brownian motion with exponent H ∈ (0, 1)
given by

B 7→ BH(·) =
∫ ·

0
KH(·, u)dB(u)



Controlled systems with non-trivial memory

B 7→ BH(·) =
∫ ·

0
KH(·, u)dB(u)

Highly singular infinite-dimensional map for 0 < H < 1
2

Regular infinite-dimensional map for 1
2 < H < 1

If H ̸= 1
2 , one cannot reduce it to a Markovian situation

without adding infinitely many degrees of freedom.



Related literature

Optimality characterization:
▶ Maximum principle

Biagini, Hu, Oksendal and Sulem (2002)

Han, Hu and Song (2013).

▶ Lifting approach, relaxed controls:

Path-dependent-type PDE: Viens and Zhang (2018)

Control in UMD spaces: Di Nunno and Giordano (2023),
Chakraborty, Honnappa and Tindel (2024).

Relaxed controls: Cárdenas, Pulido and Serrano (2025).

▶ An attempt to a numerical scheme:

Infinite-dimensional Ricatti equations for linear-quadratic problems:
Jaber, Miller and Pham (2021).
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Typical examples we have in mind

In this talk, we will present a concrete numerical scheme for
computing near optimal controls for controlled processes adapted to
the Brownian filtration beyond the linear-quadratic cases:

dX u(t) =
path-dependent functional︷ ︸︸ ︷

α(t, X u
t , u(t)) dt +

path-dependent functional︷ ︸︸ ︷
σ(t, X u

t , u(t)) dB(t), (1)

dX u(t) =
non-linear functional︷ ︸︸ ︷
α(t, X u

t , u(t)) dt +

fully non-Markovian︷ ︸︸ ︷
σdBH(t) (2)

and 
dX u(t) = X u(t)µ

(
u(t)

)
dt + X u(t)ϑ

(
Z (t), u(t)

)
dBt

dZ (t) = Φ(dt, dZ (t), dBH(t))︸ ︷︷ ︸
SDE driven by BH

, (3)

where BH is the fractional Brownian motion with H ∈ (0, 1
2 ).



The idea of the method

We construct a suitable underlying imbedded discrete structure (we do
not lift to an infinite-dimensional Markovian system) inherited from the
Brownian motion which allows us to construct a discrete-time
backward dynamic programming equation associated with

V (t, u) = ess sup
ϕ;ϕ=u on [0,t]

E
[
ξ
(
X ϕ
)
|Ft
]
; 0 ≤ t ≤ T . (4)

where V (T , u) = ξ(X u) and V (0) = supϕ∈UT
0
E[ξ(X ϕ)].

The solution of our discrete-time dynamic programming equation
provides a near optimal stochastic control for the original problem
(4).

Optimal controls resulting from our dynamic programming equation
can be numerically computed by Machine/Deep Learning
techniques.
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Contributions

Our contribution relies on:
1 Development of a numerical scheme for computing

near-optimal controls for (possibly) fully non-Markovian
controlled processes.

2 Explicit rates of convergence are provided under rather weak
conditions.

3 Closed/open-loop optimal controls are obtained and classified
according to the strength of the possibly underlying
non-Markovian memory.
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Basic structure of D

We are going to fix a d-dimensional Brownian motion
B = {B1, . . . , Bd} on (Ω,F,P), where Ω is the space
C(R+;Rd) := {f : R+ → Rd continuous}, P is the Wiener
measure on Ω such that P{B(0) = 0} = 1 and F := (Ft)t≥0 is the
usual P-augmentation of the natural filtration generated by the
Brownian motion.

In the sequel,

u 7→ Xu

is a controlled F-adapted continuous process defined on UT
0 .
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Standing assumptions

In the sequel, we denote
Dn,T := {h : [0, T ] → Rn with càdlàg paths}. We now present the
two standing assumptions of this talk.

Assumption (A1): The payoff ξ : Dn,T → R satisfies the
following regularity assumption: There exists γ ∈ (0, 1] and a
constant ∥ξ∥ > 0 such that

|ξ(f ) − ξ(g)| ≤ ∥ξ∥∥f − g∥γ
∞,

for every f , g ∈ Dn,T , where ∥f ∥∞ := sup0≤t≤T |f (t)|.

