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We want to prove that in general convergence to the invariant measure +
approximation scheme= simulation method with error rates (in Wasserstein
distance)

Pages, Lamberton, Lemaire, Panloup (decreasing step Euler approximation
to the invariant measure)

General framework : (B, ||x]|) Banach space, d distance equivalent with the
norm:
clixll < d(x,0) < Clix]|

Wasserstein distance

Wle) = (i f X = yIP M., (dx. dy)) /P
BxB

Wap(u,v) = (Inf BBd(X ,Y)PMy(dx, dy)) /P

f||x||p (dx) < oo}.

Family of transport applications



Example 1: (P;)i>0 Markov semigroup, u — 0s¢(u) = uPi—s
| #06si0(0) = [ Pr-sfolan
Example 2 Mc-Kean Vlasov

t t

Xer= X+ f F(Xe.rs L(Xs.))dlr + f o (Xs.s L(Xs.)) B,
S S

LX) = 1 = Os(t) = L(Xeu)

Example 3: Diffusion: One step Euler

t t
Xs.t =X+f f(X,L(X))dr+f o(X, L(X))dB,
L(X) = p > Og (1) = L(Xs 1)
n={lp<ti <..<th<..}

Of .1, (1) = O, 11, 0 ... 0 Oty 1, ().



Definition
Let b, >0 and & > 0. We say that ©' and © are (p, b., &)—coupled if for
some C,>0and he (0,1)andeverys<t<s+handyu' € Pp(B),i=1,2,

WE(©4 (1), 83, (1%) < (1=bu(t=8)WE (', k) +C.(1 + Il + 2l D) (t — 5) .

Last, we say that a family Og; : Pp(B) = Pp(B),0<s < t,is
(p, b., €)—self-coupled if the above holds with @' = ©2 = ©.

Hypothesis 2 (Boundedness)

Mp(©,1,0) = sup sup||G)totn W < e

mti—ti1<
Foster Lyapunov criterion

f NP ©s.e(u)(cx) < (1 — bt — s f IXIP () + C(t - 5).



Approximations: The main idea

Euler scheme |dea of the proof is the semigroup argument. ax =
oal.m (1 2 2
W5 (0, W), 817, (1))
n

an = e_b(tn_to)ao + Z(e_b(tﬂ_tk)ak — e_b(tn_tk71)ak_1).
k=1

Time grid Giveny, | 0and fx =y +...yx T oo,k € N.

T - 1
w = ||mM < 00
n 2
yn+1

If b > we for some ¢ > 0 then

n

Talb,g) = ) e Pyl < Gy 5y,

i=1

Typically: y, : 1, w =1, t = O(Ink)



Lemma

B For the particular case y, = # one has w(rr) = 1. If b # & then

Ope(n) < Cb,gn‘b’\‘9 and if b = € then op ¢(n) < Cpn~?In(1 + n).
Clets<tandt,=s+2,vi. Wetaken = n(t) such thatt, <t < ty.1. Then
one may find a constant that we still denote Cp . such that

Tbe(n) < Cpee ™ 9(1 + (t —5)'0=). (1)

Lemma
Let ©' and ©2? be families which are (p, b., €)-coupled for some b,,& > 0. Let
also assume that ©' is p—bounded and Mp(@1 , i, h) < co. Then,

W5 (07 (1), 027 (1)) (2
< e P OWR(T 12) + 2P CL(1 + Mp(@T, 1, h) + W (1, p12)) b, ().
Besides, Mp(©2, u, h) < oo for every u € Pp(B) and ©2 is p—bounded.

With the above set up

e bl=) 2 p7b 5y (n) < Cn7E



Corollary

Let 65 be a flow which is p-bounded and is (p, b., €)-self-coupled for some
b.,e > 0. We note C. > 0, h € (0,1). Then, foru', > € Pp(B) and s < t

Wg(gs,t(ﬂ1 ), es’t(#Z)) S Ae—b*/\é‘(t—s)(-l + (t _ S)1b*:8)

where A = ((2P*1C.Cp, . + )W (', 1) + 2P*1 C.Cb, (1 + Mp(6, 1)) and
Cb*,g =Cp,s+1.

Time homogeneous flow:
gr’t o 93’,' =93’t, S S r S t
Os.t(u) =00 t-s(u) for0 < s < t.

