Regularisation by fractional noise: density of SDEs and McKean-Vlasov equations

Alexandre RICHARD
CentraleSupélec, U. Paris-Saclay

With L. Anzeletti (TU Wien), L. Galeati (U. L'Aquila) and E. Tanré (U. Nice, Inria)

Workshop on Irregular Stochastic Analysis, Cortona

27 June 2025

Gaussian bounds

Overview

Introduction

Regularity of laws of SDEs

Gaussian bounds

McKean-Vlasov equations

Overview

Introduction

Regularity of laws of SDEs

Gaussian bounds

McKean-Vlasov equations

Consider the equation

$$dX_t = \varphi(t, X_t) dt + dB_t,$$
 (E)

where $\varphi(t,\cdot)$ is a distribution in some Besov space and B is a fractional Brownian motion.

We look for solutions of the form

$$X_t = X_0 + K_t + B_t,$$

where in case φ is regular enough, $K_t = \int_0^t \varphi(r, X_r) dr$.

Consider the equation

$$dX_t = \varphi(t, X_t) dt + dB_t,$$
 (E)

where $\varphi(t,\cdot)$ is a distribution in some Besov space and B is a fractional Brownian motion.

We look for solutions of the form

$$X_t = X_0 + K_t + B_t,$$

where in case φ is regular enough, $K_t = \int_0^t \varphi(r, X_r) dr$.

Typical examples

- $\varphi = \alpha \delta_0$: corresponds formally to an SDE involving the local time of the solution, see [Le Gall'84] in the Brownian case.
- $\varphi = \alpha |\cdot|^{-s}$: Bessel-like processes and Riesz-type kernels in mathematical physics (e.g. Coulomb gases, Keller-Segel model, etc.).

Without noise, classical theory requires

- $ightharpoonup \varphi \in L^1_t \mathcal{C}^1_b$ for well-posedness;
- $ightharpoonup \varphi \in L^1_t \mathcal{C}^0_b$ for mere existence (Peano).

Introduction

Without noise, classical theory requires

- $\varphi \in L^1_t \mathcal{C}^1_b$ for well-posedness;
- $\triangleright \varphi \in L^1_t \mathcal{C}^0_b$ for mere existence (Peano).

Typical example

$$dX_t = \operatorname{sign}(X_t)\sqrt{|X_t|} dt \qquad , \quad X_0 = 0,$$

Gaussian bounds

whose solutions are given, for any $t^* \in \mathbb{R}_+$, by

$$(X_t^{t^*})_{t \in \mathbb{R}_+} := t \mapsto (t - t^*)_+^2.$$

Without noise, classical theory requires

- $\varphi \in L^1_t \mathcal{C}^1_b$ for well-posedness;
- $\triangleright \varphi \in L^1_t \mathcal{C}^0_b$ for mere existence (Peano).

Typical example

$$dX_t = \operatorname{sign}(X_t)\sqrt{|X_t|} dt \qquad , \quad X_0 = 0,$$

whose solutions are given, for any $t^* \in \mathbb{R}_+$, by

$$(X_t^{t^*})_{t \in \mathbb{R}_+} := t \mapsto (t - t^*)_+^2.$$

As soon as the solution leaves $0, \Longrightarrow$ uniqueness of solution since $\sqrt{\cdot}$ is Lipschitz away from 0.

Without noise, classical theory requires

- $\varphi \in L^1_t \mathcal{C}^1_b$ for well-posedness;
- $\triangleright \varphi \in L^1_t \mathcal{C}^0_b$ for mere existence (Peano).

Typical example

$$dX_t = \operatorname{sign}(X_t)\sqrt{|X_t|} dt + dB_t, \quad X_0 = 0,$$

Gaussian bounds

As soon as the solution leaves $0 \implies \text{uniqueness of solution since } \sqrt{\cdot}$ is Lipschitz away from 0.

Now add noise to the equation.

Without noise, classical theory requires

- $\varphi \in L^1_t \mathcal{C}^1_b$ for well-posedness;
- $ightharpoonup \varphi \in L^1_t \mathcal{C}^0_b$ for mere existence (Peano).

Typical example

$$dX_t = \operatorname{sign}(X_t)\sqrt{|X_t|} dt + dB_t, \quad X_0 = 0,$$

As soon as the solution leaves $0 \implies \text{uniqueness of solution since } \sqrt{\cdot}$ is Lipschitz away from 0.

Now add noise to the equation. Due to the forcing, solution leaves 0 immediately. But away from 0, Lipschitz drift \Longrightarrow uniqueness. For almost each trajectory of $(B_t)_{t>0}$, we have a unique solution.

Introduction

Heuristics – In situations where the ODE $\dot{x}_t = \varphi(x_t)$ lacks uniqueness, adding noise might restore uniqueness \rightarrow regularisation by noise.

Gaussian bounds

Consider $\widetilde{X} = X - B$ which now solves the random ODE:

$$\widetilde{X}_t = X_0 + \int_0^t \varphi(\widetilde{X}_r + B_r) \, \mathrm{d}r, \quad t \ge 0.$$

Introduction

Heuristics – In situations where the ODE $\dot{x}_t = \varphi(x_t)$ lacks uniqueness, adding noise might restore uniqueness \rightarrow regularisation by noise.

Gaussian bounds

Consider $\widetilde{X} = X - B$ which now solves the random ODE:

$$\widetilde{X}_t = X_0 + \int_0^t \varphi(\widetilde{X}_r + B_r) \, \mathrm{d}r, \quad t \ge 0.$$

In $X = \widetilde{X} + B$, \widetilde{X} gives slow oscillations and B fast oscillations. Freezing X, consider

$$x \mapsto \int_0^t \varphi(x + B_r) \, \mathrm{d}r$$

and hope this mapping is Lipschitz.

How is the noise helping?

Heuristics – In situations where the ODE $\dot{x}_t = \varphi(x_t)$ lacks uniqueness, adding noise might restore uniqueness \rightarrow regularisation by noise.

Consider $\widetilde{X} = X - B$ which now solves the random ODE:

$$\widetilde{X}_t = X_0 + \int_0^t \varphi(\widetilde{X}_r + B_r) \, \mathrm{d}r, \quad t \ge 0.$$

In $X=\widetilde{X}+B$, \widetilde{X} gives slow oscillations and B fast oscillations. Freezing \widetilde{X} , consider

$$x \mapsto \int_0^t \varphi(x + B_r) \, \mathrm{d}r$$

and hope this mapping is Lipschitz.

In fact, for L the local time of B,

$$\int_0^t \varphi(x+B_r) dr = \int_{\mathbb{R}} \varphi(x+y) L_t(y) dy = \varphi * \check{L}_t(x).$$

 $\implies \varphi * \check{L}_t$ is more regular than φ !

Rougher noise, smoother local time

For a Hurst parameter $H \in (0,1) \setminus \{\frac{1}{2}\}$, fractional Brownian motion (fBm) is given by:

By $B_t=c_H\int_{\mathbb{R}}\left((t-s)_+^{H-1/2}-(-s)_+^{H-1/2}\right)\mathrm{d}W_s,\quad t\in\mathbb{R}.$ Introduced in the 40's by Kolmogorov as a toy model for turbulence. Sin

Introduced in the 40's by Kolmogorov as a toy model for turbulence. Since then, many applications in hydrology, telecommunications, physics, finance, ...

Rougher noise, smoother local time

For a Hurst parameter $H \in (0,1) \setminus \{\frac{1}{2}\}$, fractional Brownian motion (fBm) is given by:

 $B_t = c_H \int_{\mathbb{R}} \left((t - s)_+^{H - 1/2} - (-s)_+^{H - 1/2} \right) dW_s, \quad t \in \mathbb{R}.$

Introduced in the 40's by Kolmogorov as a toy model for turbulence. Since then, many applications in hydrology, telecommunications, physics, finance, ...