Assumption (B1): There exists a constant C such that

E∥Xu − X η∥2
∞ ≤ CE

∫ T

0
|u(s) − η(s)|2ds, (5)

for every u, η ∈ UT
0 .



The underlying discrete skeleton D

We start by constructing a sequence T := {T k
n ; n ≥ 0} of hitting

times which will be the basis for our discretization scheme. Fix a
sequence ϵk ↓ 0 as k → +∞. We set T k

0 := 0 and

T k
n := inf{T k

n−1 < t < ∞; |B(t) − B(T k
n−1)| = ϵk}, n ≥ 1.

Then, we define Ak := (Ak,1, · · · , Ak,d) by

Ak,j(t) :=
∞∑

n=1

(
Bj(T k

n ) − Bj(T k
n−1)

)
1{T k

n ≤t}; t ≥ 0, j = 1, . . . , d ,

for integers k ≥ 1.



The underlying discrete skeleton

In the one dimensional case, we have

T k
n = inf

{
T k

n−1 < t < ∞; |B(t) − B(T k
n−1)| = εk

}
, n ≥ 1.

{Ak(T k
n ) − Ak(T k

n−1); n ≥ 1} is an iid sequence of Bernoulli variables.



The underlying discrete skeleton

Let Fk = (Fk
t )t≥0 be the filtration generated by Ak . One can

check

Fk
T k

n
= σ

(
∆T k

i , ∆Ak(T k
i ); 1 ≤ i ≤ n

)
,

where ∆T k
n := T k

n − T k
n−1︸ ︷︷ ︸

Burq Jones algorithm (2008)

d= T k
1 and

∆Ak(T k
n ) := Ak(T k

n ) − Ak(T k
n−1)︸ ︷︷ ︸

Bernoulli (1-dim) or conditioned truncated Gaussian (d-dim)

.

Definition
The structure D = {T , Ak ; k ≥ 1} is called a discrete-type
skeleton for the Brownian motion.



The number of steps

Let us define

e(k, T ) :=
⌈ϵ−2

k T
χd

⌉
,

where ⌈x⌉ is the smallest integer greater or equal to x ≥ 0 and

χd := Emin{τ1, . . . , τd},

where (τ j)d
j=1 is an iid sequence of random variables with

distribution inf{t > 0; |W (t)| = 1} for a real-valued standard
Brownian motion W .



Discretizing the set of controls

Let Uk,e(k,T )
0 be the set of Fk -predictable processes of the form

vk(t) =
e(k,T )∑

j=1
vk

j−11{T k
j−1<t≤T k

j },

where for each j = 1, . . . , e(k, T ), vk
j−1 is an A-valued

Fk
T k

j−1
-measurable random variable.



Controlled imbedded discrete structures

The structure D is dense in the Wiener space in the following sense:

Theorem Leão, O-A (2018, 2024)
For a given controlled process u 7→ X u satisfying Assumption B1, we can
associate a discrete type structure X =

(
(X k)k≥1, D

)
of the following

form: For each ϕ ∈ Uk,e(k,T )
0 ,

X k,ϕ(t) =
∞∑

n=0
X k,ϕ(T k

n )1{T k
n ≤t∧T k

e(k,T )<T k
n+1},

where X k,ϕ(T k
n ) is Fk

T k
n
-measurable for every n ≥ 0 and k ≥ 1.

Moreover, there exists a positive sequence hk ↓ 0 such that

sup
ϕ∈Uk,e(k,T )

0

E∥X k,ϕ − X ϕ∥∞ ≲ hk ,

for k ≥ 1. A pair (X , X ) is called an imbedded discrete structure for
X .



Typical examples of controlled imbedded discrete structures

(Controlled path-dependent SDEs)

X k,vk
(T k

n ) = X k,vk
(T k

n−1) + α
(

T k
n−1, X k,vk

T k
n−1

, vk
n−1

)
∆T k

n

+ σ
(

T k
n−1, X k,vk

T k
n−1

, vk
n−1

)
∆Ak(T k

n ),

for n ≥ 1.

