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The nonlinear Schrödinger equation

The nonlinear Schrödinger (NLS) equation

∂tu + i∆u + iα|u|2σu = f

unknown u = u(t, x) : [0,∞)× D → C

D ⊆ Rd

i =
√
−1

α ∈ {−1, 1} (α = 1 focusing eq; α = −1 defocusing eq)
σ > 0

initial condition u(0, x) = u0(x)

We work on Rd or on the torus Td = (R/2πZ)d
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Known results

The existence of solutions is obtained for initial data in spaces Hs

for suitable s, d , α and σ.

A classical result is for initial data in H1, based on the
conservation of

mass M(u) = ‖u‖2
L2

and

energy E(u) :=
1

2
‖∇u‖2

L2 −
α

2 + 2σ
‖u‖2+2σ

L2+2σ

Actually, if there is a ”good” local existence result, then the global
H1-existence of solutions follows from a priori estimates.
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Known results

global existence

Assumptions to prove the global existence for u0 ∈ H1

• If α = 1 (focusing): 0 ≤ σ < 2
d

• If α = −1 (defocusing):

{
0 ≤ σ < 2

d−2 , for d ≥ 3

σ ≥ 0, for d ≤ 2

One uses the the continuous embeddings

H1(R2) ⊂ Lp(R2) ∀ p ∈ [2,∞)

H1(Rd) ⊂ Lp(Rd) ∀ p ∈ [2, 2d
d−2 ] for d ≥ 3

Hence for σ chosen above, there is the continuous embedding

H1(Rd) ⊂ L2+2σ(Rd). (1)
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Known results

global existence

Working in the energy space H1, let us denote by σcr the upper
bound on the power term

σcr =

{
2

(d−2)+
, α = −1

2
d , α = 1

The global existence has been proven for σ < σcr
in the deterministic and in stochastic setting
in the full space Rd or in bounded domains (torus, . . . )

Less or no results are known for σ = σcr (the critical exponent) or
σ > σcr (the supercritical exponent).
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Known results

local existence (blow-up)

blow-up (local but not global existence)

When working in the energy space H1, there is blow-up for the
NLS equation in the supercritical case.
For instance, there is blow-up in finite time

• in the focusing supercritical case: for 2
d ≤ σ ≤

2
(d−2)+

and

α = 1, provided the initial data u0 ∈ H1,∫
Rd |x |2|u0(x)|2dx < +∞ and has negative energy

(see Cazenave)

• in the defocusing supercritical case: for d ≥ 5 there are
examples of energy supercritical parameters σ for which there
is blow-up in finite time if the initial data C∞ are well
localized spherically symmetric functions
(see Merle+Raphaël+Rodnianski+Szeftel, 2022)
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Known results

local existence (blow-up)

Blow-up results have been proven for the stochastic NLS eq as
well.

Working on the full space Rd , De Bouard and Debussche (2002)
proved that, the supercritical focusing NLS eq with an additive,
nondegenerate and coloured-in-space noise
if

2
d ≤ σ <

2
(d−s)+

the initial data u0 ∈ H1 and
∫
Rd |x |2|u0(x)|2dx < +∞,

then for any time t > 0, either

P(τ∗(u0) < t) > 0

or

E
∫ t

0

(
‖u(s; u0)‖2

H1 + ‖u(s; u0)‖4σ+2
L2σ+2

)
ds = +∞.
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Known results

local existence (blow-up)

Still in the focusing case, the same authors (De Bouard and
Debussche, 2005) proved blow-up with a conservative, i.e.
Stratonovich, noise:

idu − (∆u + |u|2σu)dt = u ◦ dW

They consider σ ≥ 2
d (with other conditions ... ) and suitable

initial data.
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Known results

local existence (blow-up)

Cauchy problem for initial data in H s , s > 1

Take s > d
2 . Then

the proof of the existence of a local solution is not an issue in Hs

since, via the Sobolev embedding Hs ⊂ L∞, one easily controls the
nonlinear term (with an arbitrary large power).

A challenging open problem is the existence on any time interval.
Indeed, the existence of a global solution is harder, since a priori
control in the H1-norm of the solution no longer implies a priori
control of the Hs -norm, when d ≥ 2.
Hence, one cannot use the conservation of the mass and the
energy to deduce the existence of a global solution.
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The stochastic NLS with a nonlinear multiplicative noise

There is a paper by Sy (2021, J. Math. Pures Appl.) about global
existence for the deterministic unforced supercritical NLS eq for
µ-a.e. u0 ∈ Hs(T3) when s ≥ 2 and σ ∈ N (where µ is an
invariant measure of the deterministic NLS eq).

