Solving non-Markovian Stochastic Control Problems driven by Wiener Functionals

Alberto Ohashi

Joint work with D. Leão and F. Souza

Universidade de Brasília

Workshop on Irregular Stochastic Analysis 2025, Cortona, Italy

Issues to be addressed

Let $\xi: C([0,T];\mathbb{R}^n) \to \mathbb{R}$ be a Borel functional, let $\mathbb{F}=(\mathcal{F}_t)_{t\geq 0}$ be a reference filtration generated by a multi-dimensional Brownian motion. Let $U_t^T; 0 \leq t < T$ be the set of \mathbb{F} -predictable controls defined over (t,T] and taking values on a compact subset \mathbb{A} .

Let $\{X^u; u \in U_0^T\}$ be a family of \mathbb{F} -adapted controlled processes.

We are interested in the stochastic optimal control problem

$$\sup_{\phi \in U_0^T} \mathbb{E} \Big[\xi \big(X^\phi \big) \Big]$$

in the following sense:

Issues to be addressed

QUESTION: For a given error bound $\epsilon > 0$, how to design a numerical scheme to compute ϵ -optimal controls $\phi^{*,\epsilon}$, i.e.,

$$\mathbb{E}\big[\xi(X^{\phi^{*,\epsilon}})\big] \geq \sup_{\phi \in U_0^T} \mathbb{E}\big[\xi(X^\phi)\big] - \epsilon.$$

QUESTION: For a given error bound $\epsilon > 0$, how to design a numerical scheme to compute ϵ -optimal controls $\phi^{*,\epsilon}$, i.e.,

$$\mathbb{E}ig[\xi(X^{\phi^{*,\epsilon}}) ig] \geq \sup_{\phi \in U_0^T} \mathbb{E}ig[\xi(X^\phi) ig] - \epsilon.$$

This is an old, classical and (at some extent) well-understood question in case X^{ϕ} is a controlled Markov process. Answer:

- PDE techniques (Hamilton-Jacobi-Bellman) and Monte Carlo schemes.
- Markov chain approximations.

Beyond Markovian case: Path-dependent SDEs driven by Brownian motion

$$dX^u(t) = \overbrace{\alpha(t, X^u_t, u(t))}^{\text{path-dependent functional}} dt + \overbrace{\sigma(t, X^u_t, u(t))}^{\text{path-dependent functional}} dB(t),$$
 where B is a Brownian motion and $X^u_t := \{X^u(s); 0 \le s \le t\}.$

- ► Characterizations of the value process.
 - 2BSDEs: Nutz (2012)
 - Randomization approach: Fuhrman and Pham (2015)
 - 2BSDE and path-dependent PDEs: Possamaï, Tan and Zhou (2018).
 - Functional HJB-type equation: Qiu, J. (2018).

Beyond Markovian case: Path-dependent SDEs driven by Brownian motion

- ▶ Numerical methods for path-dependent SDEs driven by Brownian motion.
 - G-expectations: Dolinsky (2012).
 - Monte Carlo scheme: Tan (2014).
 - Monotone scheme for path-dependent PDE: Zhang and Zuo (2014), Ren and Tan (2016).
 - Policy iteration algorithm: Possamaï and Tangpi (2024).

Controlled systems with non-trivial memory

In the fully non-Markovian case, feasible numerical approximation schemes are very challenging!

Typical non-trivial example:

$$dX^{u}(t) = \overbrace{\alpha(t, X^{u}_{t}, u(t))}^{\text{non-anticipative functional}} dt + \overbrace{\sigma(t, X^{u}_{t}, u(t))}^{\text{fully non-Markovian}} dB^{H}(t)$$

where B^H is a fractional Brownian motion with exponent $H \in (0,1)$ given by

$$B \mapsto B^{H}(\cdot) = \int_{0}^{\cdot} K_{H}(\cdot, u) dB(u)$$

Controlled systems with non-trivial memory

$$B\mapsto B^H(\cdot)=\int_0^{\cdot}K_H(\cdot,u)dB(u)$$

- \bullet Highly singular infinite-dimensional map for 0 $< H < \frac{1}{2}$
- Regular infinite-dimensional map for $\frac{1}{2} < H < 1$
- If $H \neq \frac{1}{2}$, one cannot reduce it to a Markovian situation without adding infinitely many degrees of freedom.

Related literature

Optimality characterization:

- ► Maximum principle
 - Biagini, Hu, Oksendal and Sulem (2002)
 - Han, Hu and Song (2013).
- ► Lifting approach, relaxed controls:
 - Path-dependent-type PDE: Viens and Zhang (2018)
 - Control in UMD spaces: Di Nunno and Giordano (2023),
 Chakraborty, Honnappa and Tindel (2024).
 - Relaxed controls: Cárdenas, Pulido and Serrano (2025).

Related literature

Optimality characterization:

- ► Maximum principle
 - Biagini, Hu, Oksendal and Sulem (2002)
 - Han, Hu and Song (2013).
- ► Lifting approach, relaxed controls:
 - Path-dependent-type PDE: Viens and Zhang (2018)
 - Control in UMD spaces: Di Nunno and Giordano (2023),
 Chakraborty, Honnappa and Tindel (2024).
 - Relaxed controls: Cárdenas, Pulido and Serrano (2025).
- ▶ An attempt to a numerical scheme:
 - Infinite-dimensional Ricatti equations for linear-quadratic problems: Jaber, Miller and Pham (2021).