(Controlled path-dependent SDEs driven by FBM)

X k,vk
(T k

n ) = X k,vk
(T k

n−1) + α
(

T k
n−1, X k,vk

T k
n−1

, vk
n−1

)
∆T k

n

+ σ∆Bk
H(T k

n ),

Bk
H is a D-discretization of BH .
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The FBM imbedded discrete structure
Let KH(t, s) = KH,1(t, s) + KH,1(t, s) be the classical
Volterra-kernel of FBM,

KH,1(t, s) := cH,1tH− 1
2 s

1
2 −H(t − s)H− 1

2 ,

KH,2(t, s) := cH,2s
1
2 −H

∫ t

s
uH− 3

2 (u − s)H− 1
2 du

for s < t and constants cH,1 and cH,2.

Let Cλ
0 be the space of Hölder continuous functions f such that

f (0) = 0. For each f ∈ Cλ
0 , we set

(ΛH f )(t) :=
∫ t

0
∂sKH,1(t, s)[f (t) − f (s)]ds

−
∫ t

0
∂sKH,2(t, s)f (s)ds.



The FBM imbedded discrete structure

Theorem O-A, Souza (2020)
Any FBM with exponent 0 < H < 1

2 on a time interval [0, T ] can
be represented by ΛHB for a real-valued standard Brownian motion
B.



The FBM imbedded discrete structure

Let t̄k := max{T k
n ; T k

n ≤ t} and t̄+
k := min{T k

n ; t̄k < T k
n } ∧ T .

Bk
H(t) :=

∫ t̄k

0
∂sKH,1(t̄k , s)[Ak(t̄k) − Ak(s̄+

k )]ds

−
∫ t̄k

0
∂sKH,2(t̄k , s)Ak(s)ds.

Theorem O-A, Souza (2020)

Fix 0 < H < 1
2 and p ≥ 1. For every pair (δ, λ) such that

max{0, 1 − pH
2 } < δ < 1, λ ∈

(
1−H

2 , 1
2 + δ−1

2

)
, we have

E∥Bk
H − BH∥p

∞ ≲p,δ,λ,H,T ϵ
p(1−2λ)+2(δ−1)
k → 0

as k → +∞.



The approximated value process

Notation: ξXk (u) := ξ(X k,u) for a given controlled imbedded
discrete structure u 7→ X k,u.
We set

V k(T k
n , u) := ess sup

ϕ∈Uk,e(k,T )
n

E
[
ξXk

concatenation︷ ︸︸ ︷
(u ⊗n ϕ)

∣∣Fk
T k

n

]
, (6)

for n = 1, . . . , e(k, T ) − 1, with boundary conditions

V k(0) := V k(0, u) := sup
ϕ∈Uk,e(k,T )

0

E
[
ξXk (ϕ)

]
and

V k(T k
e(k,T ), u) := ξXk (u).

Next, we will construct a pathwise computable version of (6).



The approximated value process

Proposition

For each uk ∈ Uk,e(k,T )
0 , the discrete-time value process V k(·, uk) satisfies

V k(T k
e(k,T ), uk) = ξX k (uk) a.s

V k(T k
n , uk) =

sup︷ ︸︸ ︷
ess sup

θk
n ∈Uk,n+1

n

E

[
V k (T k

n+1, uk,n−1 ⊗n θk
n
)

| Fk
T k

n

]
,

(7)

for 0 ≤ n ≤ e(k, T ) − 1.

We can actually prove that we can replace esssup by the sup in
(7) by using analytic set theory techniques and the closed form
expression for the law of (∆T k

1 , ∆Ak(T k
1 )).
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Intuition of aggregation

For a given control uk ∈ Uk,e(k,T )
0 and a controlled structure

X =
(
(X k)k≥1, D

)
, we set

Yk,uk

j :=
(
Ak

1 , ∆X k,uk (T k
1 )), . . . , Ak

j , ∆X k,uk (T k
j ))
)
,

for 1 ≤ j ≤ e(k, T ). Here Ak
j :=

(
∆T k

j , ∆Ak(T k
j )
)
. The value

functionals can be represented by a big functional

V k(T k
n , uk) = sup

θ∈A

∫
Wk

Φ
(
Yk,uk

n−1 , X k
n
(
θ, Yk,uk

n−1 , wk))νk(dwk)

where Xk
n is the jump of the D-controlled state as step n and νk is

the law of (∆T k
1 , ∆Ak(T k

1 )) taking values on a set Wk .