We introduce a suitable noise term to prove the existence of a
global solution for any initial data in Hs(Td) (s > d

2 ) and any
σ ∈ N.
The noise is multiplicative and nonlinear, related to the power σ.
So, our setting is very different with respect to that of the many
papers dealing with the stochastic NLS equation with additive
noise or linear (multiplicative) noise.
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The stochastic NLS with a nonlinear multiplicative noise

We consider the NLS equation with stochastic forcing term{
du(t, x) +

[
i∆u(t, x) + iα|u(t, x)|2σu(t, x)

]
dt = φ(u(t, x))dW (t)

u(0, x) = u0(x)

(2)
Here W = (W (t) : t ≥ 0) is a classical real-valued Wiener process.
We study a more general case when α ∈ C; therefore one can view
equation (2) as the stochastic version of the equation considered
by Kato.
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No blow-up by noise

We find sufficient conditions on the diffusion coefficient φ for the
global-in-time existence of the solutions to the stochastic NLS
equation (2), differently from the corresponding deterministic
problem (i.e. equation (2) with φ = 0):

for every σ ∈ N, d ≥ 1, α ∈ C, s > d
2 and u0 ∈ Hs(Td),

we find a sufficient condition on φ, such that the NLS equation (2)
has a global solution u ∈ C ([0,+∞);Hs) (a.s.).

In particular, the global existence holds in both focusing and
defocusing cases.
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No blow-up by noise

Our technique to prove the existence of a global solution relies on
some ideas already used for ODE’s and PDE’s in fluid dynamics
(see, e.g., Tang+Wang 2022; Bagnara+Maurelli+Xu 2025 EJP),
and is based on a tightness argument for the sequence of
finite-dimensional Galerkin approximations. It requires to choose a
suitable Lyapunov function.
Roughy speaking, a superlinear noise coefficient ”kills the growth”
of the nonlinear term so to get good a priori estimates by means of
a suitable Lyapunov function. This proves the non-explosion in
finite-time.
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No blow-up by noise

The nonlinear operator
We write the nonlinearity as

F (u) := |u|2σu

and assume that
σ ∈ N.

Lemma

(i) Let s ≥ 0. Then F maps the space Hs ∩ L∞ into Hs ∩ L∞ and

‖F (u)‖s ≤ K‖u‖2σ
L∞‖u‖s , u ∈ Hs ∩ L∞. (3)

(ii) Let s > d
2 . Then F maps Hs into Hs and, for any u, v ∈ Hs ,

it holds

‖F (u)− F (v)‖s ≤ L
(
‖u‖2σ

s + ‖v‖2σ
s

)
‖u − v‖s . (4)
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No blow-up by noise

The stochastic forcing term φ(u(t, x))dW (t)

H1 W is a real-valued one-dimensional Brownian motion.
H2 The diffusion coefficient φ is such that

i) φ : Hs → Hs is bounded on balls,
ii) φ : Hs′ → H−s−1 is continuous and bounded on balls, for

d
2 < s ′ < s;

H3 The projected coefficient Pnφ : Hn → Hn is locally Lipschitz
continuous for any n ∈ N.

H4 There exists a measurable function ψ : R+ × R+ → R+ which
is locally bounded and such that

‖φ(u)− φ(v)‖s ≤ ψ(‖u‖s , ‖v‖s)‖u − v‖s ∀ u, v ∈ Hs ;

H5 There exist r > 1 and B ∈ R such that

|α|K‖u‖2σ
L∞ +

1

2

‖φ(u)‖2
s

‖u‖2
s

≤
[<
(
u, φ(u)

)
s
]2

‖u‖4
s

+ B ∀ u ∈ Bc
r ,Hs

where K is the constant appearing in (3).
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No blow-up by noise

Examples of noise forcing term

We introduce the function h : R+ → C as

h(x) = a(1 + x)ã + ib(1 + x)b̃,

with a 6= 0, b ∈ R and ã, b̃ > 1.
Let now consider a diffusion term φ of the following form

φ(u) = h(‖u‖L∞)u. (5)
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No blow-up by noise

We then choose the parameters a, b, c , d as follows.