Typical examples we have in mind

In this talk, we will present a **concrete numerical scheme for computing near optimal controls** for controlled processes adapted to the Brownian filtration beyond the linear-quadratic cases:

$$dX^{u}(t) = \overbrace{\alpha(t, X^{u}_{t}, u(t))}^{\text{path-dependent functional}} dt + \overbrace{\sigma(t, X^{u}_{t}, u(t))}^{\text{path-dependent functional}} dB(t), \qquad (1)$$

$$dX^{u}(t) = \overbrace{\alpha(t, X_{t}^{u}, u(t))}^{\text{non-linear functional}} dt + \overbrace{\sigma dB^{H}(t)}^{\text{fully non-Markovian}}$$
(2)

and

$$\begin{cases}
 \frac{dX^{u}(t) = X^{u}(t)\mu(u(t))dt + X^{u}(t)\vartheta(Z(t), u(t))dB_{t}}{dZ(t) = \Phi(dt, dZ(t), dB^{H}(t))}, \\
 \frac{dZ(t) = \Phi(dt, dZ(t), dB^{H}(t))}{SDE \text{ driven by } B^{H}},
\end{cases} (3)$$

where B^H is the fractional Brownian motion with $H \in (0, \frac{1}{2})$.

The idea of the method

We construct a suitable underlying **imbedded** discrete structure (we *do not* lift to an infinite-dimensional Markovian system) inherited from the Brownian motion which allows us to construct a **discrete-time backward dynamic programming equation** associated with

$$V(t,u) = \underset{\phi;\phi=u \text{ on } [0,t]}{\text{ess sup}} \mathbb{E}\big[\xi\big(X^{\phi}\big)|\mathcal{F}_t\big]; \ 0 \le t \le T. \tag{4}$$

where
$$V(T, u) = \xi(X^u)$$
 and $V(0) = \sup_{\phi \in U_0^T} \mathbb{E}[\xi(X^\phi)]$.

The idea of the method

We construct a suitable underlying **imbedded** discrete structure (we *do not* lift to an infinite-dimensional Markovian system) inherited from the Brownian motion which allows us to construct a **discrete-time backward dynamic programming equation** associated with

$$V(t,u) = \underset{\phi;\phi=u \text{ on } [0,t]}{\text{ess sup}} \mathbb{E}\big[\xi\big(X^{\phi}\big)|\mathcal{F}_t\big]; \ 0 \le t \le T. \tag{4}$$

where
$$V(T, u) = \xi(X^u)$$
 and $V(0) = \sup_{\phi \in U_0^T} \mathbb{E}[\xi(X^\phi)]$.

- The solution of our discrete-time dynamic programming equation provides a near optimal stochastic control for the original problem (4).
- Optimal controls resulting from our dynamic programming equation can be numerically computed by Machine/Deep Learning techniques.

Contributions

Our contribution relies on:

- Development of a numerical scheme for computing near-optimal controls for (possibly) fully non-Markovian controlled processes.
- ② Explicit rates of convergence are provided under rather weak conditions.
- Olosed/open-loop optimal controls are obtained and classified according to the strength of the possibly underlying non-Markovian memory.

Main References

- Leão, D., O-A. and Souza, F. (2024). Solving non-Markovian Stochastic Control Problems driven by Wiener Functionals. AAP.
- Leão, D. O-A. and Simas, A. B. (2018). A weak version of path-dependent functional Itô calculus. AOP.
- Leão, D. O-A. and Simas, A. B. (2018). Weak differentiability of Wiener functionals and occupation times. *BSM*.
- O-A and Souza, F.A. (2020) L^p uniform random walk-type approximation for fractional Brownian motion with Hurst exponent $0 < H < \frac{1}{2}$. EJP.

Basic structure of \mathcal{D}

We are going to fix a d-dimensional Brownian motion $B=\{B^1,\ldots,B^d\}$ on $(\Omega,\mathbb{F},\mathbb{P})$, where Ω is the space $C(\mathbb{R}_+;\mathbb{R}^d):=\{f:\mathbb{R}_+\to\mathbb{R}^d \text{ continuous}\}$, \mathbb{P} is the Wiener measure on Ω such that $\mathbb{P}\{B(0)=0\}=1$ and $\mathbb{F}:=(\mathcal{F}_t)_{t\geq 0}$ is the usual \mathbb{P} -augmentation of the natural filtration generated by the Brownian motion.

Basic structure of \mathcal{D}

We are going to fix a d-dimensional Brownian motion $B=\{B^1,\ldots,B^d\}$ on $(\Omega,\mathbb{F},\mathbb{P})$, where Ω is the space $C(\mathbb{R}_+;\mathbb{R}^d):=\{f:\mathbb{R}_+\to\mathbb{R}^d \text{ continuous}\}$, \mathbb{P} is the Wiener measure on Ω such that $\mathbb{P}\{B(0)=0\}=1$ and $\mathbb{F}:=(\mathcal{F}_t)_{t\geq 0}$ is the usual \mathbb{P} -augmentation of the natural filtration generated by the Brownian motion.

In the sequel,

$$u \mapsto X^u$$

is a controlled \mathbb{F} -adapted continuous process defined on U_0^T .