Continuity in W), for every fixed s < t

n—oo

lim Wp(up,u) =0 = nlﬂo Wp(0s.t(1n), Us,t(11)) = 0. 3)



Example Let us consider the following time-dependent O-U process
t
Xst=Xs + f k(Z(u) = Xp)du + o(W; — W), s < t,
S

with k,o > 0 and ¢ : R, — R, bdd. Here, Xs € L? independent of
(W; — Ws, t > s).Then

t t
Xs,t _ Xse—k(t—S) +f {(u)e‘k("“)du+0'f e—k(t—u)qu
S S
The associated flow 65 (1) = L(Xst) when X5 ~ u € P»(R) satisfies

W2 (05 t(111), Os 1(112)) < WE (1, po)e 2K79),

Denote by vs; = N([; {(u)e ™ -¥du, &) the law of

t t >
f L(u)e Kt=Uqy + o-f e Kt-Ugw, 1 [ L g-2k(t-s)Y
s s 2k

with Y ~ N(0, 1) independent of the other variables,



and therefore
2
_ _ o~ _ _ _ _
W2 (65 1(1), vs1) < 2B[XZ]e2K(=9) e 2k(t=s) =, ., O(e~2k(t=s)y,

However, we can choose ¢ so that | " ¢(u)e K-V du does not converge as
t — oo (take for example {(u) = cos(u)) and therefore vs; (and thus 65 ; (1))
does not converge in law.

So from now on, we only consider continuous time homogeneous flows.



Proposition 6s; : Pp(B) — P, (B) which is p-bounded and is (p, b., €)
self-coupled for some h € (0, 1), b, e > 0. Then, there exists a unique

v € Pp(B) s.t. for s < t one has v = 65 ¢(v). It satisfies ||v||f; = Mp(6,v) and we
have for every s < t and every u € Pp(B),

Wg(es,t(ﬂ),v) < Ae~#\b=8) (1 4 (t — 5))1o=e

Theorem Let 6 be p-bounded and is (p, b., &) self-coupled for some

h € (0,1), b.,e > 0 and v the invariant measure. Let Os; : Pp(B) — Pp(B),

s < t, be a family of applications which is (p, b, €) coupled with 65 ;. Let
Yn=—— and t, = S +y1 +...+yn, N € N. Then, we have for every u € P,(B)

WE(O7, (1), v) < An™P 41 +In(n + 1)To=)

S,th
with A = 22PC, (1 + Mp(6, 1))(2Cp, & + 1).
JOINT probabilistic representation
WP (', 1?) =E(aP (X", X?)),
(dP(X; £ X50) <(1=bu(t = 8)E(A(XT, X?)) + C.(1 + IXllg + IXPID)(t = 5)"*°



Lemma
Let @;’t 1 P1(B) — P1(B), s < t, i =1,2 be two families of applications such
that:

» O' s 1-bounded and (1, b., &) self-coupled,

> There exists C € R, such that for all s <t and u € P1(B),

Wi (O] (), ©2 (1)) < C(1 + llullo)(t = 5)"**.

Then, ©' and ©2 are (1, b., €)-coupled. Furtherore, ©2 is 1-bounded and
(1, b., ) self-coupled as well.



Example 1 Langevin equation (Eberle)

t t
XS,[ = X +f b(Xs’r)dr +f (TdBr
S S
We assume that

Ay |b(x) = b(y)l < Lp|x -yl
Ay (x-y,b(x)-b(y)<-«lx-yl Ix-yl>R

Eberle constructs explicit function f : R, — R, (depending on «, Lp, R) and
defines the distance

dr(x, y) = f(Ix = yl).
Proposition (Eberle) One may find b, such that
Wi, 1(05.1(10), 05.4(v)) < € W 1 (1, v).

Remark 1 d; is equivalent with the Euclidean norm |-|. We get easily

1 b
Wi(6s.1(1). 05.¢(v) < —e™> I Wiy 1 (11, v)

-



but then the multiplicative constant becomes 1/c. which is in general strictly
greater that one

Corollary
.
We,1 (07 , (1), v) < CnP"2.
The factor 1/2 is due to the approximation rate.

Proof Define the Euler scheme

t t
7s,t=X+f b(X)dr+f odB;  Psi(L(X)) = L(X)

One checks

Wdf,1 (es,t(ﬂ), es,t(,u)) < CW1 (Qs,t(ﬂ), es,t(,u)) <CE Xs,t - Ys,t <C |lL - 3|3/2

so that applying previous Lemma

1

Wi (W) 4, v) < CWa, 1(OW)g 4, v) < Cnb"z.



A similar result holds for the degenerate system (Schuch)
dX; = Ydt

dY; (ubE(X:) +u f b!(X:, 2)uX(dz) — yYi)dt + +2yudB
Rd

Under the conditions g : RY — RY with Lipschitz constant Ly such that
bE(x) = —Kx + g(x). Moreover, the function g verifies for some R > 0,

(X1 = Xx2,9(x1) —9g(x2)) <0 if x4 —x2| > R.
The above assumption implies in particular that

(x1 = x2.bE(x1) = bE(xe)) < —klxs = xel® i |x1 —xel 2 R.



