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Cauchy-Riemann SPDE on the torus

Consider a C3-valued equation on a 2D torus T2:

∂z̄ r = r × r + i γW , (CR)

where ∂z̄ := 1
2(∂x + i∂y ) is the Cauchy-Riemann operator on T2,

W = (W1,W2,W3) is a real 3D white noise on T2 whose component W3 has

zero mean over T2, γ := (γ1, γ2, γ3) is an R3-vector and

γW := (γ1W1, γ2W2, γ3W3).

The Cauchy-Riemann operator ∂z̄ and its complex conjugate

∂z := 1
2(∂x − i∂y ) satisfy the identity

∂z∂z̄ = 1
4∆

so the operator (∂z̄)
−1 increases the regularity by 1.
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Motivation

Cauchy-Riemann operator ∂z̄ and its complex conjugate ∂z are

building blocks of the 2D free Dirac operator

D := −2i

 0 ∂z

∂z̄ 0

 .

Equation (CR) can be written in the following equivalent form

D

r

r

 =

 2i

−2i

 r × r +

 2

−2

 (γW ).

Dirac operators have applications in quantum mechanics, relativistic

field theory, differential geometry, and Clifford algebras.
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Motivation

The quadratic term r × r represents a nonlinear self-interaction,

introduces an interesting mathematical structure.

One possible interpretation of this cross-product term is that it

describes a nonlinear coupling between spinor-like components in a

quantum mechanical system.

Nonlinearities of quadratic type appear, for example, in

Dirac-Klein-Gordon systems.
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Main result

Theorem

Let (Ω,F ,P) be a probability space and let W = (W1,W2,W3) be a 3D

white noise on T2 such that W3 has zero mean over T2. Further let W ε be

a mollification of W by the standard mollifier. Assume that κ ∈ (0, 12).

Then, for every δ > 0, there exists a number ς > 0 and a set Ωδ ⊂ Ω,

depending also on κ, with P(Ωδ) > 1− δ, such that for every

γ = (γ1, γ2, γ3) ∈ R3 with |γ| < ς, and for every ε > 0, the system

∂z̄ r
ε = r ε × r ε + i γW ε, (mCR)

considered for ω ∈ Ωδ, has a solution r ε ∈ C∞(T2,C3) such that ...

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 5 / 38



Main rerult (continued)

Theorem

... there exists a limit

r := lim
ε→0

r ε in C−κ(T2) for every ω ∈ Ωδ.

Moreover, the convergence holds with the following rate:

∥r ε − r∥C−κ(T2) ≲ ε
κ
2 uniformly in ω ∈ Ωδ.
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Periodic Hölder-Zygmund space

Our proof uses a fixed-point argument in a Hölder-Zygmund space.

Our definition of the latter space is adapted to the periodic setting.

We start by introducing the dyadic interval

[0, 1]D := {2−n, n ∈ N0}.

Let φ ∈ D(Td), define the rescaled centered function

φλx (y) :=
1

λd
φ
(y − x

λ

)
, λ ∈ [0, 1]D, x ∈ Td .

Note that φλx ∈ D(Td).
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Periodic Hölder-Zygmund space

Our proof uses a fixed-point argument in a Hölder-Zygmund space.
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Periodic Hölder-Zygmund space

Let r ∈ N0 and α ⩾ 0. Define the classes of test functions
Br := {φ ∈ D(Td) : ∥∂kφ∥∞ ⩽ 1, for all 0 ⩽ |k | ⩽ r},

Bα := {φ ∈ D(Td) :
∫
Td φ(z)z

kdz = 0, for all 0 ⩽ |k | ⩽ α},

Br
α := Br ∩ Bα,

where k = (k1, . . . , kd); and zk := zk11 . . . zkdd , z = (z1, . . . , zd) ∈ Td .
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Definition (Periodic Hölder-Zygmund spaces Z α(Td))

Let α ∈ R. Define a “pseudo-norm” |f |Z α for f ∈ D′(Td) as follows.

If α ⩾ 0, then we put

|f |Z α := sup
ψ∈B0

|f (ψ)|+ sup
x∈Td, λ∈[0,1]D,

φ∈B0
α

|f (φλx )|
λα

.

If α < 0, then we put

|f |Z α := sup
x∈Td , λ∈[0,1]D,
φ∈B[−α+1]

|f (φλx )|
λα

.

We define the periodic Hölder-Zygmund space Z α := Z α(Td) as the

space of distributions f ∈ D′(Td) for which |f |Z α <∞.
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Remark

Our norm resembles that in

L. Broux, F. Caravenna and L. Zambotti, Hairer’s multilevel Schauder

estimates without regularity structures, Trans. Am. Math. Soc. 2024.