Standing assumptions

In the sequel, we denote

 $\mathbf{D}_{n,\mathcal{T}} := \{h : [0,\mathcal{T}] \to \mathbb{R}^n \text{ with càdlàg paths}\}$. We now present the two standing assumptions of this talk.

Assumption (A1): The payoff $\xi: \mathbf{D}_{n,T} \to \mathbb{R}$ satisfies the following regularity assumption: There exists $\gamma \in (0,1]$ and a constant $\|\xi\| > 0$ such that

$$|\xi(f)-\xi(g)|\leq \|\xi\|\|f-g\|_{\infty}^{\gamma},$$

for every $f,g \in \mathbf{D}_{n,T}$, where $||f||_{\infty} := \sup_{0 \le t \le T} |f(t)|$.

Assumption (B1): There exists a constant C such that

$$\mathbb{E}\|X^{u}-X^{\eta}\|_{\infty}^{2}\leq C\mathbb{E}\int_{0}^{T}|u(s)-\eta(s)|^{2}ds,$$
 (5)

for every $u, \eta \in U_0^T$.

The underlying discrete skeleton \mathcal{D}

We start by constructing a sequence $\mathcal{T}:=\{T_n^k;n\geq 0\}$ of hitting times which will be the basis for our discretization scheme. Fix a sequence $\epsilon_k\downarrow 0$ as $k\to +\infty$. We set $T_0^k:=0$ and

$$T_n^k := \inf\{T_{n-1}^k < t < \infty; |B(t) - B(T_{n-1}^k)| = \epsilon_k\}, \quad n \ge 1.$$

Then, we define $A^k := (A^{k,1}, \dots, A^{k,d})$ by

$$A^{k,j}(t) := \sum_{n=1}^{\infty} \left(B^{j}(T_{n}^{k}) - B^{j}(T_{n-1}^{k}) \right) \mathbb{1}_{\{T_{n}^{k} \leq t\}}; \ t \geq 0, \ j = 1, \ldots, d,$$

for integers $k \ge 1$.

The underlying discrete skeleton

In the one dimensional case, we have

$$T_n^k = \inf \left\{ T_{n-1}^k < t < \infty; |B(t) - B(T_{n-1}^k)| = \varepsilon_k \right\}, \quad n \ge 1.$$

$$\left\{ A^k(T_n^k) - A^k(T_{n-1}^k); n \ge 1 \right\} \text{ is an iid sequence of Bernoulli variables.}$$

The underlying discrete skeleton

Let $\mathbb{F}^k=(\mathcal{F}^k_t)_{t\geq 0}$ be the filtration generated by A^k . One can check

$$\mathcal{F}^k_{T^k_n} = \sigma\Big(\Delta T^k_i, \Delta A^k(T^k_i); 1 \leq i \leq n\Big),$$
 where $\Delta T^k_n := \underbrace{T^k_n - T^k_{n-1}}_{\text{Burq Jones algorithm (2008)}}_{\text{Burn More algorithm (2008)}} \stackrel{d}{=} T^k_1 \text{ and}$
$$\Delta A^k(T^k_n) := \underbrace{A^k(T^k_n) - A^k(T^k_{n-1})}_{\text{Bernoulli (1-dim) or conditioned truncated Gaussian (d-dim)}}$$

Definition

The structure $\mathcal{D} = \{\mathcal{T}, A^k; k \geq 1\}$ is called a **discrete-type skeleton** for the Brownian motion.

The number of steps

Let us define

$$e(k,T) := \left\lceil \frac{\epsilon_k^{-2}T}{\chi_d} \right\rceil,$$

where $\lceil x \rceil$ is the smallest integer greater or equal to $x \ge 0$ and

$$\chi_d := \mathbb{E} \min\{\tau^1, \dots, \tau^d\},\,$$

where $(\tau^j)_{j=1}^d$ is an iid sequence of random variables with distribution $\inf\{t>0; |W(t)|=1\}$ for a real-valued standard Brownian motion W.

Discretizing the set of controls

Let $U_0^{k,e(k,T)}$ be the set of \mathbb{F}^k -predictable processes of the form

$$v^k(t) = \sum_{j=1}^{e(k,T)} v_{j-1}^k \mathbb{1}_{\{T_{j-1}^k < t \le T_j^k\}},$$

where for each $j=1,\ldots,e(k,T)$, v_{j-1}^k is an $\mathbb A$ -valued $\mathcal F_{T_{j-1}^k}^k$ -measurable random variable.

Controlled imbedded discrete structures

The structure ${\mathscr D}$ is dense in the Wiener space in the following sense:

Theorem Leão, O-A (2018, 2024)

For a given controlled process $u\mapsto X^u$ satisfying Assumption B1, we can associate a discrete type structure $\mathcal{X}=\left((X^k)_{k\geq 1},\mathscr{D}\right)$ of the following form: For each $\phi\in U_0^{k,e(k,T)}$,

$$X^{k,\phi}(t) = \sum_{n=0}^{\infty} X^{k,\phi}(T_n^k) \mathbb{1}_{\{T_n^k \le t \land T_{e(k,T)}^k < T_{n+1}^k\}},$$

where $X^{k,\phi}(T_n^k)$ is $\mathcal{F}_{T_n^k}^k$ -measurable for every $n\geq 0$ and $k\geq 1$. Moreover, there exists a positive sequence $h_k\downarrow 0$ such that

$$\sup_{\phi \in U_0^{k,e(k,T)}} \mathbb{E} \|X^{k,\phi} - X^{\phi}\|_{\infty} \lesssim h_k,$$

for $k \geq 1$. A pair (X, \mathcal{X}) is called an **imbedded discrete structure** for X.

