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Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Consider the equation

dXt = ϕ(t,Xt) dt+ dBt, (E)

where ϕ(t, ·) is a distribution in some Besov space and B is a fractional
Brownian motion.

We look for solutions of the form

Xt = X0 +Kt +Bt,

where in case ϕ is regular enough, Kt =
∫ t

0
ϕ(r,Xr) dr.

Typical examples
I ϕ = α δ0: corresponds formally to an SDE involving the local time

of the solution, see [Le Gall’84] in the Brownian case.
I ϕ = α | · |−s: Bessel-like processes and Riesz-type kernels in

mathematical physics (e.g. Coulomb gases, Keller-Segel model,
etc.).
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Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Noise is your friend

Without noise, classical theory requires
I ϕ ∈ L1

tC1
b for well-posedness;

I ϕ ∈ L1
tC0
b for mere existence (Peano).

Typical example

dXt = sign(Xt)
√
|Xt| dt

+ dBt

, X0 = 0,

whose solutions are given, for any t∗ ∈ R+, by

(Xt∗

t )t∈R+
:= t 7→ (t− t∗)2

+.

As soon as the solution leaves 0, =⇒ uniqueness of solution since
√
· is

Lipschitz away from 0.

Now add noise to the equation. Due to the forcing, solution leaves 0
immediately. But away from 0, Lipschitz drift =⇒ uniqueness. For
almost each trajectory of (Bt)t≥0, we have a unique solution.

4 / 25
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How is the noise helping?

Heuristics – In situations where the ODE ẋt = ϕ(xt) lacks uniqueness,
adding noise might restore uniqueness ; regularisation by noise.
Consider X̃ = X −B which now solves the random ODE:

X̃t = X0 +

∫ t

0

ϕ(X̃r +Br) dr, t ≥ 0.

In X = X̃ +B, X̃ gives slow oscillations and B fast oscillations.
Freezing X̃, consider

x 7→
∫ t

0

ϕ(x+Br) dr

and hope this mapping is Lipschitz.
In fact, for L the local time of B,∫ t

0

ϕ(x+Br) dr =

∫
R
ϕ(x+ y)Lt(y) dy = ϕ ∗ Ľt(x).

=⇒ ϕ ∗ Ľt is more regular than ϕ !
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Rougher noise, smoother local time
For a Hurst parameter H ∈ (0, 1) \ { 1

2
}, fractional Brownian motion (fBm) is

given by:
Bt = cH

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dWs, t ∈ R.

Introduced in the 40’s by Kolmogorov as a toy model for turbulence. Since
then, many applications in hydrology, telecommunications, physics, finance, ...

I Trajectories:

I Gaussian process with memory:
• H > 1

2
: more regular than Bm, long-range dependence.

• Rough regime H < 1
2
: negatively correlated increments, strong

oscillations.
I Local time: x 7→ Lt(x) has regularity 1

2H −
1
2 − ε a.s.

Rule of thumb: rougher noise, better regularisation!
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A few results - Brownian case

I Works of Zvonkin, Veretennikov, [Krylov & Röckner’05]: Strong WP
for ϕ(t, x) ∈ Lq([0, T ];Lp(Rd))

if p ≥ 2, q > 2,
2

q
+
d

p
< 1.

I Hölder setting: ϕ ∈ Cγ ,
• [Bass & Chen’01] proved strong WP for γ > − 1

2
, d = 1,

counter-examples for γ < − 1
2
.

• Weak WP for γ > − 2
3
, d = 1 [Delarue & Diel’16];

weak WP for γ > − 1
2
, d ≥ 1 [Flandoli, Issoglio & Russo’17];

Canizzaro-Chouk, Coutin-Duboscq-Réveillac, etc.
• Also stable and/or degenerate noise by Priola, Chaudru de Raynal,

Menozzi et al.

These results rely crucially on the Markov property of the BM, and
subsequently on PDE techniques (martingale problem and/or Zvonkin
transform).
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A few results - fBm case

But fBm is neither Markov, nor a semimartingale.

I Early work by [Nualart & Ouknine’02]. Then
[Catellier & Gubinelli’16] used nonlinear Young integration to prove
that there is a unique solution if

ϕ ∈ Cγ(Rd) and γ > 1− 1

2H
.