However, we define Hölder-Zygmund spaces using

periodic test functions and dyadic scales.

If α /∈ N, the definitions are equivalent, as we show in our paper.

For α ∈ N, Z α(Td) defines a distinct space, which is not utilized in our

analysis.
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Periodic little Hölder-Zygmund spaces

Remark

It is known that classical Hölder-Zygmund spaces are not separable

and that the space C∞ is not dense in them. For this reason, we define

so called little Hölder-Zygmund spaces Z α.

Definition (Periodic little Hölder-Zygmund spaces)

We define a periodic little Hölder-Zygmund space

Z
α := Z

α(Td) as the closure of C∞(Td) in Z α(Td).

We furthermore denote by | · |α, α ∈ R, the restriction of the norm | · |Z α

to Z α(Td).
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Periodic little Hölder-Zygmund spaces

Remark

A Gaussian white noise W on Td , as well as its convolutions K ∗ W and

G ∗ W are elements of little Hölder-Zygmund spaces. Furthermore,

Young products are well defined (specifically, uniquely defined) when

they are restricted to little Hölder-Zygmund spaces.

Lemma

Let W : Ω → D′(Td) be a Gaussian white noise. Then, for any κ > 0,

W ∈ Z
− d

2
−κ(Td) a.s. Furthermore, for any ε > 0 and κ > κ > 0,

|W ε − W |− d
2
−κ ≲ εκ−κ|W |− d

2
−κ , a.s.
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Green function for the Cauchy-Riemann operator

Let K be the Green function for the Laplacian on T2. We define

G := 2∂zK = ∂1K − i∂2K .
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The fixed-point argument


∂z̄ r

ε
1 = r ε2 r

ε
3 − r ε2 r

ε
3 + γ1iW1

ε,

∂z̄ r
ε
2 = r ε1 r

ε
3 − r ε1 r

ε
3 + γ2iW2

ε,

∂z̄ r
ε
3 = r ε1 r

ε
2 − r ε1 r

ε
2 + γ3iW3

ε,

(mCR)

Furthermore, introduce

ξεk := 2iG ∗ W
ε
k = 2G2 ∗ W

ε
k + 2G1 ∗ W

ε
k , k = 1, 2, 3,

G := G1 + iG2.
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Lemma

If f ∈ Cα(T2), α ∈ (0, 1), C ∈ C and a function r : T2 → C satisfies

r = G ∗ f + C

then r ∈ C1+α(T2) and satisfies the identity

−2∂z̄ r = f − [f ],

where [f ] := (4π2)−1
∫
f denotes the average over T2.
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The fixed-point argument

Proposition

Let c > 0, ε > 0 and γk ∈ R, k = 1, 2, 3. There exist C-valued Gaussian

mean zero random variables a and b such that if (r ε1 , r
ε
2 , r

ε
3 ) is a

Cα(T2)-pathwise solution of the system (for some α ∈ (0, 1)),


r ε1 = 2G ∗

(
r ε2 r

ε
3 − r ε2 r

ε
3

)
− γ1ξ

ε
1 + a,

r ε2 = 2G ∗
(
r ε1 r

ε
3 − r ε1 r

ε
3

)
− γ2ξ

ε
2 + b,

r ε3 = 2G ∗ (r ε1 r ε2 − r ε1 r
ε
2 )− γ3ξ

ε
3 + c ,

then r εk ∈ C∞(T2), k = 1, 2, 3, and (r ε1 , r
ε
2 , r

ε
3 ) solves (mCR).
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The fixed-point argument

Define a and b by the formulas

2ac = iγ2η2, 2bc = −iγ1η1,

where η1 and η2 are independent standard real Gaussian random variables

which are zero Fourier coefficients for W1 and W2.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 17 / 38



The fixed-point argument

Lemma

For ε > 0, let

Rε := r ε + γξε,

where γξε := (γ1ξ
ε
1, γ2ξ

ε
2, γ3ξ

ε
3). Then, the above system is equivalent to

Rε = −2G ∗
(
Rε × Rε − (γξε)× R

ε − Rε × (γξε)
)
− γ̃ζε +


a

b

c


where

ζε := 2G ∗ (ξε×ξε), γ̃ := (γ2γ3, γ1γ3, γ1γ2), γ̃ζε := (γ̃1ζ
ε
1 , γ̃2ζ

ε
2 , γ̃3ζ

ε
3).
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The fixed-point argument

For every ν ∈ R, introduce the Banach space

Eν =
{
R = (R1,R2,R3) : T2 → C3 : Rk ∈ Z

ν(T2), k = 1, 2, 3
}

For every σ > 0, we set c = σ
4 and define a, b via c .