Typical examples of controlled imbedded discrete structures

(Controlled path-dependent SDEs)

$$X^{k,v^{k}}(T_{n}^{k}) = X^{k,v^{k}}(T_{n-1}^{k}) + \alpha \left(T_{n-1}^{k}, X_{T_{n-1}^{k}}^{k,v^{k}}, v_{n-1}^{k}\right) \Delta T_{n}^{k}$$
$$+ \sigma \left(T_{n-1}^{k}, X_{T_{n-1}^{k}}^{k,v^{k}}, v_{n-1}^{k}\right) \Delta A^{k}(T_{n}^{k}),$$

for $n \ge 1$.

Typical examples of controlled imbedded discrete structures

(Controlled path-dependent SDEs)

$$X^{k,v^{k}}(T_{n}^{k}) = X^{k,v^{k}}(T_{n-1}^{k}) + \alpha \left(T_{n-1}^{k}, X_{T_{n-1}^{k}}^{k,v^{k}}, v_{n-1}^{k}\right) \Delta T_{n}^{k}$$
$$+ \sigma \left(T_{n-1}^{k}, X_{T_{n-1}^{k}}^{k,v^{k}}, v_{n-1}^{k}\right) \Delta A^{k}(T_{n}^{k}),$$

for n > 1.

(Controlled path-dependent SDEs driven by FBM)

$$X^{k,v^{k}}(T_{n}^{k}) = X^{k,v^{k}}(T_{n-1}^{k}) + \alpha \left(T_{n-1}^{k}, X_{T_{n-1}^{k}}^{k,v^{k}}, v_{n-1}^{k}\right) \Delta T_{n}^{k} + \sigma \Delta B_{H}^{k}(T_{n}^{k}),$$

 B_H^k is a \mathscr{D} -discretization of B^H .

The FBM imbedded discrete structure

Let $K_H(t,s) = K_{H,1}(t,s) + K_{H,1}(t,s)$ be the classical Volterra-kernel of FBM,

$$K_{H,1}(t,s) := c_{H,1} t^{H-\frac{1}{2}} s^{\frac{1}{2}-H} (t-s)^{H-\frac{1}{2}},$$

$$K_{H,2}(t,s) := c_{H,2} s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{3}{2}} (u-s)^{H-\frac{1}{2}} du$$

for s < t and constants $c_{H,1}$ and $c_{H,2}$.

Let C_0^{λ} be the space of Hölder continuous functions f such that f(0)=0. For each $f\in C_0^{\lambda}$, we set

$$(\Lambda_H f)(t) := \int_0^t \partial_s K_{H,1}(t,s)[f(t) - f(s)] ds$$
$$- \int_0^t \partial_s K_{H,2}(t,s)f(s) ds.$$

The FBM imbedded discrete structure

Theorem O-A, Souza (2020)

Any FBM with exponent $0 < H < \frac{1}{2}$ on a time interval [0,T] can be represented by $\Lambda_H B$ for a real-valued standard Brownian motion B.

The FBM imbedded discrete structure

Let $\overline{t}_k := \max\{T_n^k; T_n^k \le t\}$ and $\overline{t}_k^+ := \min\{T_n^k; \overline{t}_k < T_n^k\} \wedge T$.

$$B_{H}^{k}(t) := \int_{0}^{\bar{t}_{k}} \partial_{s} K_{H,1}(\bar{t}_{k}, s) [A^{k}(\bar{t}_{k}) - A^{k}(\bar{s}_{k}^{+})] ds$$
$$- \int_{0}^{\bar{t}_{k}} \partial_{s} K_{H,2}(\bar{t}_{k}, s) A^{k}(s) ds.$$

Theorem O-A, Souza (2020)

Fix $0 < H < \frac{1}{2}$ and $p \ge 1$. For every pair (δ, λ) such that $\max\{0, 1 - \frac{pH}{2}\} < \delta < 1$, $\lambda \in \left(\frac{1-H}{2}, \frac{1}{2} + \frac{\delta-1}{2}\right)$, we have

$$\mathbb{E}\|B_H^k - B_H\|_{\infty}^p \lesssim_{\rho,\delta,\lambda,H,T} \epsilon_k^{\rho(1-2\lambda)+2(\delta-1)} \to 0$$

as $k \to +\infty$.

The approximated value process

Notation: $\xi_{X^k}(u) := \xi(X^{k,u})$ for a given controlled imbedded discrete structure $u \mapsto X^{k,u}$.

We set

$$V^{k}(T_{n}^{k}, u) := \underset{\phi \in U_{n}^{k, e(k, T)}}{\operatorname{ess \, sup}} \mathbb{E}\Big[\xi_{X^{k}} \ \overbrace{\left(u \otimes_{n} \phi\right)}^{\text{concatenation}} \ |\mathcal{F}_{T_{n}^{k}}^{k}\Big], \tag{6}$$

for n = 1, ..., e(k, T) - 1, with boundary conditions

$$V^k(0) := V^k(0, u) := \sup_{\phi \in U_0^{k, e(k, T)}} \mathbb{E}[\xi_{X^k}(\phi)]$$

and

$$V^{k}(T_{e(k,T)}^{k},u) := \xi_{X^{k}}(u).$$

Next, we will construct a pathwise computable version of (6).