► Trajectories:

- ► Gaussian process with memory:
 - $H > \frac{1}{2}$: more regular than Bm, long-range dependence.
 - Rough regime $H < \frac{1}{2}$: negatively correlated increments, strong oscillations.

Rougher noise, smoother local time

For a Hurst parameter $H \in (0,1) \setminus \{\frac{1}{2}\}$, fractional Brownian motion (fBm) is given by:

$$B_t = c_H \int_{\mathbb{D}} \left((t - s)_+^{H - 1/2} - (-s)_+^{H - 1/2} \right) dW_s, \quad t \in \mathbb{R}.$$

Introduced in the 40's by Kolmogorov as a toy model for turbulence. Since then, many applications in hydrology, telecommunications, physics, finance, ...

► Trajectories:

- ► Gaussian process with memory:
 - $H > \frac{1}{2}$: more regular than Bm, long-range dependence.
 - Rough regime $H < \frac{1}{2}$: negatively correlated increments, strong oscillations.
- ▶ Local time: $x \mapsto L_t(x)$ has regularity $\frac{1}{2H} \frac{1}{2} \varepsilon$ a.s.

Rule of thumb: rougher noise, better regularisation!

A few results - Brownian case

▶ Works of Zvonkin, Veretennikov, [Krylov & Röckner'05]: Strong WP for $\varphi(t,x) \in L^q([0,T];L^p(\mathbb{R}^d))$

if
$$p \ge 2$$
, $q > 2$, $\frac{2}{q} + \frac{d}{p} < 1$.

A few results - Brownian case

▶ Works of Zvonkin, Veretennikov, [Krylov & Röckner'05]: Strong WP for $\varphi(t,x) \in L^q([0,T];L^p(\mathbb{R}^d))$

if
$$p \ge 2$$
, $q > 2$, $\frac{2}{q} + \frac{d}{p} < 1$.

- ▶ Hölder setting: $\varphi \in \mathcal{C}^{\gamma}$,
 - [Bass & Chen'01] proved strong WP for $\gamma > -\frac{1}{2}$, d=1, counter-examples for $\gamma < -\frac{1}{2}$.
 - Weak WP for $\gamma > -\frac{2}{3}$, $d = \tilde{1}$ [Delarue & Diel'16]; weak WP for $\gamma > -\frac{1}{2}$, $d \geq 1$ [Flandoli, Issoglio & Russo'17]; Canizzaro-Chouk, Coutin-Duboscq-Réveillac, etc.
 - Also stable and/or degenerate noise by Priola, Chaudru de Raynal, Menozzi et al.

A few results - Brownian case

▶ Works of Zvonkin, Veretennikov, [Krylov & Röckner'05]: Strong WP for $\varphi(t,x) \in L^q([0,T];L^p(\mathbb{R}^d))$

if
$$p \ge 2$$
, $q > 2$, $\frac{2}{q} + \frac{d}{p} < 1$.

- ▶ Hölder setting: $\varphi \in \mathcal{C}^{\gamma}$,
 - [Bass & Chen'01] proved strong WP for $\gamma > -\frac{1}{2}$, d=1, counter-examples for $\gamma < -\frac{1}{2}$.
 - Weak WP for $\gamma > -\frac{2}{3}$, d=1 [Delarue & Diel'16]; weak WP for $\gamma > -\frac{1}{2}$, $d \geq 1$ [Flandoli, Issoglio & Russo'17]; Canizzaro-Chouk, Coutin-Duboscq-Réveillac, etc.
 - Also stable and/or degenerate noise by Priola, Chaudru de Raynal, Menozzi et al.

These results rely crucially on the Markov property of the BM, and subsequently on PDE techniques (martingale problem and/or Zvonkin transform).

A few results - fBm case

But fBm is neither Markov, nor a semimartingale.

► Early work by [Nualart & Ouknine'02]. Then [Catellier & Gubinelli'16] used nonlinear Young integration to prove that there is a unique solution if

$$arphi \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$$
 and $\gamma > 1 - rac{1}{2H}.$

A few results - fBm case

But fBm is neither Markov, nor a semimartingale.

► Early work by [Nualart & Ouknine'02]. Then [Catellier & Gubinelli'16] used *nonlinear Young integration* to prove that there is a unique solution if

$$arphi \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$$
 and $\gamma > 1 - rac{1}{2H}$.

- ► Recently, thanks to the Stochastic Sewing Lemma of [Lê'20],
 - For $\varphi \in \mathcal{B}_p^{\gamma}(\mathbb{R}^d)$, $p < \infty$, $\gamma \frac{d}{p} = 1 \frac{1}{2H}$, strong WP of the fBm-driven SDE [Anzeletti, R. & Tanré'23];
 - Weak well-posedness: weak existence in [Anzeletti, R. & Tanré'23] for $\gamma > \frac{1}{2} \frac{1}{2H}$, uniqueness in law in [Butkovsky & Mytnik '24].

A few results - fBm case

But fBm is neither Markov, nor a semimartingale.

► Early work by [Nualart & Ouknine'02]. Then [Catellier & Gubinelli'16] used *nonlinear Young integration* to prove that there is a unique solution if

$$arphi \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$$
 and $\gamma > 1 - rac{1}{2H}$.

- ► Recently, thanks to the Stochastic Sewing Lemma of [Lê'20],
 - For $\varphi \in \mathcal{B}_p^{\gamma}(\mathbb{R}^d)$, $p < \infty$, $\gamma \frac{d}{p} = 1 \frac{1}{2H}$, strong WP of the fBm-driven SDE [Anzeletti, R. & Tanré'23];
 - Weak well-posedness: weak existence in [Anzeletti, R. & Tanré'23] for $\gamma > \frac{1}{2} \frac{1}{2H}$, uniqueness in law in [Butkovsky & Mytnik '24].

Theorem ([Galeati & Gerencsér'24] - Time-dependent drift)

Strong WP holds for (E) when $\varphi \in L^q([0,T];\mathcal{C}^{\gamma}(\mathbb{R}^d))$ with

$$\gamma > 1 - \frac{1}{H(q' \vee 2)}$$
 and $q \in (1, \infty]$.

McKean-Vlasov equations

Introduction

As for "linear" SDEs, it is possible to exploit the regularising effect of the noise for McKean-Vlasov SDEs. Consider specifically convolution-type equations

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \mathsf{Law}(Y_t). \end{cases}$$
 (McKV)

Gaussian bounds

This eq. arises formally as the limit of interacting particle systems.

McKean-Vlasov equations

As for "linear" SDEs, it is possible to exploit the regularising effect of the noise for McKean-Vlasov SDEs. Consider specifically convolution-type equations

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \mathsf{Law}(Y_t). \end{cases}$$
 (McKV)

This eq. arises formally as the limit of interacting particle systems.

Theorem ([Galeati, Harang & Mayorcas'23], [Galeati & Gerencsér'24])

Strong WP holds for (McK-V) when $\psi \in L^q \mathcal{C}^{\gamma}$ with $\gamma > 1 - \frac{1}{H(q' \vee 2)}$ and $q \in (1, \infty]$.

Remark: a similar statement holds for more general drift $\Psi(t, x, \mu)$.

McKean-Vlasov equations

As for "linear" SDEs, it is possible to exploit the regularising effect of the noise for McKean-Vlasov SDEs. Consider specifically convolution-type equations

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \mathsf{Law}(Y_t). \end{cases}$$
 (McKV)

This eq. arises formally as the limit of interacting particle systems.

Theorem ([Galeati, Harang & Mayorcas'23], [Galeati & Gerencsér'24])

Strong WP holds for (McK-V) when $\psi \in L^q \mathcal{C}^{\gamma}$ with $\gamma > 1 - \frac{1}{H(q' \vee 2)}$ and $q \in (1, \infty]$.

Remark: a similar statement holds for more general drift $\Psi(t,x,\mu)$.

Objectives:

- ▶ Obtain the regularity of the law of a *linear* SDE;
- ▶ Exploit this regularity for (McK-V) to go below the $1 \frac{1}{H(q' \lor 2)}$ threshold.