I Recently, thanks to the Stochastic Sewing Lemma of [Lê’20],
• For ϕ ∈ Bγp (Rd), p <∞, γ − d

p
= 1− 1

2H
, strong WP of the

fBm-driven SDE [Anzeletti, R. & Tanré’23];
• Weak well-posedness: weak existence in [Anzeletti, R. & Tanré’23]

for γ > 1
2
− 1

2H
, uniqueness in law in [Butkovsky & Mytnik ’24].

Theorem ([Galeati & Gerencsér’24] – Time-dependent drift)
Strong WP holds for (E) when ϕ ∈ Lq([0, T ]; Cγ(Rd)) with

γ > 1− 1

H(q′ ∨ 2)
and q ∈ (1,∞].
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Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

McKean-Vlasov equations

As for “linear” SDEs, it is possible to exploit the regularising effect of the
noise for McKean-Vlasov SDEs. Consider specifically convolution-type
equations {

dYt = ψt ∗ µt(Yt) dt+ dBt
µt = Law(Yt).

(McKV)

This eq. arises formally as the limit of interacting particle systems.

Theorem ([Galeati, Harang & Mayorcas’23], [Galeati & Gerencsér’24])
Strong WP holds for (McK-V) when ψ ∈ LqCγ with γ > 1− 1

H(q′∨2) and
q ∈ (1,∞].

Remark: a similar statement holds for more general drift Ψ(t, x, µ).

Objectives:
I Obtain the regularity of the law of a linear SDE;
I Exploit this regularity for (McK-V) to go below the 1− 1

H(q′∨2)

threshold.
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Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

I For ϕ ∈ L∞([0, T ]; Cγ(Rd)) and H > 1
2 , [Olivera & Tudor’19] : Xt

has a density with some Besov regularity.

I For ϕ ∈ L∞([0, T ]; Cγ(Rd)), [Galeati, Harang & Mayorcas’23] show
that L(X·) ∈ Lq̃([0, T ];Bα1 ) for α < 1

H ( 1
q̃ −

1
2 ).

10 / 25
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Besov regularity

Bα1 (Rd) =
{
f ∈ S ′(Rd) : ‖f‖Bα1 <∞

}
,

where ‖ · ‖Bα1 has the equivalent thermic representation:

‖F−1 (φFf) ‖L1(Rd) + sup
s∈(0,1]

s
n−α

2 ‖∂ns gs ∗ f‖L1(Rd),

for any n ≥ α, n ∈ N.

For instance, one gets for the fBm B of Hurst parameter H ∈ (0, 1) that

‖L(Bt)‖Bα1 = ‖gt2H‖Bα1 .
1

1 ∧ tαH
, ∀t > 0.

In particular, L(B·) ∈ Lq̃([0, T ];Bα1 ) when α < 1
Hq̃ .
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Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Xt = X0 +

∫ t

0

ϕ(s,Xs) ds+Bt, t ∈ [0, T ]. (E)

Definition
I Solution:

• (ϕn)n∈N in Lq([0, T ]; C∞b ), ϕn → ϕ in Lq([0, T ]; Cγ−).
• ∀n ∈ N, denote Xn the solution of (E) with drift ϕn.
• If (Xn)n∈N converges in L2(Ω; C[0,T ]), call the limit (Xt)t∈[0,T ] a

solution to (E).

Assumption: ϕ ∈ Lq([0, T ]; Cγ(Rd)) with

H ∈ (0,+∞) \ N, γ > 1− 1

H(q′ ∨ 2)
and q ∈ (1,+∞]. (A)
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Time-space regularity of the density

Theorem (Anzeletti, Galeati, R. & Tanré ’25)
Under (A), let X be the solution to (E). Let q̃ ∈ [1,∞) and

0 ≤ α < min

{
1

Hq̃
, γ − 1 +

1

H

}
.