The approximated value process

Proposition

For each $u^k \in U_0^{k,e(k,T)}$, the discrete-time value process $V^k(\cdot,u^k)$ satisfies

$$V^{k}(T_{e(k,T)}^{k}, u^{k}) = \xi_{X^{k}}(u^{k}) \text{ a.s}$$

$$V^{k}(T_{n}^{k}, u^{k}) = \underbrace{\operatorname{ess\,sup}}_{\theta_{n}^{k} \in U_{n}^{k,n+1}} \mathbb{E}\left[V^{k}\left(T_{n+1}^{k}, u^{k,n-1} \otimes_{n} \theta_{n}^{k}\right) \mid \mathcal{F}_{T_{n}^{k}}^{k}\right], \tag{7}$$

for
$$0 \le n \le e(k, T) - 1$$
.

The approximated value process

Proposition

For each $u^k \in U_0^{k,e(k,T)}$, the discrete-time value process $V^k(\cdot,u^k)$ satisfies

$$V^{k}(T_{e(k,T)}^{k}, u^{k}) = \underbrace{\xi_{X^{k}}(u^{k}) \text{ a.s}}_{\theta_{n}^{k} \in U_{n}^{k,n+1}} \mathbb{E}\left[V^{k}\left(T_{n+1}^{k}, u^{k,n-1} \otimes_{n} \theta_{n}^{k}\right) \mid \mathcal{F}_{T_{n}^{k}}^{k}\right],$$

$$(7)$$

for $0 \le n \le e(k, T) - 1$.

We can actually prove that we can replace **esssup** by the **sup** in (7) by using analytic set theory techniques and the closed form expression for the law of $(\Delta T_1^k, \Delta A^k(T_1^k))$.

Intuition of aggregation

For a given control $u^k \in U_0^{k,e(k,T)}$ and a controlled structure $\mathcal{X} = ((X^k)_{k \geq 1}, \mathcal{D})$, we set

$$\mathcal{Y}_j^{k,u^k} := \left(\mathcal{A}_1^k, \Delta X^{k,u^k}(T_1^k)), \ldots, \mathcal{A}_j^k, \Delta X^{k,u^k}(T_j^k)\right),$$

for $1 \le j \le e(k, T)$. Here $\mathcal{A}_j^k := (\Delta T_j^k, \Delta A^k(T_j^k))$. The value functionals can be represented by a big functional

$$V^{k}(T_{n}^{k}, u^{k}) = \sup_{\theta \in \mathbb{A}} \int_{\mathbb{W}^{k}} \Phi\left(\mathcal{Y}_{n-1}^{k, u^{k}}, \mathcal{X}_{n}^{k}(\theta, \mathcal{Y}_{n-1}^{k, u^{k}}, w^{k})\right) \nu^{k}(dw^{k})$$

where \mathfrak{X}_n^k is the jump of the \mathscr{D} -controlled state as step n and ν^k is the law of $(\Delta T_1^k, \Delta A^k(T_1^k))$ taking values on a set \mathbb{W}^k .

The Dynamic Programming Principle

Theorem Leão, O-A (2024)-Pathwise Dynamic Programming Equation

Let ν^k be the law of $(\Delta T_1^k, \Delta A^k(T_1^k))$. Starting from a given controlled state (standard terminal condition)

$$\mathbb{V}^k_{e(k,T)}(\mathbf{o}^k_{e(k,T)}) = \xi \big(\gamma^k_{e(k,T)}(\mathbf{o}^k_{e(k,T)}) \big),$$

the value functionals (\mathscr{D} -version of the original value process) satisfy

$$V^k(T_j^k,u)=\mathbb{V}_j^k(\mathcal{Y}_j^{k,u})$$

where

training data, control

$$\begin{array}{ccc} \mathbf{U}_{j}^{k} & \overbrace{(\mathbf{o}_{j}^{k}, \theta)} & := & \int_{\mathbb{W}_{k}} \mathbb{V}_{j+1}^{k} \Big(\mathbf{o}_{j}^{k}, \mathfrak{X}_{j+1}^{k} (\theta, \mathbf{o}_{j}^{k}, w^{k}) \Big) \nu^{k} (dw^{k}) \\ \mathbb{V}_{j}^{k} (\mathbf{o}_{j}^{k}) & := & \sup_{\theta \in \mathbb{A}} \mathbf{U}_{j}^{k} (\mathbf{o}_{j}^{k}, \theta), \ j = e(k, T) - 1, \dots, 0, \end{array}$$

where \mathfrak{X}_{i+1}^k is the jump of the \mathscr{D} -controlled state as step j+1.