Overview

Introduction

Regularity of laws of SDEs

Gaussian bounds

McKean-Vlasov equations

ightharpoonup For $\varphi \in L^{\infty}([0,T];\mathcal{C}^{\gamma}(\mathbb{R}^d))$ and $H > \frac{1}{2}$, [Olivera & Tudor'19] : X_t has a density with some Besov regularity.

Gaussian bounds

▶ For $\varphi \in L^{\infty}([0,T]; \mathcal{C}^{\gamma}(\mathbb{R}^d))$, [Galeati, Harang & Mayorcas'23] show that $\mathcal{L}(X_{\cdot}) \in L^{\tilde{q}}([0,T];\mathcal{B}_{1}^{\alpha})$ for $\alpha < \frac{1}{H}(\frac{1}{\tilde{a}} - \frac{1}{2})$.

Besov regularity

$$\mathcal{B}_1^{\alpha}(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{\mathcal{B}_1^{\alpha}} < \infty \right\},$$

Gaussian bounds

where $\|\cdot\|_{\mathcal{B}^{\alpha}_{1}}$ has the equivalent thermic representation:

$$\|\mathcal{F}^{-1}(\phi\mathcal{F}f)\|_{L^{1}(\mathbb{R}^{d})} + \sup_{s \in (0,1]} s^{\frac{n-\alpha}{2}} \|\partial_{s}^{n} g_{s} * f\|_{L^{1}(\mathbb{R}^{d})},$$

for any $n \ge \alpha$, $n \in \mathbb{N}$.

Besov regularity

$$\mathcal{B}_1^{\alpha}(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{\mathcal{B}_1^{\alpha}} < \infty \right\},\,$$

where $\|\cdot\|_{\mathcal{B}^{\alpha}_{1}}$ has the equivalent thermic representation:

$$\|\mathcal{F}^{-1}(\phi\mathcal{F}f)\|_{L^{1}(\mathbb{R}^{d})} + \sup_{s \in (0,1]} s^{\frac{n-\alpha}{2}} \|\partial_{s}^{n} g_{s} * f\|_{L^{1}(\mathbb{R}^{d})},$$

for any $n \ge \alpha$, $n \in \mathbb{N}$.

For instance, one gets for the fBm B of Hurst parameter $H \in (0,1)$ that

$$\|\mathcal{L}(B_t)\|_{\mathcal{B}_1^{\alpha}} = \|g_{t^{2H}}\|_{\mathcal{B}_1^{\alpha}} \lesssim \frac{1}{1 \wedge t^{\alpha H}}, \ \forall t > 0.$$

In particular, $\mathcal{L}(B_\cdot) \in L^{\widetilde{q}}([0,T];\mathcal{B}_1^{\alpha})$ when $\alpha < \frac{1}{H\widetilde{q}}$.

$$X_t = X_0 + \int_0^t \varphi(s, X_s) \, \mathrm{d}s + B_t, \quad t \in [0, T].$$
 (E)

Gaussian bounds

Definition

- ► Solution:
 - $(\varphi^n)_{n\in\mathbb{N}}$ in $L^q([0,T];\mathcal{C}_b^\infty)$, $\varphi^n\to\varphi$ in $L^q([0,T];\mathcal{C}^{\gamma-})$.
 - $\forall n \in \mathbb{N}$, denote X^n the solution of (E) with drift φ^n .
 - If $(X^n)_{n\in\mathbb{N}}$ converges in $L^2(\Omega; \mathcal{C}_{[0,T]})$, call the limit $(X_t)_{t\in[0,T]}$ a solution to (E).

Gaussian bounds

Definition

- ► Solution:
 - $(\varphi^n)_{n\in\mathbb{N}}$ in $L^q([0,T];\mathcal{C}_b^\infty)$, $\varphi^n\to\varphi$ in $L^q([0,T];\mathcal{C}^{\gamma-})$.
 - $\forall n \in \mathbb{N}$, denote X^n the solution of (E) with drift φ^n .
 - If $(X^n)_{n\in\mathbb{N}}$ converges in $L^2(\Omega; \mathcal{C}_{[0,T]})$, call the limit $(X_t)_{t\in[0,T]}$ a solution to (E).

Assumption: $\varphi \in L^q([0,T]; \mathcal{C}^{\gamma}(\mathbb{R}^d))$ with

$$H\in (0,+\infty)\setminus \mathbb{N}, \ \gamma>1-rac{1}{H(q'\vee 2)} \ ext{and} \ q\in (1,+\infty].$$

Time-space regularity of the density

Theorem (Anzeletti, Galeati, R. & Tanré '25)

Under (A), let X be the solution to (E). Let $\tilde{q} \in [1, \infty)$ and

$$0 \le \alpha < \min \left\{ \frac{1}{H\widetilde{q}}, \gamma - 1 + \frac{1}{H} \right\}.$$

Gaussian bounds

Then for any $0 \le s < t \le T$, $(\gamma \le 0)$

$$\|\mathcal{L}(X_{\cdot})\|_{L^{\widetilde{q}}_{[s,t]}\mathcal{B}^{\alpha}_{1}} \lesssim (t-s)^{\frac{1}{\widetilde{q}}-\alpha H} + (\|\varphi\|_{L^{q}_{[s,t]}\mathcal{C}^{\gamma}} + \|\varphi\|_{L^{q}_{[s,t]}\mathcal{C}^{\gamma}}^{1+\eta})(t-s)^{\varepsilon},$$

where

$$\varepsilon = \frac{1}{q'} + \frac{1}{\widetilde{q}} - H(\alpha + 1) + \min\left(-\frac{\eta}{q}, \gamma H\right) > 0$$

and

$$\eta = \frac{-\gamma H}{1 + H\gamma - H} \in (0, 1).$$

Theorem (More general version)

Under (A), let X be the solution to (E) starting from an \mathcal{F}_0 -measurable random variable X_0 .

(a) For

$$0 < \alpha < \gamma - 1 + \frac{1}{Ha'},$$

Gaussian bounds

then for any $0 \le u < t \le T$, the conditional law $\mathcal{L}(X_t \mid \mathcal{F}_u)$ has a density which satisfies

$$\left\| \|\mathcal{L}(X_t \mid \mathcal{F}_u)\|_{\mathcal{B}_1^{\alpha}} \right\|_{L^{\infty}} \leqslant C(1 + (t - u)^{-\alpha H}).$$

(b) Let (\tilde{q}, α) satisfying

$$\tilde{q} \in (1, +\infty), \qquad 0 < \alpha < \min \left\{ \frac{1}{H\tilde{a}}, \gamma - 1 + \frac{1}{H} \right\},$$

then for any $u \in [0,T)$, $t \mapsto \mathcal{L}(X_t \mid \mathcal{F}_u)$ belongs a.s. to $L^{\tilde{q}}([u,T];\mathcal{B}_1^{\alpha})$ and satisfies

$$\left\| \| \mathcal{L}(X_{\cdot} \mid \mathcal{F}_{u}) \|_{L^{\bar{q}}([u,T];\mathcal{B}_{1}^{\alpha})} \right\|_{L_{\alpha}^{\infty}} \leqslant C(T-u)^{\frac{1}{\bar{q}}-\alpha H}.$$

▶ For $q = \tilde{q} = 2$, the condition on γ is $\gamma > 1 - \frac{1}{2H}$ and the density estimate becomes

$$\|\mathcal{L}(X_{\cdot})\|_{L^{2}_{[s,t]}\mathcal{B}^{\alpha}_{1}} \lesssim (t-s)^{\varepsilon},$$

Gaussian bounds

for any $\alpha < \frac{1}{2H}$.

For $q = \tilde{q} = 2$, the condition on γ is $\gamma > 1 - \frac{1}{2H}$ and the density estimate becomes

$$\|\mathcal{L}(X_{\cdot})\|_{L^{2}_{[s,t]}\mathcal{B}^{\alpha}_{1}} \lesssim (t-s)^{\varepsilon},$$

Gaussian bounds

for any $\alpha < \frac{1}{2H}$.