Then for any 0 ≤ s < t ≤ T , (γ ≤ 0,)

‖L(X·)‖Lq̃
[s,t]
Bα1

. (t− s)
1
q̃−αH + (‖ϕ‖Lq

[s,t]
Cγ + ‖ϕ‖1+η

Lq
[s,t]
Cγ ) (t− s)ε,

where
ε=

1

q′
+

1

q̃
−H(α+ 1) + min

(
−η
q
, γH

)
> 0

and η=
−γH

1 +Hγ −H ∈ (0, 1).

13 / 25
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Theorem (More general version)

Under (A), let X be the solution to (E) starting from an F0-measurable
random variable X0.
(a) For

0 < α < γ − 1 +
1

Hq′
,

then for any 0 ≤ u < t ≤ T , the conditional law L(Xt | Fu) has a
density which satisfies∥∥∥‖L(Xt | Fu)‖Bα1

∥∥∥
L∞Ω

6 C(1 + (t− u)−αH).

(b) Let (q̃, α) satisfying

q̃ ∈ (1,+∞), 0 < α < min

{
1

Hq̃
, γ − 1 +

1

H

}
,

then for any u ∈ [0, T ), t 7→ L(Xt | Fu) belongs a.s. to
Lq̃([u, T ];Bα1 ) and satisfies∥∥∥‖L(X· | Fu)‖Lq̃([u,T ];Bα1 )

∥∥∥
L∞Ω

6 C(T − u)
1
q̃−αH .
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I For q = q̃ = 2, the condition on γ is γ > 1− 1
2H and the density

estimate becomes

‖L(X·)‖L2
[s,t]
Bα1 . (t− s)ε,

for any α < 1
2H .

I Similarly for q̃ = 1+, L(X·) ∈ L1+
[s,t]B

α
1 for α < 1

H .
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Scheme of proof - 1

Fix s < t. By a duality argument,

‖L(X·)‖Lq̃
[s,t]
Bα1

. sup
f∈Lq̃

′
[s,t]
C−α, ‖f‖≤1

f smooth

∣∣∣ ∫ t

s

〈fr,L(Xr)〉dr
∣∣∣

. sup
f∈Lq̃

′
[s,t]
C−α, ‖f‖≤1

f smooth

∣∣∣E∫ t

s

fr(Xr) dr
∣∣∣.

The above expectation of
∫ t
s
fr(Xr) dr can now be studied via sewing

techniques.
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Scheme of proof - 2

Lemma
Assume (A), γ < 0. Let q̃ ∈ [1,∞) and

0 ≤ α < min

{
1

Hq̃
, γ − 1 +

1

H

}
.

For any f ∈ Lq̃′([0, T ]; C∞b (Rd)) and any 0 ≤ s < t ≤ T ,∣∣∣∣E∫ t

s

fr(Xr) dr
∣∣∣∣ . ‖f‖Lq̃′

[s,t]
C−α

×
(

(t− s)
1
q̃−αH + (‖ϕ‖Lq

[s,t]
Cγ + ‖ϕ‖1+η

Lq
[s,t]
Cγ )(t− s)ε

)
.
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Gaussian bounds for the density of X

Recent results giving Gaussian bounds on the density of SDEs:

I [Besalú et al.’16], [Baudoin et al.’16] : Rough differential equations
driven by fBm, smooth vector fields, using Malliavin calculus;

I [Li, Panloup & Sieber’23]: Differential equations with additive
fractional noise, irregular drift function in the Catellier-Gubinelli
regime, i.e. imposes restrictions when H < 1/2;

I [Perkowski & van Zuijlen’23]: upper and lower bound on the density
of SDEs, distributional drift with reg. > − 1

2 .
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Gaussian bounds

dXt = ϕ(t,Xt)dt+ dBt. (E)

For H ≥ 1/2, γ > 1− 1/(2H) and ϕ ∈ L∞([0, T ]; Cγ(Rd)),
[Li, Panloup & Sieber’23] proved upper and lower Gaussian bounds.