• When ã = b̃ = σ ≥ 1, we require a and b to fulfil

2|α|K + b2 ≤ a2.

• When ã = b̃ > σ ≥ 1, we require a 6= 0 and

b2 ≤ a2

• Any ã > max(b̃, σ) works well with a 6= 0.

• . . .
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No blow-up by noise

One could consider a slightly more general example for the noise:
φ(u) = f (u)u with f : Hs → C given by

f (u) = a(1 + ‖u‖X1)ã + ib(1 + ‖u‖X2)b̃, (6)

with a 6= 0, b ∈ R and ã, b̃ > 1.
The spaces X1 and X2 are chosen in such a way that for some
constants K0, K1 and K2

‖u‖X2 ≤ K2‖u‖X1 ≤ K1‖u‖s′ ∀u ∈ Hs

‖u‖L∞ ≤ K0‖u‖X1 ∀u ∈ Hs ,

where, as usual, we consider d
2 < s ′ < s.

To show that conditions H1-H5 are satisfied one imposes
conditions on the parameters a, b, ã, b̃ that involve also the
constants K0,K1 and K2.
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No blow-up by noise

We summarize our main results as follows.

Theorem (global existence and uniqueness in H s)

Assume H1-H5 and

σ ∈ N, s >
d

2
. (7)

Then, for any initial datum u0 ∈ Hs there exists a unique
global-in-time strong solution to (8) with P-a.s. paths in
C ([0,∞);Hs).
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No blow-up by noise

global existence of a solution

Existence and uniqueness of global strong solutions

We rewrite equation (2) in the following abstract form{
du(t) + i [−Au(t) + αF (u(t))] dt = φ(u(t))dW (t), t > 0

u(0) = u0.

(8)

We introduce the finite-dimensional Galerkin approximation of the
NLS equation{

dun(t) + i [−Aun(t) + αPnF (un(t))] dt = Pnφ(un(t))dW (t)

un(0) = Pn(u0)

(9)
where Pn : H → Hn = Span{ek : |k | ≤ n}.
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No blow-up by noise
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No blow-up by noise

global existence of a solution

We prove uniform a-priori bounds for the solution of the
approximated problem (; global existence).

These bounds allow to infer the tightness of the laws defined by
the solution of the Galerkin approximation.
Then we prove the convergence of the Galerkin approximations to
the martingale solution of the NLS equation.
Finally we prove pathwise uniqueness of the solution, from which
we also infer that the solution is strong in the probabilistic sense.
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No blow-up by noise

global existence of a solution

The Galerkin approximation

Proposition

Assume H1-H5, σ ∈ N and s > d
2 .

Then for any n ∈ N and u0 ∈ Hs there exists a unique solution un
of (9) defined on the time interval [0,+∞) and with P-a.e. path
in C ([0,+∞);Hn). Moreover, for any T , 0 < β < 1

2 and δ > 0,
there exists C > 0 such that

sup
n∈N

P
(
‖un‖L∞(0,T ;Hs) ≥ C

)
≤ δ. (10)

and
sup
n∈N

P
(
‖un‖C0,β([0,T ];H−s−1) ≥ C

)
≤ δ. (11)
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No blow-up by noise

global existence of a solution

We prove that there exists a solution, globally defined in time.
Local existence, i.e. existence on [0, τn), is a classical result. The
global one is obtained by means of the Khasmiskii’s test for non
explosion.

The idea is as follows. We introduce a sequence {τn,k}k∈N of
stopping times defined by

τn,k := inf {t ≥ 0 : ‖un(t)‖s ≥ k} , k ∈ N.