▶ Similarly for $\tilde{q} = 1+$, $\mathcal{L}(X_{\cdot}) \in L^{1+}_{[s,t]}\mathcal{B}^{\alpha}_{1}$ for $\alpha < \frac{1}{H}$.

Scheme of proof - 1

Fix s < t. By a duality argument,

$$\begin{split} \|\mathcal{L}(X_{\cdot})\|_{L^{\widetilde{q}}_{[s,t]}\mathcal{B}^{\alpha}_{1}} &\lesssim \sup_{\substack{f \in L^{\widetilde{q}'}_{[s,t]}\mathcal{C}^{-\alpha}, \ \|f\| \leq 1 \\ f \text{ smooth}}} \Big| \int_{s}^{t} \langle f_{r}, \mathcal{L}(X_{r}) \rangle \, \mathrm{d}r \Big| \\ &\lesssim \sup_{\substack{f \in L^{\widetilde{q}'}_{[s,t]}\mathcal{C}^{-\alpha}, \ \|f\| \leq 1 \\ f \text{ smooth}}} \Big| \mathbb{E} \int_{s}^{t} f_{r}(X_{r}) \, \mathrm{d}r \Big|. \end{split}$$

The above expectation of $\int_s^t f_r(X_r) dr$ can now be studied *via sewing* techniques.

Scheme of proof - 2

Lemma

Assume (A), $\gamma < 0$. Let $\tilde{q} \in [1, \infty)$ and

$$0 \le \alpha < \min \left\{ \frac{1}{H\widetilde{q}}, \gamma - 1 + \frac{1}{H} \right\}.$$

Gaussian bounds

For any $f \in L^{\widetilde{q}'}([0,T]; \mathcal{C}_b^{\infty}(\mathbb{R}^d))$ and any $0 \le s < t \le T$,

$$\left| \mathbb{E} \int_{s}^{t} f_{r}(X_{r}) dr \right| \lesssim \|f\|_{L_{[s,t]}^{\widetilde{q}'} \mathcal{C}^{-\alpha}}$$

$$\times \left((t-s)^{\frac{1}{\widetilde{q}} - \alpha H} + (\|\varphi\|_{L_{[s,t]}^{q} \mathcal{C}^{\gamma}} + \|\varphi\|_{L_{[s,t]}^{q} \mathcal{C}^{\gamma}}^{1+\eta})(t-s)^{\varepsilon} \right).$$

Overview

Introduction

Regularity of laws of SDEs

Gaussian bounds

McKean-Vlasov equations

Gaussian bounds for the density of X

Recent results giving Gaussian bounds on the density of SDEs:

▶ [Besalú et al.'16], [Baudoin et al.'16] : Rough differential equations driven by fBm, smooth vector fields, using Malliavin calculus;

Gaussian bounds

- ▶ [Li, Panloup & Sieber'23]: Differential equations with additive fractional noise, irregular drift function in the Catellier-Gubinelli regime, i.e. imposes restrictions when H < 1/2;
- ► [Perkowski & van Zuijlen'23]: upper and lower bound on the density of SDEs, distributional drift with reg. $> -\frac{1}{2}$.

Gaussian bounds

$$dX_t = \varphi(t, X_t)dt + dB_t. \tag{E}$$

For $H\geq 1/2$, $\gamma>1-1/(2H)$ and $\varphi\in L^\infty([0,T];\mathcal{C}^\gamma(\mathbb{R}^d))$, [Li, Panloup & Sieber'23] proved upper and lower Gaussian bounds.

Theorem

Let $H \leq 1/2$, $\gamma > 1 - 1/(2H)$ and $\varphi \in L^{\infty}([0,T]; \mathcal{C}^{\gamma}(\mathbb{R}^d))$.

Then the solution to (E) has a density for any $t \in (0,T]$ and $\exists C > 0$ s.t. $\forall t \in (0,T], \ \forall x \in \mathbb{R}^d$,

$$\frac{C^{-1}}{t^{dH}} \exp\left(-C \frac{|x - x_0|^2}{t^{2H}}\right) \le \frac{d\mathcal{L}(X_t)}{dx}(x) \le \frac{C}{t^{dH}} \exp\left(-C^{-1} \frac{|x - x_0|^2}{t^{2H}}\right).$$

$$\frac{d\mathcal{L}(X_1)}{dy}(y) = (2\pi)^{-dH} e^{-\frac{|y|^2}{2}} \Psi(y),$$

Gaussian bounds

where

$$\Psi(y) = \mathbb{E}\Big[\exp\Big(\int_0^1 (K_H^{-1}Z)_s \cdot dW_s - \frac{1}{2}\int_0^1 |(K_H^{-1}Z)_s|^2 ds\Big) \mid B_1 = y\Big],$$

 K_H is a nonlocal operator from the definition of fBm, and $Z_{\cdot} = \int_{0}^{\cdot} \varphi(s, B_{s}) \, \mathrm{d}s.$

$$\frac{d\mathcal{L}(X_1)}{dy}(y) = (2\pi)^{-dH} e^{-\frac{|y|^2}{2}} \Psi(y),$$

Gaussian bounds

where

$$\Psi(y) = \mathbb{E}\Big[\exp\Big(\int_0^1 (K_H^{-1}Z)_s \cdot dW_s - \frac{1}{2}\int_0^1 |(K_H^{-1}Z)_s|^2 ds\Big) \mid B_1 = y\Big],$$

 K_H is a nonlocal operator from the definition of fBm, and $Z_{\cdot} = \int_0^{\cdot} \varphi(s, B_s) \, \mathrm{d}s.$

 \blacktriangleright the law of $B \mid B_1$ is a fractional Brownian bridge; we also need the law of $W \mid B_1$.

$$\frac{d\mathcal{L}(X_1)}{dy}(y) = (2\pi)^{-dH} e^{-\frac{|y|^2}{2}} \Psi(y),$$

Gaussian bounds

where

$$\Psi(y) = \mathbb{E}\Big[\exp\Big(\int_0^1 (K_H^{-1}Z)_s \cdot dW_s - \frac{1}{2}\int_0^1 |(K_H^{-1}Z)_s|^2 ds\Big) \mid B_1 = y\Big],$$

 K_H is a nonlocal operator from the definition of fBm, and $Z_{\cdot} = \int_{0}^{\cdot} \varphi(s, B_{s}) ds.$

- \blacktriangleright the law of $B \mid B_1$ is a fractional Brownian bridge; we also need the law of $W \mid B_1$.
- Relies on representation of Volterra bridges from [Baudoin & Coutin'07];

$$\frac{\mathrm{d}\mathcal{L}(X_1)}{\mathrm{d}y}(y) = (2\pi)^{-dH} e^{-\frac{|y|^2}{2}} \Psi(y),$$

Gaussian bounds

where

$$\Psi(y) = \mathbb{E}\Big[\exp\Big(\int_0^1 (K_H^{-1}Z)_s \cdot dW_s - \frac{1}{2}\int_0^1 |(K_H^{-1}Z)_s|^2 ds\Big) \mid B_1 = y\Big],$$

 K_H is a nonlocal operator from the definition of fBm, and $Z_{\cdot} = \int_{0}^{\cdot} \varphi(s, B_{s}) \, \mathrm{d}s.$

- \blacktriangleright the law of $B \mid B_1$ is a fractional Brownian bridge; we also need the law of $W \mid B_1$.
- Relies on representation of Volterra bridges from [Baudoin & Coutin'07];
- For fractional bridge $(P_t^y)_{t \in [0,1]}$, we prove local nondeterminism

$$\operatorname{Var}(P_t^y | \mathcal{F}_{\xi}) \ge c_H (t - \xi)^{2H} \frac{(1 - t)^{2H}}{(1 - \xi)^{2H}}, \quad t \ge \xi.$$

$$\frac{d\mathcal{L}(X_1)}{dy}(y) = (2\pi)^{-dH} e^{-\frac{|y|^2}{2}} \Psi(y),$$

where

$$\Psi(y) = \mathbb{E}\Big[\exp\Big(\int_0^1 (K_H^{-1}Z)_s \cdot dW_s - \frac{1}{2}\int_0^1 |(K_H^{-1}Z)_s|^2 ds\Big) \mid B_1 = y\Big],$$

 K_H is a nonlocal operator from the definition of fBm, and $Z = \int_0^{\cdot} \varphi(s, B_s) \, \mathrm{d}s$.