The Dynamic Programming Principle

For a given $\epsilon>0$, compute $C_{k,j}^\epsilon:\mathbb{H}_k^j\to\mathbb{A}$ (via deep/reinforcement learning techniques) such that

$$\mathbb{V}_{j}^{k}(\mathbf{o}_{j}^{k}) \leq \int_{\mathbb{W}_{k}} \mathbb{V}_{j+1}^{k} \left(\mathbf{o}_{j}^{k}, \mathfrak{X}_{j+1}^{k}(C_{k,j}^{\epsilon}(\mathbf{o}_{j}^{k}), \mathbf{o}_{j}^{k}, w^{k})\right) \nu^{k}(dw^{k}) + \epsilon, \quad (8)$$

for every \mathbf{o}_j^k training data, where $j=e(k,T)-1,\ldots,1$. Let $\eta_k(\epsilon)=\frac{\epsilon}{e(k,T)}$ and $u^k\in U_0^{k,e(k,T)}$. Define $\phi_j^{k,\eta_k(\epsilon)}$ as follows

$$\phi_j^{k,\eta_k(\epsilon)} = C_{k,j}^{\eta_k(\epsilon)}(\mathcal{Y}_j^{k,u^k}); j = e(k,T) - 1,\ldots,0.$$

The control

$$\phi^{*,k,\epsilon} := (\phi_0^{k,\eta_k(\epsilon)}, \phi_1^{k,\eta_k(\epsilon)}, \dots, \phi_{m-1}^{k,\eta_k(\epsilon)})$$

realizes

$$\sup_{\phi \in \mathcal{U}^{k,e(k,T)}_{\kappa}} \mathbb{E}\big[\xi_{X^k}(\phi)\big] \leq \mathbb{E}\big[\xi_{X^k}(\phi^{*,k,\epsilon})\big] + \epsilon.$$

Rate of convergence of the numerical scheme

Theorem Leão, O-A (2024)

Let us consider a pair (X, \mathcal{X}) , $\mathcal{X} = ((X^k)_{k \geq 1}, \mathcal{D})$ such that there exists a positive sequence $h_k \downarrow 0$ such that

$$\sup_{\phi \in U_0^{k,e(k,T)}} \mathbb{E} \| X^{k,\phi} - X^{\phi} \|_{\infty} \lesssim h_k, \tag{9}$$

for $k \geq 1$. Let $V^k(0) := \sup_{u^k \in U^{k,e(k,T)}_0} \mathbb{E}[\xi_{X^k}(u^k)]; k \geq 1$.

Then, for a given $\epsilon>0$ and $\beta\in(0,1)$, there exists a constant C which depends on $\beta,\|\xi\|_{\gamma}$ and Assumption (B1) such that

$$\left| \sup_{\phi \in U_0^T} \mathbb{E}[\xi_X(\phi)] - V^k(0) \right| \le C \underbrace{\left\{ h_k^{\gamma} + \epsilon_k^{\gamma\beta} \right\}}_{\text{Euler} + \text{Large deviations}} + \epsilon, \tag{10}$$

for every $k \ge 1$.

Rate of convergence of the numerical scheme

Continuation of Theorem Leão, O-A (2024)

For a given $\epsilon > 0$ and $k \geq 1$, let $\phi^{*,k,\epsilon} \in U_0^{k,e(k,T)}$ be a near optimal control associated with the **discrete-time control problem** computed before which realizes

$$\mathbb{E}\big[\xi_{X^k}\big(\phi^{*,k,\epsilon}\big)\big] > V_k(0) - \frac{\epsilon}{3}; \ k \ge 1.$$

Then, $\phi^{*,k,\epsilon} \in U_0^T$ is a near optimal control for the Brownian motion driving stochastic control problem, i.e.,

$$\mathbb{E}[\xi_X(\phi^{*,k,\epsilon})] > \sup_{\phi \in U_0^T} \mathbb{E}[\xi_X(\phi)] - \epsilon, \tag{11}$$

for every k sufficiently large.

Concrete cases

Proposition Leão, O-A (2024)

Let X^u be the controlled SDE

$$dX^{u}(t) = \alpha(t, X_t^{u}, u(t))dt + \sigma(t, X_t^{u}, u(t))dB(t),$$

where the non-anticipative functionals (α, σ) satisfy standard Lipschitz conditions. Let $\mathcal{X} = ((X^k)_{k \geq 1}, \mathscr{D})$ be the Euler-type controlled imbedded discrete structure associated with X. Then,

$$\sup_{\phi \in U_0^{k,e(k,T)}} \mathbb{E} \| X^{k,\phi} - X^{\phi} \|_{\infty} \lesssim \epsilon_k^{\frac{1}{2}^-} \to 0, \tag{12}$$

as $k \to \infty$.

Concrete cases

Proposition Leão, O-A (2024)

Let X^u be the controlled SDE

$$dX^{u}(t) = \alpha(t, X_t^{u}, u(t))dt + \sigma dB_H(t),$$

where B_H ia a real-valued FBM with $0 < H < \frac{1}{2}$, the non-anticipative functional α satisfies standard Lipchitz assumptions. Let $\mathcal{X} = ((X^k)_{k \geq 1}, \mathscr{D})$ be the Euler-type controlled imbedded discrete structure associated with X. Then,

$$\sup_{\phi \in U_0^{k,e(k,T)}} \mathbb{E} \|X^{k,\phi} - X^{\phi}\|_{\infty} \lesssim \epsilon_k^{H^-} \to 0, \tag{13}$$

as $k \to +\infty$.