In order to prove that τn = +∞, P-a.s., it is sufficient to find a
Lyapunov C 2-function V : Hs → R satisfying

V ≥ 0 on Hs ,

ak := inf
{
V (u) : ‖u‖s ≥ k

}
→∞, as k →∞,

V (un(0)) <∞,
such that

E[V (un(t ∧ τn,k))] ≤ V (un(0)) + Ct, (12)

for a constant C <∞ and all t ∈ [0,T ] and k ∈ N.
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No blow-up by noise

global existence of a solution

Then
P(τn = +∞) = 1.

details

P(τn,k < t) = E
(
1{τn,k<t}

)
≤ 1

ak
E
[
1{τn,k<t}V (un(t ∧ τn,k))

]
≤ V (un(0)) + Ct

ak

Passing to the limit as k → +∞, we get

lim
k→∞

P(τn,k < t) = 0,

for every fixed t ≥ 0. Therefore P(τn < t) = lim
k→∞

P(τn,k < t) = 0 for

every fixed t ≥ 0, which means P(τn = +∞) = 1.
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No blow-up by noise
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No blow-up by noise

global existence of a solution

As Lyapunov function we consider

V (u) = l(‖u‖s)

where l : [0,+∞)→ [a,+∞) is a non-decreasing C 2-function such
that {

l(ρ) = a, 0 ≤ ρ < R

l(ρ) = loge ρ, ρ > 2R
(13)

Here R > 1
2 and a ∈ (0, log(2R)).

In order to get

E[V (un(t ∧ τn,k))] ≤ V (un(0)) + Ct

we apply the Itô formula to V (un), up to the maximal existence
time of the process un.
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No blow-up by noise

global existence of a solution

We obtain

dV (un(t)) = (LnV )(un(t))dt + V ′(un(t))[Pnφ(un(t))]dW (t),
(14)

where (LnV )(un(t)) and V ′(un(t)) vanish when ‖un(t)‖s < R.
However, when ‖un(t)‖s ≥ R they are given by

(LnV )(un) = V ′(un)[iAun−iαPn(F (un))]+ 1
2V ′′(un)[Pnφ(un),Pnφ(un)],

where

V ′(un)[h] = l ′(‖un‖s)
<
(
un, h

)
s

‖un‖s
and

V ′′(un)[h, k] = l ′′(‖un‖s)
<
(
un, h

)
s
<
(
un, k

)
s

‖un‖2
s

+ l ′(‖un‖s)

(
<
(
h, k
)
s

‖un‖s
−
<
(
un, h

)
s
<
(
un, k

)
s

‖un‖3
s

)
.
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No blow-up by noise

global existence of a solution

We notice the following simplification:

V ′(un)[iAun − iαPn(F (un))] =
l ′(‖un‖s)

‖un‖s
<
(
un, iAun − iαPn(F (un))

)
s

=
l ′(‖un‖s)

‖un‖s
<
(
un,−iαPn(F (un))

)
s

=
l ′(‖un‖s)

‖un‖s
=
(
un, αPn(F (un))

)
s
,

since the operators A and (I + A)
s
2 commute and so

<
(
un, iAun

)
s

= 0.
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No blow-up by noise

global existence of a solution

Hence

(LnV )(un)

=
l ′(‖un‖s)

‖un‖s
=
(
un, αPn(F (un))

)
s

+ 1
2 l
′′(‖un‖s)

[<
(
un,Pnφ(un)

)
s
]2

‖un‖2
s

+ 1
2 l
′(‖un‖s)

(
‖Pnφ(un)‖2

s

‖un‖s
−

[<
(
un,Pnφ(un)

)
s
]2

‖un‖3
s

)

≤ |α|Kl ′(‖un‖s)‖un‖2σ
L∞‖un‖s + 1

2 l
′′(‖un‖s)

[<
(
un,Pnφ(un)

)
s
]2

‖un‖2
s

+ 1
2 l
′(‖un‖s)

(
‖Pnφ(un)‖2

s

‖un‖s
−

[<
(
un,Pnφ(un)

)
s
]2

‖un‖3
s

)
(15)

where K is the constant in the estimate (3).
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No blow-up by noise

global existence of a solution

We will now show that

sup
n∈N

sup
u∈Hn

(LnV )(un) <∞. (16)

Since (LnV )(un) = 0 when the Hs -norm of un is smaller that R,
we have to consider two cases: when the Hs -norm of un is in
[R, 2R] or in (2R,+∞).
• If R ≤ ‖un‖s ≤ 2R, from (15) we estimate

(LnV )(un)

≤ |α|Kl ′(‖un‖s)‖un‖2σ
L∞‖un‖s + 1

2 l
′′(‖un‖s)‖Pnφ(un)‖2

s + l ′(‖un‖s)
‖Pnφ(un)‖2

s

‖un‖s

. l ′(‖un‖s)‖un‖2σ+1
s + 1

2 l
′′(‖un‖s)‖φ(un)‖2

s + l ′(‖un‖s)
‖φ(un)‖2

s

R
.