- ▶ the law of $B \mid B_1$ is a fractional Brownian bridge; we also need the law of $W \mid B_1$.
- ▶ Relies on representation of Volterra bridges from [Baudoin & Coutin'07];
- For fractional bridge $(P_t^y)_{t \in [0,1]}$, we prove local nondeterminism

$$\operatorname{Var}(P_t^y | \mathcal{F}_{\xi}) \ge c_H (t - \xi)^{2H} \frac{(1 - t)^{2H}}{(1 - \xi)^{2H}}, \quad t \ge \xi.$$

▶ Study above exponential functionals using regularising effects (SSL+LND) of those Gaussian bridges (recall that φ can still be distributional!).

Overview

Introduction

Regularity of laws of SDEs

Gaussian bounds

McKean-Vlasov equations

Consider convolution-type McKean-Vlasov SDEs:

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \text{Law}(Y_t), \ t \ge 0. \end{cases}$$
 (McK-V)

Arises formally as the limit of interacting particle systems, as $N \to +\infty$:

$$\begin{cases} \mathrm{d}Y_t^{i,N} = \frac{1}{N} \sum_{j=1}^N \psi_t(Y_t^{i,N} - Y_t^{j,N}) \, \mathrm{d}t + \mathrm{d}B_t^i, & i \in \{1,\dots,N\} \\ B^1,\dots,B^N \text{ independent fBm}. \end{cases}$$

Consider convolution-type McKean-Vlasov SDEs:

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \mathsf{Law}(Y_t), \ t \ge 0. \end{cases}$$
 (McK-V)

Arises formally as the limit of interacting particle systems, as $N \to +\infty$:

$$\begin{cases} \mathrm{d}Y^{i,N}_t = \psi_t * \mu^N_t(Y^{i,N}_t) \, \mathrm{d}t + \mathrm{d}B^i_t, & i \in \{1,\dots,N\} \\ \\ B^1,\dots,B^N \text{ independent fBm and } \mu^N_t = \frac{1}{N} \sum_{j=1}^N \delta_{X^{j,N}_t}. \end{cases}$$

Existence

$$\begin{cases} dY_t = \psi_t * \mu_t(Y_t) dt + dB_t \\ \mu_t = \mathsf{Law}(Y_t), \ t \ge 0. \end{cases}$$
 (McK-V)

Gaussian bounds

Theorem

Let $\psi \in L^{\infty}([0,T];\mathcal{C}^{\theta})$ with

$$\theta > 1 - \frac{1}{H}.$$

There exists Y and a family $(\mu_t)_{t \in [0,T]}$ solution of (McK-V), i.e.:

- for $\rho \in [1, \infty)$ and $\alpha < \frac{1}{\rho H}$, $\mu \in L^{\rho}([0, T]; \mathcal{B}_1^{\alpha})$;
- ▶ Y is the unique strong solution of the (linear) SDE with drift $\psi * \mu \in L^{\rho}([0,T];\mathcal{C}_h^1)$:
- For any $t \geq 0$, μ_t is the law of Y_t .

Comments and example

lacktriangle As H o 0, one can choose θ as small as desired.

Comments and example

- ▶ As $H \to 0$, one can choose θ as small as desired.
- For $H = \frac{1}{2}$, the condition becomes $\theta > -1$. We recover the best known condition from the Brownian case given by [Chaudru de Raynal et al.'24].

- ightharpoonup As H o 0, one can choose θ as small as desired.
- For $H=\frac{1}{2}$, the condition becomes $\theta > -1$. We recover the best known condition from the Brownian case given by [Chaudru de Raynal et al.'24].

Gaussian bounds

 \blacktriangleright Example 1: choosing ψ a measure, $\psi \in \mathcal{C}^{-d}$, the condition reads $-d > 1 - \frac{1}{u}$. For instance in d=1, one must choose $H<\frac{1}{2}$.

Comments and example

- ightharpoonup As H o 0, one can choose θ as small as desired.
- For $H=\frac{1}{2}$, the condition becomes $\theta > -1$. We recover the best known condition from the Brownian case given by [Chaudru de Raynal et al.'24].

Gaussian bounds

- \blacktriangleright Example 1: choosing ψ a measure, $\psi \in \mathcal{C}^{-d}$, the condition reads $-d > 1 - \frac{1}{u}$. For instance in d=1, one must choose $H<\frac{1}{2}$.
- **Example 2:** Riesz kernels. If $\psi(x) \sim |x|^{-s}$ for $s \in (0, d)$, our result applies for $s < \frac{1}{U} - 1$. \rightarrow In particular in d=2, s=1 corresponds to Coulombian interaction. In case $H=\frac{1}{2}$ and the kernel is attractive \equiv Keller-Segel model, which is known to have blow-ups in certain regimes.

Comments and example

- ightharpoonup As H o 0, one can choose θ as small as desired.
- For $H=\frac{1}{2}$, the condition becomes $\theta > -1$. We recover the best known condition from the Brownian case given by [Chaudru de Raynal et al.'24].

Gaussian bounds

- \blacktriangleright Example 1: choosing ψ a measure, $\psi \in \mathcal{C}^{-d}$, the condition reads $-d > 1 - \frac{1}{u}$. For instance in d=1, one must choose $H<\frac{1}{2}$.
- **Example 2:** Riesz kernels. If $\psi(x) \sim |x|^{-s}$ for $s \in (0, d)$, our result applies for $s < \frac{1}{U} - 1$. \rightarrow In particular in d=2, s=1 corresponds to Coulombian interaction. In case $H=\frac{1}{2}$ and the kernel is attractive \equiv Keller-Segel model, which is known to have blow-ups in certain regimes.
- ▶ A heuristic scaling argument permits to retrieve the condition $\theta > 1 - \frac{1}{\pi}$.

Uniqueness

Theorem

Let $H \in (0, +\infty) \setminus \mathbb{N}$ and $\psi \in L^{\infty}([0, T]; \mathcal{B}_{n}^{\theta})$ for some $\theta \in (-\infty, 1)$, $p \in [1, \infty]$ satisfying

$$\theta>1-\frac{1}{2H},\quad \theta-\frac{d}{p}>1-\frac{1}{H}.$$

Gaussian bounds

Further assume that $\mathcal{L}(Y_0) \in L^{\infty}(\mathbb{R}^d)$. Then pathwise uniqueness and uniqueness in law hold for (McK-V), in the class of solutions such that $\psi * \mu \in L^1([0,T]; \mathcal{C}^1_b).$

Uniqueness

Theorem

Let $H \in (0, +\infty) \setminus \mathbb{N}$ and $\psi \in L^{\infty}([0, T]; \mathcal{B}_{p}^{\theta})$ for some $\theta \in (-\infty, 1)$, $p \in [1, \infty]$ satisfying

$$\theta>1-\frac{1}{2H},\quad \theta-\frac{d}{p}>1-\frac{1}{H}.$$

Gaussian bounds

Further assume that $\mathcal{L}(Y_0) \in L^{\infty}(\mathbb{R}^d)$. Then pathwise uniqueness and uniqueness in law hold for (McK-V), in the class of solutions such that $\psi * \mu \in L^1([0,T]; \mathcal{C}^1_b).$

▶ The condition $\theta - \frac{d}{n} > 1 - \frac{1}{H}$ still permits to reach a subcritical regime, up to working in Besov spaces with $p < \infty$.