Theorem
Let H ≤ 1/2, γ > 1− 1/(2H) and ϕ ∈ L∞([0, T ]; Cγ(Rd)).
Then the solution to (E) has a density for any t ∈ (0, T ] and ∃C > 0 s.t.
∀t ∈ (0, T ], ∀x ∈ Rd,

C−1

tdH
exp

(
−C |x− x0|2

t2H

)
≤ dL(Xt)

dx
(x) ≤ C

tdH
exp

(
−C−1 |x− x0|2

t2H

)
.
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Girsanov’s formula for fBm gives for the density of X1:

dL(X1)

dy
(y) = (2π)−dHe−

|y|2
2 Ψ(y),

where

Ψ(y) = E
[

exp
(∫ 1

0

(K−1
H Z)s · dWs −

1

2

∫ 1

0

|(K−1
H Z)s|2 ds

)
| B1 = y

]
,

KH is a nonlocal operator from the definition of fBm, and
Z· =

∫ ·
0
ϕ(s,Bs) ds.

I the law of B | B1 is a fractional Brownian bridge; we also need the
law of W | B1.

I Relies on representation of Volterra bridges from
[Baudoin & Coutin’07];

I For fractional bridge (P yt )t∈[0,1], we prove local nondeterminism

Var(P yt |Fξ) ≥ cH(t− ξ)2H (1− t)2H

(1− ξ)2H
, t ≥ ξ.

I Study above exponential functionals using regularising effects
(SSL+LND) of those Gaussian bridges (recall that ϕ can still be
distributional!).
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Consider convolution-type McKean-Vlasov SDEs:{
dYt = ψt ∗ µt(Yt) dt+ dBt
µt = Law(Yt), t ≥ 0.

(McK-V)

Arises formally as the limit of interacting particle systems, as N → +∞:


dY i,Nt =

1

N

N∑
j=1

ψt(Y
i,N
t − Y j,Nt ) dt+ dBit, i ∈ {1, . . . , N}

B1, . . . , BN independent fBm.
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Existence

{
dYt = ψt ∗ µt(Yt) dt+ dBt
µt = Law(Yt), t ≥ 0.

(McK-V)

Theorem
Let ψ ∈ L∞([0, T ]; Cθ) with

θ > 1− 1

H
.

There exists Y and a family (µt)t∈[0,T ] solution of (McK-V), i.e.:
I for ρ ∈ [1,∞) and α < 1

ρH , µ ∈ Lρ([0, T ];Bα1 ) ;
I Y is the unique strong solution of the (linear) SDE with drift
ψ ∗ µ ∈ Lρ([0, T ]; C1

b ) ;
I For any t ≥ 0, µt is the law of Yt.
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Comments and example
I As H → 0, one can choose θ as small as desired.

I For H = 1
2 , the condition becomes θ > −1. We recover the best

known condition from the Brownian case given by
[Chaudru de Raynal et al.’24].

I Example 1: choosing ψ a measure, ψ ∈ C−d, the condition reads
−d > 1− 1

H .
For instance in d = 1, one must choose H < 1

2 .

I Example 2: Riesz kernels. If ψ(x) ∼ |x|−s for s ∈ (0, d), our result
applies for s < 1

H − 1.
; In particular in d = 2, s = 1 corresponds to Coulombian interaction. In
case H = 1

2
and the kernel is attractive ≡ Keller-Segel model, which is

known to have blow-ups in certain regimes.

I A heuristic scaling argument permits to retrieve the condition
θ > 1− 1

H .
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Uniqueness

Theorem
Let H ∈ (0,+∞) \ N and ψ ∈ L∞([0, T ];Bθp) for some θ ∈ (−∞, 1),
p ∈ [1,∞] satisfying

θ > 1− 1

2H
, θ − d

p
> 1− 1

H
.

Further assume that L(Y0) ∈ L∞(Rd). Then pathwise uniqueness and
uniqueness in law hold for (McK-V), in the class of solutions such that
ψ ∗ µ ∈ L1([0, T ]; C1

b ).