Since l ′(‖un‖s), l ′′(‖un‖s) are continuous, they are bounded when
R ≤ ‖un‖s ≤ 2R; also ‖φ(un)‖s is bounded when R ≤ ‖un‖s ≤ 2R
in virtue of Assumption 16(i).
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Therefore
sup
n∈N

sup
0 ≤ ‖un‖s ≤ 2R

(LnV )(un) <∞.

• If ‖un‖s > 2R , then l(ρ) = log ρ. So l ′(‖un‖s) = 1
‖un‖s and

l ′′(‖un‖s) = − 1
‖un‖2

s
.

Hence, from estimate (15) we infer

(LnV )(un) ≤ |α|K‖un‖2σ
L∞ + 1

2

‖Pnφ(un)‖2
s

‖un‖2
s

−
[<
(
un,Pnφ(un)

)
s
]2

‖un‖4
s

.

Thanks to H5, this quantity is finite if we choose R = r
2 . Hence

sup
n∈N

sup
‖un‖s ≥ 2R

(LnV )(un) <∞.
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No blow-up by noise

global existence of a solution

Combining all the above cases we conclude that (LnV (un)) is
bounded in Hn, uniformly in n ∈ N, that is there must exist a
positive constant C - independent of k and n - such that

LnV ≤ C for any n ∈ N. (17)

Hence

V (un(t∧τn,k)) ≤ V (un(0))+Ct+

∫ t∧τn,k

0
V ′(un(r))[φ(un(r))]dW (r).

Taking the expected value on both sides of the above estimate we
get (12), from which we infer that τn = +∞ P-a.s., that is, the
solution is defined at any time t ≥ 0.
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No blow-up by noise

global existence of a solution

from Galerkin to the full NLS eq

We work on a finite time interval [0,T ], for arbitrary T > 0; fix
s ′ ∈ (d2 , s) and set

ZT := C ([0,T ];Hs′) ∩ Cw ([0,T ];Hs).

Use the a priori estimates

sup
n∈N

P
(
‖un‖L∞(0,T ;Hs) ≥ C

)
≤ δ.

and
sup
n∈N

P
(
‖un‖C0,β([0,T ];H−s−1) ≥ C

)
≤ δ

to get that the sequence of the laws of un is tight in ZT .
In metric spaces, one can apply Prokhorov Theorem and Skorohod
Theorem to obtain convergence from tightness. Since the space
ZT is a locally convex space, one uses the Jakubowski
generalization to non-metric spaces.
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Proposition

Assume σ ∈ N, s > s ′ > d
2 and H1-H5.

Then for every u0 ∈ Hs there exists a martingale solution to (2)
defined on the time interval [0,+∞), with P̃-a.a. paths in
C ([0,+∞);Hs′) ∩ Cw ([0,+∞);Hs).

Exploiting the mild formulation of NLS equation we infer that the
solution process has P̃-a.s. paths in C ([0,∞);Hs).

Proposition

The martingale solution, given in Proposition 2, has a.a.
trajectories in C ([0,+∞);Hs).
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Finally we prove pathwise uniqueness of the martingale solutions.

Proposition

Assume σ ∈ N, s > s ′ > d
2 and H1-H5. Then, the pathwise

uniqueness holds.
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Invariant measures

For what concerns the problem of existence and uniqueness of
invariant measures , this is in general a quite challenging problem

for the stochastic NLS equation. By slightly strengthen the
assumptions on the diffusion coefficient φ and by modifying the
Lyapunov function, the same argument used to prove the existence
of global solutions, is adapted first to prove the existence of
invariant measures supported on Hs(Td). Then, when
φ(u) = f (u)u for suitable f , we prove that the zero solution is a
global attractor so that µ = δ0 is the unique invariant measure.
Roughly speaking, the (even stronger) superlinear noise coefficient
”forces the dynamics” to converge to the zero solution, which is an
equilibrium of the system.
As far as we know, this is the first result proving the existence and
uniqueness of the invariant measure (as well as some stability
results) for the NLS on Td for an arbitrary large power of the
nonlinearity.
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Invariant measures

existence

To prove the existence of invariant measures µ we need to
strengthen Assumption H5