Bolzmann type equations. Stochastic equation

We consider the stochastic equation: (Recall v :speed, z: angle,)

t
Xst(X) = X + f b(Xs.r, L(Xs.r))dr (4)

t
e [ ez X £ M syt Nz, v, oz.dus o).
s JRIXEXR,
(5)

With N(x, ) a Poisson point measure with compensator

N (x..)(av, dz, du, dr) = £(Xs,)(dv)v(dz)dudr

We define
LX)=p - Ost(u) = L(Xs,r(X))



One step Euler scheme: Given p € 1 we take X ~ p and construct

Ys.i(X) = X + b(X,p)(t - S)

f f c(v, z, X, p)jusy(v,z x)y N, (dv, dz, du, dr)
RIXEXR,

Then define ©g; : P1 — P1 by

p — Gs,t(p) = L(Ys,l‘(X))-

And we have (Alfonsi,Bally)

Wi (65¢(1), Os ¢(11)) < C()(t — 5)°.



Hypothesis
A1

Ib(x, 1) = b(y,v)| < Cp(Ix =yl + Wi(u,v))
(X —y,b(x,u) = b(y,u)) < -bIx -yl x,yeR’

A2
|(c(v, z,x)—c(V',z,x))y(v, z, x)| + |(y(v, z,X)—y(V',z,x"))c(v, z, x)’

<q@)(|x-x|+|v-V| with o:jﬁmmu)

ley(v, z, x)| <c(2)(1 +|v] + |x]).

A3
b, :=b-2Q > 0.



Theorem Assume the above conditions . Then, 6§ and O satisfy the

1-Foster-Lyapunov condition, are (1, b,, 1) coupled for b, = b — 2Q, and 6 is
self-coupled.

Furthermore, the Markov process (X;,t(X))tzs admits a unique invariant

measure v € P1(RY), and there exists C € R, such that for every u € P1(RY),
n>1andt > s,

1+ In(n + 1)Te=1
Wi(O5,; (1), v) < C(llully + 1)( 57[3*/\1 .

Wi (0s 4, (1), v) < C(llully + 1) X (1 + (tn — 5)"e=1) @ 2ME),

where tk = s+ XX, - and = {to < -+ < ty}.



Proof We have to check that © verify H 2 (Boundedness) and H 1
((b, &)—self-coupling)

Wi (Os(u"), Ost(u®) < (1 = b(t — 8)) Wi (', 4°) + C(t - 5)?

Step 1 Coupling

a) M optimal coupling of u', 2 and X = (X, X") of law M so that
—1 =2
E‘X _X ’: Wi (i, 1)
b) 7 = (r',72) : (0,1) = RY x RY such that

f d(r(w))dw = DX, X))



Step 2 Objective Poisson Point measure N(dw, du, dz, dr) with

7\7(dw, du,dz,dr) = dw x du x v(dz) x dr.

Equations (On the same probablity space): fori=1,2

vl

Xs1(1) = X' +b(X. 1)t - s)

f fo1 ><E><R+ 2.X ) (weyvz ity N(AW, 2z, du, dr)

Then '
L(Xy,) = Os1(1)
so that
YZ

s,t|-

—1
Wi (Os1(u"), Os4(1?)) < E|Xg —

Remark We are on the same probability space so we may use an L
calculus.



Step 3 It

-2
Xs,t

Wi(@s1(1"), Oss(1?)) < E X, -
<(1-bu(t- s))E|71 —Y2| +C(t-s)?
=(1 - b(t—8))Ws(u', 1?) + C(t — 5)°.

Vst = X2, — X2,. Using It6's formula (again, one has to take first a
regularization and then to pass to the limit) we get

Elys| = E[X'-X?|+E f<£Amm>m&ﬁw

+]Ef:fEf+f0 |Vs.r— + Aq(w, u, 2)| - |ys.r-| dN(w, u, 2, ) ()

with Aq(w, u, z) = g(t'(w), u, z, X1) — g(r3(w), u, z, X?).



Neuronal model in W,

mean field type stochastic equation

t t t
X = Xo + f b(Xs)ds +J f E[f(Xs)]ds - f f XoN serixoymdN(U, 2),
0 0 0 R,

where N is a random Poisson measure' with compensator measure given by
the Lebesgue measure on R, x R,. Furthermore, M >0and b,f : R, - R,
satisfy:

Vx,y 2 0,1b(x) — b(y)l < Cplx — yl, If(x) - f(y)| < Ctlx — y| and £(0) = 0.

Contraction:

there exists b > 0 such that for any x, y > 0,

sgn(y = x)(b(y) = b(x)) =y = XI(fu(y) v fu(x))
+ X(fu(y) = fm())* + y(fu(x) = fu(y))* < =blx -yl

Note that this is possible even with b = 0.



Assume b — CyJ > 0. Then, 6 and O satisfy the 1-Foster-Lyapunov condition,
are (1, b,, 1) coupled for every b, = b — CrJ, and 6 is self-coupled.

Furthermore, the Markov process (Xs:(X))i>s admits a unique invariant

measure v € P1(R,), and there exists C € R, such that for every u € P¢(R,),
n>1andt > s,

1 +In(n + 1))Te-=1
Wi (05, (), v) < C(llully + 1)( ,(,,b*m ) ’

Wi (s, (1), v) < Clllly + 1) X (1 + (ty — 5) 1)@ EANE=S)

K Landr={ty<--- <t}

where tx = s+ X4 75
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