Sketch of proof (existence)

► Consider the smooth approximations

$$\begin{cases} Y_t^n = Y_0 + \int_0^t \psi_s^n * \mu_s^n(Y_s^n) \, \mathrm{d}s + B_t \\ \mu_t^n = \mathcal{L}(Y_t^n), \ t \ge 0, \end{cases}$$

which have a pathwise unique, strong solution for any $n \in \mathbb{N}$.

Apply the density Theorem with $q = \tilde{q} = 2$, $\gamma = \alpha + \theta \approx 1 - 1/(2H)$ which gives us the condition $\alpha < 1/(2H)$:

$$\|\mu^{n}\|_{L_{[s,t]}^{2}\mathcal{B}_{1}^{\alpha}} \lesssim (t-s)^{\varepsilon} + (t-s)^{\varepsilon} \|\psi^{n} * \mu^{n}\|_{L_{[s,t]}^{2}\mathcal{C}^{\theta+\alpha}}^{1+\eta}$$
$$\lesssim (t-s)^{\varepsilon} \left(1 + \|\psi_{n}\|_{L_{[0,t]}^{\alpha}\mathcal{C}^{\theta}}^{1+\eta} \|\mu^{n}\|_{L_{[s,t]}^{2}\mathcal{B}_{1}^{\alpha}}^{1+\eta}\right)$$

Sketch of proof (existence)

► Consider the smooth approximations

$$\begin{cases} Y_t^n = Y_0 + \int_0^t \psi_s^n * \mu_s^n(Y_s^n) \, \mathrm{d}s + B_t \\ \mu_t^n = \mathcal{L}(Y_t^n), \ t \ge 0, \end{cases}$$

which have a pathwise unique, strong solution for any $n \in \mathbb{N}$.

Apply the density Theorem with $q = \tilde{q} = 2$, $\gamma = \alpha + \theta \approx 1 - 1/(2H)$ which gives us the condition $\alpha < 1/(2H)$:

$$\|\mu^{n}\|_{L_{[s,t]}^{2}\mathcal{B}_{1}^{\alpha}} \lesssim (t-s)^{\varepsilon} + (t-s)^{\varepsilon} \|\psi^{n} * \mu^{n}\|_{L_{[s,t]}^{2}\mathcal{C}^{\theta+\alpha}}^{1+\eta}$$
$$\lesssim (t-s)^{\varepsilon} \left(1 + \|\psi_{n}\|_{L_{[0,t]}^{\alpha}\mathcal{C}^{\theta}}^{1+\eta} \|\mu^{n}\|_{L_{[s,t]}^{2}\mathcal{B}_{1}^{\alpha}}^{1+\eta}\right)$$

▶ $\eta \leq 1$, with an argument borrowed from rough paths, then for (t-s) small enough, $\|\mu^n\|_{L^2_{[s-t]}\mathcal{B}^\alpha_1} \leq C(t-s)^\varepsilon$.

Sketch of proof (existence)

► Consider the smooth approximations

$$\begin{cases} Y_t^n = Y_0 + \int_0^t \psi_s^n * \mu_s^n(Y_s^n) \, \mathrm{d}s + B_t \\ \mu_t^n = \mathcal{L}(Y_t^n), \ t \ge 0, \end{cases}$$

which have a pathwise unique, strong solution for any $n \in \mathbb{N}$.

Apply the density Theorem with $q=\tilde{q}=2$, $\gamma=\alpha+\theta\approx 1-1/(2H) \text{ which gives us the condition }\alpha<1/(2H):$ $\|\mu^n\|_{L^2_{[s,t]}\mathcal{B}^\alpha_1}\lesssim (t-s)^\varepsilon+(t-s)^\varepsilon\|\psi^n*\mu^n\|_{L^2_{[s,t]}\mathcal{C}^{\theta+\alpha}}^{1+\eta}$

$$\lesssim (t-s)^{\varepsilon} \left(1 + \|\psi_n\|_{L^{\infty}_{[0,t]}\mathcal{C}^{\theta}}^{1+\eta} \|\mu^n\|_{L^{2}_{[s,t]}\mathcal{B}^{\alpha}_{1}}^{1+\eta} \right)$$

- ▶ $\eta \leq 1$, with an argument borrowed from rough paths, then for (t-s) small enough, $\|\mu^n\|_{L^2_{[s-t]}\mathcal{B}^\alpha_1} \leq C(t-s)^\varepsilon$.
- ▶ Proceed with Kolmogorov's tightness criterion for $(Y_n)_{n \in \mathbb{N}}$.
- ▶ Identify the limit points as solutions of the McKean-Vlasov equation.

Thank you!

Gaussian bounds

References I

L. Anzeletti, L. Galeati, A. Richard, and E. Tanré.

On the density of singular SDEs with fractional noise and applications to McKean-Vlasov equations.

Gaussian bounds

Preprint arXiv:2506.11900, 2025.

L. Anzeletti, K. Lê, and C. Ling,

Path-by-path uniqueness for stochastic differential equations under Krylov-Röckner condition. Preprint arXiv:2304.06802, 2023.

L. Anzeletti. A. Richard. and E. Tanré.

Regularisation by fractional noise for one-dimensional differential equations with nonnegative distributional drift

Electron, J. Probab., 28:1-49, 2023.

S. Athreya, O. Butkovsky, K. Lê, and L. Mytnik.

Well-posedness of stochastic heat equation with distributional drift and skew stochastic heat equation.

Comm. Pure Appl. Math., 77(5):2708-2777, 2024.

R. F. Bass and Z.-Q. Chen.

Stochastic differential equations for Dirichlet processes.

Probab. Theory Related Fields. 121(3):422-446. 2001.

F Baudoin and I Coutin

Volterra bridges and applications.

Markov Process. Related Fields, 13(3):587-596, 2007.

References II

F. Baudoin, E. Nualart, C. Ouyang and S. Tindel.

On probability laws of solutions to differential systems driven by a fractional Brownian motion

Gaussian bounds

Ann. Probab., 44(4):2554-2590, 2016.

M. Besalú, A. Kohatsu-Higa and S. Tindel.

Gaussian-type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions

Ann. Probab., 44(1):399-443, 2016.

O. Butkovsky, K. Lê, and L. Mytnik.

Stochastic equations with singular drift driven by fractional Brownian motion. Preprint arXiv:2302.11937, 2023.

O. Butkovsky and L. Mytnik.

Weak uniqueness for singular stochastic equations.

Preprint arXiv:2405.13780, 2024.

R. Catellier and M. Gubinelli.

Averaging along irregular curves and regularisation of ODEs.

Stochastic Process. Appl., 126(8):2323-2366, 2016.

P.-E. Chaudru de Ravnal, J.-F. Jabir and S. Menozzi.

Multidimensional Stable driven McKean-Vlasov SDEs with distributional interaction kernel-a regularization by noise perspective.

Stoch, Partial Differ, Equ. Anal. Comput., 2024.

References III

F Delarue and R Diel

Rough paths and 1d SDE with a time dependent distributional drift: application to polymers.

Gaussian bounds

Probab. Theory Related Fields, 165(1-2):1-63, 2016.

F. Flandoli, E. Issoglio, and F. Russo.

Multidimensional stochastic differential equations with distributional drift.

Trans. Amer. Math. Soc., 369(3):1665-1688, 2017.

I Galeati and M Gerencsér

Solution theory of fractional SDEs in complete subcritical regimes.

Forum Math. Sigma (to appear), 2024.

L. Galeati, F.A. Harang and A. Mayorcas.

Distribution dependent SDEs driven by additive fractional Brownian motion.

Probab. Theory Related Fields, 185(1-2), 251-309, 2023.

M. Gerencsér.

Regularisation by regular noise.

Stoch, Partial Differ, Equ. Anal. Comput. 11(2):714-729, 2023.

L. Goudenège, E. M. Haress and A. Richard.

Numerical approximation of fractional SDEs with distributional drift.