The Dynamic Programming Principle

Theorem Leão, O-A (2024)-Pathwise Dynamic Programming Equation

Let νk be the law of (∆T k
1 , ∆Ak(T k

1 )). Starting from a given controlled
state (standard terminal condition)

Vk
e(k,T )(ok

e(k,T )) = ξ
(
γk

e(k,T )(ok
e(k,T ))

)
,

the value functionals (D-version of the original value process) satisfy

V k(T k
j , u) = Vk

j (Yk,u
j )

where

Uk
j

training data,control︷ ︸︸ ︷
(ok

j , θ) :=
∫
Wk

Vk
j+1

(
ok

j ,Xk
j+1(θ, ok

j , wk)
)

νk(dwk)

Vk
j (ok

j ) := sup
θ∈A

Uk
j (ok

j , θ), j = e(k, T ) − 1, . . . , 0,

where Xk
j+1 is the jump of the D-controlled state as step j + 1.



The Dynamic Programming Principle

For a given ϵ > 0, compute C ϵ
k,j : Hj

k → A (via deep/reinforcement
learning techniques) such that

Vk
j (ok

j ) ≤
∫
Wk

Vk
j+1

(
ok

j ,Xk
j+1(C ϵ

k,j(ok
j ), ok

j , wk)
)

νk(dwk) + ϵ, (8)

for every ok
j training data, where j = e(k, T ) − 1, . . . , 1. Let

ηk(ϵ) = ϵ
e(k,T ) and uk ∈ Uk,e(k,T )

0 . Define ϕ
k,ηk (ϵ)
j as follows

ϕ
k,ηk (ϵ)
j = Cηk (ϵ)

k,j (Yk,uk

j ); j = e(k, T ) − 1, . . . , 0.

The control

ϕ∗,k,ϵ := (ϕk,ηk (ϵ)
0 , ϕ

k,ηk (ϵ)
1 , . . . , ϕ

k,ηk (ϵ)
m−1 )

realizes

sup
ϕ∈Uk,e(k,T )

0

E
[
ξX k (ϕ)

]
≤ E

[
ξX k (ϕ∗,k,ϵ)

]
+ ϵ.



Rate of convergence of the numerical scheme

Theorem Leão, O-A (2024)
Let us consider a pair (X , X ), X =

(
(X k)k≥1, D

)
such that there

exists a positive sequence hk ↓ 0 such that

sup
ϕ∈Uk,e(k,T )

0

E∥X k,ϕ − Xϕ∥∞ ≲ hk , (9)

for k ≥ 1. Let V k(0) := supuk∈Uk,e(k,T )
0

E
[
ξXk (uk)

]
; k ≥ 1.

Then, for a given ϵ > 0 and β ∈ (0, 1), there exists a constant C
which depends on β, ∥ξ∥γ and Assumption (B1) such that∣∣∣ sup

ϕ∈UT
0

E
[
ξX (ϕ)

]
− V k(0)

∣∣∣ ≤ C
{
hγ

k + ϵγβ
k
}︸ ︷︷ ︸

Euler+Large deviations

+ϵ, (10)

for every k ≥ 1.



Rate of convergence of the numerical scheme

Continuation of Theorem Leão, O-A (2024)

For a given ϵ > 0 and k ≥ 1, let ϕ∗,k,ϵ ∈ Uk,e(k,T )
0 be a near

optimal control associated with the discrete-time control
problem computed before which realizes

E
[
ξXk

(
ϕ∗,k,ϵ)] > Vk(0) − ϵ

3; k ≥ 1.

Then, ϕ∗,k,ϵ ∈ UT
0 is a near optimal control for the Brownian

motion driving stochastic control problem, i.e.,

E
[
ξX
(
ϕ∗,k,ϵ)] > sup

ϕ∈UT
0

E
[
ξX (ϕ)

]
− ϵ, (11)

for every k sufficiently large.



Concrete cases

Proposition Leão, O-A (2024)
Let Xu be the controlled SDE

dXu(t) = α(t, Xu
t , u(t))dt + σ(t, Xu

t , u(t))dB(t),

where the non-anticipative functionals (α, σ) satisfy standard
Lipschitz conditions. Let X =

(
(X k)k≥1, D

)
be the Euler-type

controlled imbedded discrete structure associated with X . Then,

sup
ϕ∈Uk,e(k,T )

0

E
∥∥X k,ϕ − Xϕ

∥∥
∞ ≲ ϵ

1
2

−

k → 0, (12)

as k → ∞.