H5 There exist r > 1 and B ∈ R such that

|α|K‖u‖2σ
L∞+

1

2

‖φ(u)‖2
s

‖u‖2
s

≤
[<
(
u, φ(u)

)
s
]2

‖u‖4
s

+B ∀ u ∈ Bc
r ,Hs

where K is the constant appearing in (3)

as follows

H5’ There exist p ∈ (0, 1), r > 1 and B < 0 such that

|α|K‖u‖2σ
L∞+

1

2

‖φ(u)‖2
s

‖u‖2
s

≤ (1− p

2
)

[<
(
u, φ(u)

)
s
]2

‖u‖4
s

+B ∀ u ∈ Bc
r ,Hs
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Invariant measures

uniqueness

To get uniqueness we strengthen once more.

H5” There exists f : Hs → C such that φ(u) = f (u)u. Moreover,
there exist p ∈ (0, 1) and B < 0 such that

|α|K‖u‖2σ
L∞ +

1

2
|f (u)|2 ≤ (1− p

2
)[<f (u)]2 + B, ∀ u ∈ Hs

The latter relation corresponds to

|α|K‖u‖2σ
L∞ +

1

2
[=f (u)]2 ≤ (

1

2
− p

2
)[<f (u)]2 + B. (18)
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Invariant measures

uniqueness

Statement of the main results

We summarize our main results as follows.

Theorem

Let

σ ∈ N, s >
d

2
.

If H1-H5’ hold, then there exists at least one invariant measure µ
for equation (8), supported in Hs , and∫

Hs

‖x‖ps dµ(x) <∞,

where p ∈ (0, 1) is the parameter in condition H5’.

If H1-H5” hold, then µ = δ0 is the unique invariant measure for
equation (8) and the zero solution is exponentially stable.
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Invariant measures

uniqueness

The Galerkin approximated NLS equation has a stationary solution
(constructed by means of the Krylov-Bogoliubov technique).
Then we recover a stationary solution for the NLS equation (2).

We use as Lyapunov function

V (u) = l(‖u‖s),

where l : [0,+∞)→ [a,+∞) is a non-decreasing C 2-function such
that {

l(ρ) = a, 0 ≤ ρ < R

l(ρ) = ρp, ρ > 2R,
(19)

for some a ∈ (0, (r)p) and choosing R = r
2 .
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uniqueness

The difference with respect to the function defined in (13) is for
large values of ρ (i.e. outside the ball of radius 2R), where we have

l ′(ρ) = pρp−1 and l ′′(ρ) = −p(1− p)ρp−2. (20)

Thus we get

1

T

∫ T

0
E(‖un(t)‖ps ) dt ≤ a + M

pB̃
.

Now use Krylov-Bogoliubov technique ...
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Invariant measures

uniqueness

As far as the uniqueness of the invariant measure is concerned, we
have

Theorem

Assume H1-H5”. Then for any u0 ∈ Hs

i) the zero solution is exponentially stable in the p-mean, where
p ∈ (0, 1) is the parameter in condition H5”, that is there
exist constants C <∞, λ > 0, such that

E[‖u(t)‖ps ] ≤ Ce−λt‖u0‖ps , ∀ t ≥ 0;

ii) the zero solution is exponentially stable with probability one,
that is, for any λ̄ ∈ (0, λ), there exists a P-a.s. finite random
time τ0 such that

‖u(t)‖ps ≤ Ce−λ̄t‖u0‖ps , ∀ t ≥ τ0, P− a.s.;

iii) µ = δ0 is the unique invariant measure.
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Invariant measures

uniqueness

rewriting H5” as

|α|K‖u‖2σ
L∞ +

1

2
[=f (u)]2 ≤ 1− p

2
[<f (u)]2 + B, ∀ u ∈ Hs

we realize that a key role is played by the real part of f , which
dominates the intensity of its imaginary part and of the nonlinear
term.
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Conclusion

Compared to previous results, our paper presents novelties in
different directions.

When compared to the deterministic literature, our result can be
understood as a regularization (no blow-up) by noise result.

When compared to the stochastic literature, as far as we know,
this is the first result providing the existence of a unique global
solution in the regular Sobolev space Hs(Td), s > d

2 , for an
arbitrary large power of the nonlinear term and for any initial data
in Hs(Td) (both in the focusing and defocusing case). And
providing results on invariant mesures.
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