Concrete cases

Proposition Leão, O-A (2024)

Fix $0 < H < \frac{1}{2}$. Let X^u be the controlled SDE

$$\begin{cases} dX^{u}(t) = X^{u}(t)\mu(u(t))dt + X^{u}(t)\vartheta(Z(t), u(t))dB^{1}(t) \\ dZ(t) = \nu dW_{H}(t) - \beta(Z(t) - m)dt, \end{cases}$$

where $m \in \mathbb{R}, \beta, \nu > 0$, ϑ, μ satisfy standard Lipschitz assumptions and W_H is a FBM correlated to B^1 . Let $\mathcal{X} = ((X^k)_{k \geq 1}, \mathscr{D})$ be the Euler-type controlled imbedded discrete structure associated with X. Then,

$$\sup_{\phi \in U_0^{k,e(k,T)}} \mathbb{E} \|X^{k,\phi} - X^{\phi}\|_{\infty} \lesssim \epsilon_k^{H^-} \to 0,$$

as $k \to +\infty$.

Optimal control of drifts

Theorem Leão, O-A (2024)

Let X be the controlled SDEs driven by FBM with $0 < H < \frac{1}{2}$, where the controls affect only the drift coefficients. Assume the drift has convex range in \mathbb{R}^n . Then, for

$$\Big|\sup_{\phi\in U_0^T}\mathbb{E}ig[\xi_X(\phi)ig]-V_k(0)\Big|\lesssim \epsilon_k^{H^-} o 0, ext{ as } k o \infty.$$

Non-Markovian property and optimal controls

Theorem Leão, O-A (2024)

If the controlled process is a path-dependent SDE driven by a Brownian motion, then the near optimal controls are **closed-loop**. If the controlled process is a path-dependent SDE driven by a fractional Brownian motion, then the near optimal controls are **open-loop**.

Numerical example: Markovian case

For a given $c \in \mathbb{R}$ and a Lipschitz function $\varphi : \mathbb{R}^2 \to \mathbb{R}$, we define $\varrho_c(x,y,z) := (c+x-\varphi(y,z))^2; (x,y,z) \in \mathbb{R}^3$. Let us consider $dS^1(t) = S^1(t) \left(\mu_1 dt + \sigma_1 dB^1(t) \right) \\ dS^2(t) = S^1(t) \left(\mu_2 dt + \sigma_2 dB^2(t) \right).$

The problem is

minimize $\mathbb{E}\left[\varrho_c(X(T,\phi),S^1(T),S^2(T))\right]$ over all $\phi\in U_0^T,\ c\in\mathbb{R},$

where

$$X(t,\phi) = \sum_{j=1}^{2} \int_{0}^{t} \phi_{j}(r) dS^{j}(r); \phi \in U_{0}^{T}, 0 \leq t \leq T.$$

Numerical example: Markovian example

In this example, we choose $\varphi(y,z):=\max{(y-z,0)}$ and $\bar{a}=1$. It is well-known there exists a unique choice of $(c^*,\phi^*)\in\mathbb{R}\times U_0^T$ such that

$$\begin{split} \inf_{(c,\phi)\in\mathbb{R}\times U_0^T} &\mathbb{E}\Big[\varrho_c(X(T,\phi),S^1(T),S^2(T))\Big]\\ &= \mathbb{E}\Big[\varrho_{c^*}\big(X(T,\phi^*),S^1(T),S^2(T)\big)\Big] = 0, \end{split}$$
 where $c^* = S_0^1\Phi(d_1) - S_0^2\Phi(d_2),$

where
$$c^* = S_0^* \Phi(a_1) - S_0^* \Phi(a_2)$$
,

$$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}, \quad d_1 = \frac{\log\left(\frac{S^1(0)}{S^2(0)}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T},$$

and Φ is the cumulative distribution function of the standard Gaussian variable. We recall ϕ^* is the so-called delta hedging which can be computed by means of the classical PDE Black-Scholes.

Numerical example: Mean variance hedging

Table: Comparison between c^* and $c^{k,*}$ for $\epsilon_k = 2^{-k}$

k	Result	Mean Square Error	True Value	Difference	% Error
1	5.9740	0.01689567	5.821608	0.152458	0.0261%
2	5.8622	0.01158859	5.821608	0.04059157	0.0069%
3	5.7871	0.00821813	5.821608	0.03441365	0.0059%

Numerical example: Mean variance hedging

Figure: Monte Carlo experiments for $c^{k,*}$

Solving the dynamic programming equation by Deep Learning

The risky asset price

$$S_i^k = S(0) + \sum_{j=1}^i \Delta S_j^k; 1 \le i \le m,$$

follows a geometric Brownian motion-type process

$$\Delta S_{\ell}^{k} = \mu S_{\ell-1}^{k} \Delta T_{\ell-1}^{k} + \sigma S_{\ell-1}^{k} \Delta A_{\ell}^{k},$$

for $1 \leq \ell \leq m$. For a given control $\phi = (\phi_0, \dots, \phi_{m-1})$, we consider the wealth process

$$Y_i^{k,\phi} = c^* + \sum_{i=1}^i \phi_{j-1} \Delta S_j^k; 1 \le i \le m.$$

where c The two-dimensional controlled process is $X_i^{k,\phi} := \begin{pmatrix} S_i^k \\ Y_i^{k,\phi} \end{pmatrix}$ for $i=0,\ldots,m$.

The goal is to compute

$$\phi \in \operatorname*{arg\,min}_{\phi \in U} \mathbb{E} \Big| Y_m^\phi - \varphi(S_m^k) \Big|^2$$

over a suitable class of controls $\it U$ parameterized by a Feedforward Neural Network.