I The condition θ − d
p > 1− 1

H still permits to reach a subcritical
regime, up to working in Besov spaces with p <∞.
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Sketch of proof (existence)
I Consider the smooth approximations Y nt = Y0 +

∫ t

0

ψns ∗ µns (Y ns ) ds+Bt

µnt = L(Y nt ), t ≥ 0,

which have a pathwise unique, strong solution for any n ∈ N.
I Apply the density Theorem with q = q̃ = 2,
γ = α+ θ ≈ 1− 1/(2H) which gives us the condition α < 1/(2H):

‖µn‖L2
[s,t]
Bα1 . (t− s)ε + (t− s)ε‖ψn ∗ µn‖1+η

L2
[s,t]
Cθ+α

. (t− s)ε
(

1 + ‖ψn‖1+η
L∞

[0,t]
Cθ‖µ

n‖1+η
L2

[s,t]
Bα1

)

I η ≤ 1, with an argument borrowed from rough paths, then for
(t− s) small enough, ‖µn‖L2

[s,t]
Bα1 ≤ C(t− s)ε.

I Proceed with Kolmogorov’s tightness criterion for (Yn)n∈N.
I Identify the limit points as solutions of the McKean-Vlasov equation.

25 / 25



Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Sketch of proof (existence)
I Consider the smooth approximations Y nt = Y0 +

∫ t

0

ψns ∗ µns (Y ns ) ds+Bt

µnt = L(Y nt ), t ≥ 0,

which have a pathwise unique, strong solution for any n ∈ N.
I Apply the density Theorem with q = q̃ = 2,
γ = α+ θ ≈ 1− 1/(2H) which gives us the condition α < 1/(2H):

‖µn‖L2
[s,t]
Bα1 . (t− s)ε + (t− s)ε‖ψn ∗ µn‖1+η

L2
[s,t]
Cθ+α

. (t− s)ε
(

1 + ‖ψn‖1+η
L∞

[0,t]
Cθ‖µ

n‖1+η
L2

[s,t]
Bα1

)
I η ≤ 1, with an argument borrowed from rough paths, then for

(t− s) small enough, ‖µn‖L2
[s,t]
Bα1 ≤ C(t− s)ε.

I Proceed with Kolmogorov’s tightness criterion for (Yn)n∈N.
I Identify the limit points as solutions of the McKean-Vlasov equation.

25 / 25



Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Sketch of proof (existence)
I Consider the smooth approximations Y nt = Y0 +

∫ t

0

ψns ∗ µns (Y ns ) ds+Bt

µnt = L(Y nt ), t ≥ 0,

which have a pathwise unique, strong solution for any n ∈ N.
I Apply the density Theorem with q = q̃ = 2,
γ = α+ θ ≈ 1− 1/(2H) which gives us the condition α < 1/(2H):

‖µn‖L2
[s,t]
Bα1 . (t− s)ε + (t− s)ε‖ψn ∗ µn‖1+η

L2
[s,t]
Cθ+α

. (t− s)ε
(

1 + ‖ψn‖1+η
L∞

[0,t]
Cθ‖µ

n‖1+η
L2

[s,t]
Bα1

)
I η ≤ 1, with an argument borrowed from rough paths, then for

(t− s) small enough, ‖µn‖L2
[s,t]
Bα1 ≤ C(t− s)ε.

I Proceed with Kolmogorov’s tightness criterion for (Yn)n∈N.
I Identify the limit points as solutions of the McKean-Vlasov equation.

25 / 25



Introduction Regularity of laws of SDEs Gaussian bounds McKean-Vlasov equations

Thank you!
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Time-dependent drift – What scaling γ?

dXt = ϕ(t,Xt)dt+ dBt. (E)
Following the scaling argument of [Galeati & Gerencsér’24], consider
B

(λ)
t = λ−HBλt and ϕ(λ)(t, x) = λ1−Hϕ(λt, λHx). Then

X
(λ)
t = λ−HXλt solves

dX
(λ)
t = ϕ(λ)(t,X

(λ)
t ) dt+ dB

(λ)
t .

Now observe that

‖ϕ(λ)‖LqCγ = λ1−H− 1
q+γH‖ϕ‖LqCγ .

As λ→ 0, we want to keep λ1−H− 1
q+γH bounded, so heuristically,

γ > 1− 1

Hq′
.

Theorem ([Galeati & Gerencsér’24])
Strong WP holds for (E) when ϕ ∈ LqCγ with γ > 1− 1

Hq′ and q
′ ≥ 2.
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Elements of proof 1/3

Lemma
Assume (A), γ < 0. Let q̃ ∈ [1,∞) and

0 ≤ α < min

{
1

Hq̃
, γ − 1 +

1

H

}
.