Concrete cases

Proposition Leão, O-A (2024)
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dXu(t) = α(t, Xu
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Concrete cases

Proposition Leão, O-A (2024)
Fix 0 < H < 1

2 . Let Xu be the controlled SDE{
dXu(t) = Xu(t)µ(u(t))dt + Xu(t)ϑ(Z (t), u(t))dB1(t)
dZ (t) = νdWH(t) − β(Z (t) − m)dt,

where m ∈ R, β, ν > 0, ϑ, µ satisfy standard Lipschitz assumptions
and WH is a FBM correlated to B1. Let X =

(
(X k)k≥1, D

)
be the

Euler-type controlled imbedded discrete structure associated with
X . Then,

sup
ϕ∈Uk,e(k,T )

0

E∥X k,ϕ − Xϕ∥∞ ≲ ϵH−
k → 0,

as k → +∞.



Optimal control of drifts

Theorem Leão, O-A (2024)
Let X be the controlled SDEs driven by FBM with 0 < H < 1

2 ,
where the controls affect only the drift coefficients. Assume the
drift has convex range in Rn. Then, for∣∣∣ sup

ϕ∈UT
0

E
[
ξX (ϕ)

]
− Vk(0)

∣∣∣ ≲ ϵH−
k → 0, as k → ∞.



Non-Markovian property and optimal controls

Theorem Leão, O-A (2024)
If the controlled process is a path-dependent SDE driven by a
Brownian motion, then the near optimal controls are closed-loop.
If the controlled process is a path-dependent SDE driven by a
fractional Brownian motion, then the near optimal controls are
open-loop.



Numerical example: Markovian case

For a given c ∈ R and a Lipschitz function φ : R2 → R, we define
ϱc(x , y , z) := (c + x − φ(y , z))2; (x , y , z) ∈ R3. Let us consider

dS1(t) = S1(t)
(
µ1dt + σ1dB1(t)

)
dS2(t) = S1(t)

(
µ2dt + σ2dB2(t)

)
.

The problem is

minimize E
[
ϱc
(
X (T , ϕ), S1(T ), S2(T )

)]
over all ϕ ∈ UT

0 , c ∈ R,

where

X (t, ϕ) =
2∑

j=1

∫ t

0
ϕj(r)dS j(r); ϕ ∈ UT

0 , 0 ≤ t ≤ T .



Numerical example: Markovian example

In this example, we choose φ(y , z) := max (y − z , 0) and ā = 1. It
is well-known there exists a unique choice of (c∗, ϕ∗) ∈ R × UT

0
such that

inf
(c,ϕ)∈R×UT

0

E
[
ϱc
(
X (T , ϕ), S1(T ), S2(T )

)]
= E

[
ϱc∗
(
X (T , ϕ∗), S1(T ), S2(T )

)]
= 0,

where c∗ = S1
0 Φ(d1) − S2

0 Φ(d2),

σ =
√

σ2
1 + σ2

2, d1 =
log
(

S1(0)
S2(0)

)
+ σ2

2 T

σ
√

T
, d2 = d1 − σ

√
T ,

and Φ is the cumulative distribution function of the standard
Gaussian variable. We recall ϕ∗ is the so-called delta hedging which
can be computed by means of the classical PDE Black-Scholes.



Numerical example: Mean variance hedging

Table: Comparison between c∗ and ck,∗ for ϵk = 2−k

k Result Mean Square Error True Value Difference % Error
1 5.9740 0.01689567 5.821608 0.152458 0.0261%
2 5.8622 0.01158859 5.821608 0.04059157 0.0069%
3 5.7871 0.00821813 5.821608 0.03441365 0.0059%



Numerical example: Mean variance hedging
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Figure: Monte Carlo experiments for ck,∗



Solving the dynamic programming equation by Deep
Learning

The risky asset price

Sk
i = S(0) +

i∑
j=1

∆Sk
j ; 1 ≤ i ≤ m,

follows a geometric Brownian motion-type process

∆Sk
ℓ = µSk

ℓ−1∆T k
ℓ−1 + σSk

ℓ−1∆Ak
ℓ ,

for 1 ≤ ℓ ≤ m. For a given control ϕ = (ϕ0, . . . , ϕm−1), we consider the
wealth process

Y k,ϕ
i = c⋆ +

i∑
j=1

ϕj−1∆Sk
j ; 1 ≤ i ≤ m.

where c The two-dimensional controlled process is X k,ϕ
i :=

(
Sk

i
Y k,ϕ

i

)
for i = 0, . . . , m.