In general, the transition function $\mathcal{X}: \mathbb{R} \times (\mathbb{R}_+ \times \mathbb{R}) \times \mathbb{W} \to \mathbb{R}^2$ at the j+1-th step (viewed backwards for $j=m-1,\ldots,0$) is given by

$$\mathcal{X}(\theta, x_j, \mathbf{w}) := \begin{pmatrix} \mu x_j^{(1)} \mathbf{s} + \sigma x_j^{(1)} \tilde{\mathbf{i}} \\ \mu x_j^{(1)} \theta \mathbf{s} + \sigma x_j^{(1)} \theta \tilde{\mathbf{i}} \end{pmatrix}$$
(14)

where $w=(s,\tilde{i})$ for $s\in(0,\infty)$ and $\tilde{i}\in\{-2^{-k},+2^k\}$. Then, we define recursively

$$\mathbf{U}_{j}(x_{j},\theta) := \int_{\mathbb{W}} \mathbb{V}_{j+1}(x_{j} + \mathfrak{X}(\theta, x_{j}, \omega)) \nu(d\omega)$$

$$\mathbb{V}_{j}(x_{j}) := \inf_{\theta \in \mathbb{R}} \mathbf{U}_{j}(x_{j}, \theta),$$
(15)

for j = m - 1, ..., 0.

We define u_j^{po} as follows:

$$u_j^{op} \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}} \mathbf{U}_j(x_j, \theta),$$

for $j=m-1,\ldots,0$. Observe that this iterative scheme defines a sequence of Borel functions $g_j:\mathbb{R}_+\times\mathbb{R}\to\mathbb{R}; j=m-1,\ldots,0$ which realizes

$$u_j^{op}(x_j)=g_j(x_j),$$

for each $x_j \in \mathbb{R}_+ \times \mathbb{R}$ and $j = m-1, \ldots, 0$.

By definition, the value functions are

$$\mathbb{V}_j(x_j) = \mathbf{U}_j(x_j, g_j(x_j)); j = m-1, \ldots, 0.$$

The class of functions which contains $\{g_j\}_{j=0}^{m-1}$ is unknown. For this reason, we postulate two neural network spaces (here $\mathcal B$ and Θ are suitable parameter sets).

$$C = \{ \mathbb{R}_+ \times \mathbb{R} \ni x \mapsto C(x, \theta) \in \mathbb{R}^2; \theta \in \Theta \}$$
 (16)

and

$$\mathcal{V} = \{ \mathbb{R}_+ \times \mathbb{R} \ni x \mapsto \Phi(x, \beta) \in \mathbb{R}^3; \beta \in \mathcal{B} \}.$$
 (17)

Construction of a synthetic training data

We generate $\phi_0, \ldots, \phi_{m-1}$ following uniform distributions in [-2,2]. Starting with $(S_0^k, Y_0^k) = (S_0, c^*)$, we construct

$$Y_i^{k,\phi} = c^* + \sum_{i=1}^i \phi_{j-1} \Delta S_j^k; 1 \le i \le m.$$
 (18)

For a given $C=(a,b)\in\mathcal{C}, \Phi=(c,d,e)\in\mathcal{V}$ and a training data $X_{j-1}^k:=X_{j-1}^{k,\phi}$, we define

$$\mathcal{X}_{j-1}^{\theta} := \mathcal{X}(\widetilde{C}(X_{j-1}^k, \theta), X_{j-1}^k, \Delta T_1^k, \Delta A^k(T_1^k)), \tag{19}$$

where

$$\widetilde{C}(X_{j-1}^k, \theta) := a(S_{j-1}^k; \theta) + b(S_{j-1}^k; \theta) Y_{j-1}^k,$$
 (20)

for $1 \le j \le m$, $\theta \in \Theta$, and

$$\widetilde{\Phi}(X_{j-1}^k,\beta) := c(S_{j-1}^k;\beta) + d(S_{j-1}^k;\beta)Y_{j-1}^k + e(S_{j-1}^k;\beta)(Y_{j-1}^k)^2,$$
(21)

for $1 \le j \le m$ and $\beta \in \mathcal{B}$. Here, e is non-negative to insure convexity.

Terminal condition: $\widehat{\mathbb{V}}_m := \mathbb{V}_m$,

 $oldsymbol{0}$ Compute the approximated control at time n

stochastic gradient descent(ADAM)
$$\widehat{\hat{\theta}_n \in \operatorname*{arg\,min}_{\theta \in \Theta}} \quad \mathbb{E}\left[\widehat{\mathbb{V}}_{n+1}\left(X_n^k + \mathcal{X}_n^\theta\right)\right] \quad (22)$$

② compute the estimation of the value function at time *n*

stochastic gradient descent (ADAM)
$$\widehat{\widehat{\mathbb{V}}_n \in \operatorname*{arg\,min}_{\beta \in \mathcal{B}}} \qquad \mathbb{E} \Big[\widehat{\mathbb{V}}_{n+1} \big(X_n^k + \mathcal{X}_n^{\hat{\theta}_n} \big) - \widetilde{\Phi}(X_n^k, \beta) \Big]^2 \tag{23}$$

for
$$n = m - 1, \dots, 1, 0$$
.

Numerical example: Mean variance hedging

Table: Computing the Profit and Loss by Deep Learning

k	mean	Standard Deviation
1	0.3740	0.1689567
2	0.1622	0.4158859
3	0.02871	0.10821813

THANK YOU VERY MUCH FOR YOUR ATTENTION!!