For any f ∈ Lq̃′([0, T ]; C∞b (Rd)) and any 0 ≤ s < t ≤ T ,∣∣∣∣E∫ t

s

fr(Xr) dr
∣∣∣∣ . ‖f‖Lq̃′

[s,t]
C−α

×
(

(t− s)
1
q̃−αH + (‖ϕ‖Lq

[s,t]
Cγ + ‖ϕ‖1+η

Lq
[s,t]
Cγ )(t− s)ε

)
.
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Elements of proof 2/3

Sketch of proof of the Lemma:
We introduce a Sewing Lemma with shifting (deterministic version of
[Gerencsér’23]) and control functions.

Let X̃ = X −B and for u < v ≤ T with u− (v − u) ≥ 0,

Au,v := E
∫ v

u

fr(Br + Eu−(v−u)X̃r) dr

Idea: At = E
∫ t
s
fr(Xr) dr ≈

∑
Auk,uk+1

.

In order to verify the
conditions of this sewing lemma, we show that:
(a) |Au,v| . ‖f‖

L
q̃′
[u,v]

C−α
(v − u)

1
q̃
−αH

.

(b) for ξ = u+v
2 ,

|Au,v − Au,ξ − Aξ,v|

. (‖ϕ‖Lq
[u,v]

Cγ + ‖ϕ‖1+η

L
q
[u,v]

Cγ
)‖f‖

L
q̃′
[u,v]

C−α
(v − u)

H(γ−1+ 1
Hq′ +

1
Hq̃
−α)

.

(c) For any t ∈ [0, T ], the convergence in probab. of
∑
tn
i
∈Πn Atni ,t

n
i+1

to

E
∫ t
0
fr(Xr) dr, ∀ partitions of [0, t] s.t. |Πn| → 0.

⇒ |E
∫ t
s
fr(Xr) dr| . ‖f‖

Lq̃
′

[s,t]
C−α((t− s)

1
q̃−αH + Cϕ(t− s)H(γ−1+ 1

Hq′+
1
Hq̃′−α)

).
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Elements of proof 3/3

Proving (b) boils down to control∣∣∣E∫ ξ

u

fr(Br + Eu−(v−u)X̃r)− fr(Br + Eu−(ξ−u)X̃r)︸ ︷︷ ︸
=:f̃r(Br)

dr
∣∣∣.

I Use that |Eu−(ξ−u)f̃r(Br)| = |gσ2 ∗ f̃r
(
Eu−(ξ−u)[Br]

)
| with

σ2 = Var(Br | Fu−(ξ−u)) & (r − u+ ξ − u)2H ;use LND!

I Thus |Eu−(ξ−u)f̃r(Br)| . ‖f̃r‖C−α−1(r − u+ ξ − u)−(α+1)H ;use
smoothing of Gaussian kernel.

I Now ‖f̃r‖C−α−1 ≤ ‖fr‖C−α |Eu−(v−u)X̃r − Eu−(ξ−u)X̃r|.

I It remains to control |Eu−(v−u)X̃r − Eu−(ξ−u)X̃r|: using Stochastic
sewing with controls,

‖X̃r − Eu−(v−u)X̃r‖L∞Ω ≤ C(‖ϕ‖Lq
[u−,r]Cγ

+ ‖ϕ‖1+η
Lq

[u−,r]Cγ
)(r − u+ v − u)

1
q′+Hγ .
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Elements of proof - Conclusion

Denote Su,v the set of functions f ∈ Lq̃′([u, v]; C∞b ) s.t.
‖f‖

Lq̃
′

[u,v]
C−α ≤ 1.

By a density argument, it is sufficient to take the supremum over
f ∈ Su,v, to get

‖L(X·)‖Lq̃
[u,v]
Bα1,1
≤ C sup

f∈Su,v

∣∣∣ ∫ v

u

〈fs,L(Xs)〉 ds
∣∣∣

≤ C sup
f∈Su,v

∣∣∣E ∫ v

u

fs(Xs) ds
∣∣∣.

It remains to use the lemma.
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