Solving by Deep Learning

The goal is to compute

ϕ ∈ arg min
ϕ∈U

E
∣∣∣Y ϕ

m − φ(Sk
m)
∣∣∣2

over a suitable class of controls U parameterized by a Feedforward
Neural Network.



Solving by Deep Learning

In general, the transition function X : R ×
(
R+ × R

)
× W → R2 at the

j + 1-th step (viewed backwards for j = m − 1, . . . , 0) is given by

X
(
θ, xj , w

)
:=
(

µx (1)
j s + σx (1)

j ĩ
µx (1)

j θs + σx (1)
j θĩ

)
(14)

where w = (s, ĩ) for s ∈ (0, ∞) and ĩ ∈ {−2−k , +2k}. Then, we define
recursively

Uj(xj , θ) :=
∫
W
Vj+1

(
xj + X(θ, xj , ω)

)
ν(dω) (15)

Vj(xj) := inf
θ∈R

Uj(xj , θ),

for j = m − 1, . . . , 0.



Solving by Deep Learning

We define upo
j as follows:

uop
j ∈ arg min

θ∈R
Uj(xj , θ),

for j = m − 1, . . . , 0. Observe that this iterative scheme defines a
sequence of Borel functions gj : R+ × R → R; j = m − 1, . . . , 0
which realizes

uop
j (xj) = gj(xj),

for each xj ∈ R+ × R and j = m − 1, . . . , 0.



Solving by Deep Learning

By definition, the value functions are

Vj(xj) = Uj(xj , gj(xj)); j = m − 1, . . . , 0.

The class of functions which contains {gj}m−1
j=0 is unknown. For

this reason, we postulate two neural network spaces (here B and Θ
are suitable parameter sets).

C = {R+ × R ∋ x 7→ C(x , θ) ∈ R2; θ ∈ Θ} (16)

and

V = {R+ × R ∋ x 7→ Φ(x , β) ∈ R3; β ∈ B}. (17)



Construction of a synthetic training data

We generate ϕ0, . . . , ϕm−1 following uniform distributions in
[−2, 2]. Starting with (Sk

0 , Y k
0 ) = (S0, c⋆), we construct

Y k,ϕ
i = c⋆ +

i∑
j=1

ϕj−1∆Sk
j ; 1 ≤ i ≤ m. (18)



Solving by Deep Learning

For a given C = (a, b) ∈ C, Φ = (c, d , e) ∈ V and a training data
X k

j−1 := X k,ϕ
j−1, we define

X θ
j−1 := X (C̃(X k

j−1, θ), X k
j−1, ∆T k

1 , ∆Ak(T k
1 )), (19)

where
C̃(X k

j−1, θ) := a(Sk
j−1; θ) + b(Sk

j−1; θ)Y k
j−1, (20)

for 1 ≤ j ≤ m, θ ∈ Θ, and

Φ̃(X k
j−1, β) := c(Sk

j−1; β) + d(Sk
j−1; β)Y k

j−1 + e(Sk
j−1; β)

(
Y k

j−1
)2

,
(21)

for 1 ≤ j ≤ m and β ∈ B. Here, e is non-negative to insure
convexity.



Solving by Deep Learning

Terminal condition: V̂m := Vm,

1 Compute the approximated control at time n

stochastic gradient descent(ADAM)︷ ︸︸ ︷
θ̂n ∈ arg min

θ∈Θ
E
[
V̂n+1

(
X k

n + X θ
n

)]
(22)

2 compute the estimation of the value function at time n

stochastic gradient descent (ADAM)︷ ︸︸ ︷
V̂n ∈ arg min

β∈B
E
[
V̂n+1

(
X k

n + X θ̂n
n
)

− Φ̃(X k
n , β)

]2
(23)

for n = m − 1, . . . , 1, 0.



Numerical example: Mean variance hedging

Table: Computing the Profit and Loss by Deep Learning

k mean Standard Deviation
1 0.3740 0.1689567
2 0.1622 0.4158859
3 0.02871 0.10821813
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