Stochastic Process. Appl. 181, 2025.

References IV

N. V. Krylov and M. Röckner.

Strong solutions of stochastic equations with singular time dependent drift.

Probab. Theory Related Fields, 131(2):154-196, 2005.

K. Lê.

A stochastic sewing lemma and applications.

Electron, J. Probab., 25:Paper No. 38, 55, 2020.

K. Lê and C. Ling.

Taming singular stochastic differential equations: A numerical method.

Preprint arXiv:2110.01343, 2021.

J.-F. Le Gall.

One-dimensional stochastic differential equations involving the local times of the unknown process.

Gaussian bounds

In Stochastic analysis and applications (Swansea, 1983), volume 1095 of Lecture Notes in Math., pages 51-82, Springer, Berlin, 1984.

X.-M. Li, F. Panloup and J. Sieber.

On the (non-)stationary density of fractional-driven Stochastic Differential Equations.

Ann. Probab. 51(6):2056-2085, 2023.

T Nilssen

Rough linear PDE's with discontinuous coefficients-existence of solutions via regularization by fractional Brownian motion.

Electron. J. Probab., 25:1-33, 2020.

References V

D. Nualart and Y. Ouknine

Regularization of differential equations by fractional noise.

Stochastic Process. Appl., 102(1):103-116, 2002.

C Olivera and C Tudor

Existence and Besov regularity of the density for a class of SDEs with Volterra noise. C. R. Acad. Sci. Paris, Ser. I, 357:636-645, 2019.

Gaussian bounds

N. Perkowski and W. van Zuijlen.

Quantitative heat-kernel estimates for diffusions with distributional drift.

Potential Anal. 59(2):731-752, 2023.

Time-dependent drift – What scaling γ ?

$$dX_t = \varphi(t, X_t)dt + dB_t. \tag{E}$$

Following the scaling argument of [Galeati & Gerencsér'24], consider $B_t^{(\lambda)} = \lambda^{-H} B_{\lambda t}$ and $\varphi^{(\lambda)}(t,x) = \lambda^{1-H} \varphi(\lambda t, \lambda^H x)$. Then $X_t^{(\lambda)} = \lambda^{-H} X_{\lambda t}$ solves

$$dX_t^{(\lambda)} = \varphi^{(\lambda)}(t, X_t^{(\lambda)}) dt + dB_t^{(\lambda)}.$$

Now observe that

$$\|\varphi^{(\lambda)}\|_{L^q\mathcal{C}^{\gamma}} = \lambda^{1-H-\frac{1}{q}+\gamma H} \|\varphi\|_{L^q\mathcal{C}^{\gamma}}.$$

As $\lambda \to 0$, we want to keep $\lambda^{1-H-\frac{1}{q}+\gamma H}$ bounded, so heuristically,

$$\gamma > 1 - \frac{1}{Ha'}$$
.

Theorem ([Galeati & Gerencsér'24])

Strong WP holds for (E) when $\varphi \in L^q \mathcal{C}^{\gamma}$ with $\gamma > 1 - \frac{1}{H q'}$ and $q' \geq 2$.

Lemma

Assume (A), $\gamma < 0$. Let $\tilde{q} \in [1, \infty)$ and

$$0 \le \alpha < \min \left\{ \frac{1}{H\widetilde{q}}, \gamma - 1 + \frac{1}{H} \right\}.$$

For any $f \in L^{\widetilde{q}'}([0,T]; \mathcal{C}^{\infty}_{b}(\mathbb{R}^{d}))$ and any $0 \leq s < t \leq T$,

$$\left| \mathbb{E} \int_{s}^{t} f_{r}(X_{r}) dr \right| \lesssim \left\| f \right\|_{L_{[s,t]}^{\overline{q}'} \mathcal{C}^{-\alpha}}$$

$$\times \left((t-s)^{\frac{1}{\overline{q}} - \alpha H} + (\left\| \varphi \right\|_{L_{[s,t]}^{q} \mathcal{C}^{\gamma}} + \left\| \varphi \right\|_{L_{[s,t]}^{q} \mathcal{C}^{\gamma}}^{1+\eta}) (t-s)^{\varepsilon} \right).$$

Sketch of proof of the Lemma:

We introduce a Sewing Lemma with shifting (deterministic version of [Gerencsér'23]) and control functions.

Let $\widetilde{X} = X - B$ and for $u < v \le T$ with $u - (v - u) \ge 0$,

$$A_{u,v} := \mathbb{E} \int_{u}^{v} f_r(B_r + \mathbb{E}^{u - (v - u)} \widetilde{X}_r) \, \mathrm{d}r$$

Idea: $A_t = \mathbb{E} \int_s^t f_r(X_r) dr \approx \sum A_{u_k, u_{k+1}}$.

Sketch of proof of the Lemma:

We introduce a Sewing Lemma with shifting (deterministic version of [Gerencsér'23]) and control functions.

Let $\widetilde{X} = X - B$ and for $u < v \le T$ with $u - (v - u) \ge 0$,

$$A_{u,v} := \mathbb{E} \int_{u}^{v} f_r(B_r + \mathbb{E}^{u - (v - u)} \widetilde{X}_r) \, dr$$

Idea: $A_t = \mathbb{E} \int_s^t f_r(X_r) dr \approx \sum A_{u_k, u_{k+1}}$. In order to verify the conditions of this sewing lemma, we show that:

Sketch of proof of the Lemma:

We introduce a Sewing Lemma with shifting (deterministic version of [Gerencsér'23]) and control functions.

Let $\widetilde{X} = X - B$ and for $u < v \le T$ with $u - (v - u) \ge 0$,

$$A_{u,v} := \mathbb{E} \int_{u}^{v} f_r(B_r + \mathbb{E}^{u - (v - u)} \widetilde{X}_r) \, dr$$

Idea: $A_t = \mathbb{E} \int_s^t f_r(X_r) \, \mathrm{d}r \approx \sum A_{u_k,u_{k+1}}$. In order to verify the conditions of this sewing lemma, we show that:

(a)
$$|A_{u,v}| \lesssim \|f\|_{L^{\widetilde{q}'}_{[u,v]}C^{-\alpha}} (v-u)^{\frac{1}{\widetilde{q}}-\alpha H}.$$

$$\begin{split} \text{(b)} \ \ &\text{for} \ \xi = \frac{u+v}{2}, \\ & |A_{u,v} - A_{u,\xi} - A_{\xi,v}| \\ & \lesssim (\|\varphi\|_{L^q_{[u,v]}\mathcal{C}^\gamma} + \|\varphi\|_{L^q_{[u,v]}\mathcal{C}^\gamma}^{1+\eta}) \|f\|_{L^{\widetilde{q}'}_{[u,v]}\mathcal{C}^{-\alpha}} (v-u)^{H(\gamma-1+\frac{1}{Hq'}+\frac{1}{H\widetilde{q}}-\alpha)}. \end{split}$$

(c) For any $t\in[0,T]$, the convergence in probab. of $\sum_{t_i^n\in\Pi^n}A_{t_i^n,t_{i+1}^n}$ to $\mathbb{E}\int_0^t f_r(X_r)\,\mathrm{d}r$, \forall partitions of [0,t] s.t. $|\Pi^n|\to 0$.

Sketch of proof of the Lemma:

We introduce a Sewing Lemma with shifting (deterministic version of [Gerencsér'23]) and control functions.

Let $\widetilde{X} = X - B$ and for $u < v \le T$ with $u - (v - u) \ge 0$,

$$A_{u,v} := \mathbb{E} \int_{u}^{v} f_r(B_r + \mathbb{E}^{u - (v - u)} \widetilde{X}_r) \, \mathrm{d}r$$

Idea: $A_t = \mathbb{E} \int_s^t f_r(X_r) dr \approx \sum A_{u_k, u_{k+1}}$. In order to verify the conditions of this sewing lemma, we show that:

- (a) $|A_{u,v}| \lesssim \|f\|_{L^{\widetilde{q}'}_{[u,v]}C^{-\alpha}} (v-u)^{\frac{1}{\widetilde{q}}-\alpha H}.$
- $$\begin{split} \text{(b)} \ \ &\text{for} \ \xi = \frac{u+v}{2}, \\ & |A_{u,v} A_{u,\xi} A_{\xi,v}| \\ & \lesssim (\|\varphi\|_{L^q_{[u,v]}\mathcal{C}^\gamma} + \|\varphi\|_{L^q_{[u,v]}\mathcal{C}^\gamma}^{1+\eta}) \|f\|_{L^{\widetilde{q}'}_{[u,v]}\mathcal{C}^{-\alpha}} (v-u)^{H(\gamma-1+\frac{1}{Hq'}+\frac{1}{H\widetilde{q}}-\alpha)}. \end{split}$$
- (c) For any $t\in[0,T]$, the convergence in probab. of $\sum_{t_i^n\in\Pi^n}A_{t_i^n,t_{i+1}^n}$ to $\mathbb{E}\int_0^t f_r(X_r)\,\mathrm{d}r$, \forall partitions of [0,t] s.t. $|\Pi^n|\to 0$.
- $\Rightarrow |\mathbb{E} \int_{s}^{t} f_{r}(X_{r}) \, \mathrm{d}r| \lesssim ||f||_{L_{[s,t]}^{\widetilde{q}'} \mathcal{C}^{-\alpha}} ((t-s)^{\frac{1}{\widetilde{q}}-\alpha H} + C_{\varphi}(t-s)^{H(\gamma-1+\frac{1}{Hq'}+\frac{1}{H\widetilde{q}'}-\alpha)}).$

$$\left| \mathbb{E} \int_{u}^{\xi} \underbrace{f_r(B_r + \mathbb{E}^{u - (v - u)}\widetilde{X}_r) - f_r(B_r + \mathbb{E}^{u - (\xi - u)}\widetilde{X}_r)}_{=:\widetilde{f}_r(B_r)} dr \right|.$$

$$\left| \mathbb{E} \int_{u}^{\xi} \underbrace{f_{r}(B_{r} + \mathbb{E}^{u-(v-u)}\widetilde{X}_{r}) - f_{r}(B_{r} + \mathbb{E}^{u-(\xi-u)}\widetilde{X}_{r})}_{=:\widetilde{f}_{r}(B_{r})} dr \right|.$$

$$\textbf{ Use that } |\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| = |g_{\sigma^2}*\tilde{f}_r\left(\mathbb{E}^{u-(\xi-u)}[B_r]\right)| \text{ with } \\ \sigma^2 = \text{Var}(B_r \mid \mathcal{F}_{u-(\xi-u)}) \gtrsim (r-u+\xi-u)^{2H} \iff \text{use LND!}$$

$$\left| \mathbb{E} \int_{u}^{\xi} \underbrace{f_r(B_r + \mathbb{E}^{u - (v - u)}\widetilde{X}_r) - f_r(B_r + \mathbb{E}^{u - (\xi - u)}\widetilde{X}_r)}_{=:\widetilde{f}_r(B_r)} dr \right|.$$

- $\text{ Use that } |\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| = |g_{\sigma^2}*\tilde{f}_r\left(\mathbb{E}^{u-(\xi-u)}[B_r]\right)| \text{ with } \\ \sigma^2 = \operatorname{Var}(B_r \mid \mathcal{F}_{u-(\xi-u)}) \gtrsim (r-u+\xi-u)^{2H} \leadsto \text{use LND!}$
- ▶ Thus $|\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| \lesssim ||\tilde{f}_r||_{\mathcal{C}^{-\alpha-1}}(r-u+\xi-u)^{-(\alpha+1)H} \iff$ use smoothing of Gaussian kernel.

$$\left| \mathbb{E} \int_{u}^{\xi} \underbrace{f_{r}(B_{r} + \mathbb{E}^{u-(v-u)}\widetilde{X}_{r}) - f_{r}(B_{r} + \mathbb{E}^{u-(\xi-u)}\widetilde{X}_{r})}_{=:\widetilde{f}_{r}(B_{r})} dr \right|.$$

- $\text{ Use that } |\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| = |g_{\sigma^2}*\tilde{f}_r\left(\mathbb{E}^{u-(\xi-u)}[B_r]\right)| \text{ with } \\ \sigma^2 = \operatorname{Var}(B_r \mid \mathcal{F}_{u-(\xi-u)}) \gtrsim (r-u+\xi-u)^{2H} \leadsto \text{use LND!}$
- ▶ Thus $|\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| \lesssim \|\tilde{f}_r\|_{\mathcal{C}^{-\alpha-1}}(r-u+\xi-u)^{-(\alpha+1)H} \iff$ use smoothing of Gaussian kernel.
- $\blacktriangleright \text{ Now } \|\widetilde{f}_r\|_{\mathcal{C}^{-\alpha-1}} \leq \|f_r\|_{\mathcal{C}^{-\alpha}} |\mathbb{E}^{u-(v-u)}\widetilde{X}_r \mathbb{E}^{u-(\xi-u)}\widetilde{X}_r|.$

$$\left| \mathbb{E} \int_{u}^{\xi} \underbrace{f_{r}(B_{r} + \mathbb{E}^{u - (v - u)}\widetilde{X}_{r}) - f_{r}(B_{r} + \mathbb{E}^{u - (\xi - u)}\widetilde{X}_{r})}_{=:\widehat{f_{r}}(B_{r})} dr \right|.$$

- ▶ Use that $|\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| = |g_{\sigma^2}*\tilde{f}_r\left(\mathbb{E}^{u-(\xi-u)}[B_r]\right)|$ with $\sigma^2 = \mathsf{Var}(B_r \mid \mathcal{F}_{u-(\xi-u)}) \gtrsim (r-u+\xi-u)^{2H} \iff \mathsf{use} \ \mathsf{LND!}$
- ▶ Thus $|\mathbb{E}^{u-(\xi-u)}\tilde{f}_r(B_r)| \lesssim ||\tilde{f}_r||_{\mathcal{C}^{-\alpha-1}}(r-u+\xi-u)^{-(\alpha+1)H} \iff$ use smoothing of Gaussian kernel.
- ▶ It remains to control $|\mathbb{E}^{u-(v-u)}\widetilde{X}_r \mathbb{E}^{u-(\xi-u)}\widetilde{X}_r|$: using *Stochastic* sewing with controls,

$$\|\widetilde{X}_r - \mathbb{E}^{u - (v - u)}\widetilde{X}_r\|_{L^{\infty}_{\Omega}} \le C(\|\varphi\|_{L^q_{[u - r]}\mathcal{C}^{\gamma}} + \|\varphi\|_{L^q_{[u - r]}\mathcal{C}^{\gamma}}^{1 + \eta})(r - u + v - u)^{\frac{1}{q'} + H\gamma}.$$

Elements of proof - Conclusion

Denote $\mathcal{S}_{u,v}$ the set of functions $f \in L^{\widetilde{q}'}([u,v]; \mathcal{C}_b^{\infty})$ s.t. $\|f\|_{L^{\widetilde{q}'}_{[u,v]}\mathcal{C}^{-\alpha}} \leq 1$.

By a density argument, it is sufficient to take the supremum over $f \in S_{u,v}$, to get

$$\|\mathcal{L}(X_{\cdot})\|_{L_{[u,v]}^{\bar{q}}\mathcal{B}_{1,1}^{\alpha}} \leq C \sup_{f \in \mathcal{S}_{u,v}} \Big| \int_{u}^{v} \langle f_{s}, \mathcal{L}(X_{s}) \rangle \, \mathrm{d}s \Big|$$
$$\leq C \sup_{f \in \mathcal{S}_{u,v}} \Big| \mathbb{E} \int_{u}^{v} f_{s}(X_{s}) \, \mathrm{d}s \Big|.$$

It remains to use the lemma.