Given ε > 0, σ > 0, and κ ∈ (0, 12), define a map

Γε,σ : E1−κ → E1−κ,

Γε,σR := −2G ∗
(
R × R + (γξε)× R + R × (γξε)

)
− γ̃ζε + (a, b, c)⊤.

ζε := 2G ∗ (ξε × ξε)
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A note on ζε := 2G ∗ (ξε × ξε)

Lemma

Let κ ∈ (0, 12). Then ζ
ε has a limit ζ in E1−κ as ε→ 0. Furthermore, for

all ε ⩾ 0 and κ ∈ (0, 12),

∥ζε∥1−κ ≲ ∥W ∥2−1−κ,

where ζ0 := ζ, and the constant in the above inequality does not depend

on ε ⩾ 0.

The above lemma is a fundamental result of this work, underpinning the

proof of the main result. Its proof is postponed to next slides.
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The fixed-point argument

Consider the closed ball M1−κ,σ := {R ∈ E1−κ : ∥R∥1−κ ⩽ σ}, of

radius σ > 0 (to be fixed later), which is a complete metric space.

Proposition

For every δ ∈ (0, 1) and κ ∈ (0, 12), there exists a set Ωδ ⊂ Ω,

P(Ωδ) > 1− δ, and a number σ > 0 such that for all ω ∈ Ωδ, ε ⩾ 0, and

γ = (γ1, γ2, γ3) satisfying |γ| ≲ σ2,

Γε,σ : M1−κ,σ → M1−κ,σ

is a strict contraction and hence has a unique fixed point in M1−κ,σ.

Moreover, the contraction constant does not depend on ε ⩾ 0 and ω ∈ Ωδ.
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The fixed-point argument

Remark

The proposition is also valid for the map Γ0,σ. In particular, ξ0 and ζ0

are well-defined. The products involved in Γ0,σ are understood as

Young products.
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Outline of proof

Let δ ∈ (0, 1). ∃Λ ∈ (0,+∞) such that if

Ωδ :=
{
ω : ∥W ∥−1−κ + |η1|+ |η2| < Λ

}
,

then P(Ωδ) > 1− δ.

One can bound ∥ξε∥−κ and ∥ζε∥−κ by ∥W ∥−1−κ uniformly in ε ⩾ 0.

If c ∼ σ and |γ| ∼ σ2, one can prove that

∥Γε,σR∥1−κ ⩽ σ on Ωδ.

and for R, R̂ ∈ M1−κ,σ,

∥Γε,σR − Γε,σR̂∥1−κ ⩽ C∥R − R̂∥1−κ C < 1.
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∥Γε,σR − Γε,σR̂∥1−κ ⩽ C∥R − R̂∥1−κ C < 1.
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Regularity of ζ = 2G ∗ [ξ × ξ]

Lemma

Let A ∈ R be a constant and let for α ∈ (0, 1), gk ∈ Cα(T2,R) and

fk = iG ∗ gk , for k = 1, 2. Then,

f1f2 − f1f2 = ∂1
(
(K ∗ g1 − A) ∂2K ∗ g2

)
− ∂2

(
(K ∗ g1 − A) ∂1K ∗ g2

)
.

Idea of Proof: Since G = ∂z̄K , the result follows by differentiation of the

products. The constant A cancels by differentiation.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 24 / 38



Regularity of ζ = 2G ∗ [ξ × ξ]

Lemma

Let A ∈ R be a constant and let for α ∈ (0, 1), gk ∈ Cα(T2,R) and

fk = iG ∗ gk , for k = 1, 2. Then,

f1f2 − f1f2 = ∂1
(
(K ∗ g1 − A) ∂2K ∗ g2

)
− ∂2

(
(K ∗ g1 − A) ∂1K ∗ g2

)
.

Idea of Proof: Since G = ∂z̄K , the result follows by differentiation of the

products. The constant A cancels by differentiation.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 24 / 38



Lemma

The components of ϑ := ξ × ξ satisfy the following relations:
ϑε1 = 2

(
∂1[(K ∗ W2

ε)ξε23]− ∂2[(K ∗ W2
ε)ξε13]

)
,

ϑε2 = 2
(
∂1[(K ∗ W3

ε)ξε21]− ∂2[(K ∗ W3
ε)ξε11]

)
,

ϑε3 = 2
(
∂1[(K ∗ W1

ε)ξε22]− ∂2[(K ∗ W1
ε)ξε12]

)
,

where ξε1k = Im ξk , ξ
ε
2k = Re ξk .

Furthermore, ϑε satisfy, for any x ∈ T2, the additional relations
ϑε1 = 2

(
∂1[(K ∗ W2

ε − K ∗ W2
ε(x))ξε23]− ∂2[(K ∗ W2

ε − K ∗ W2
ε(x))ξε13]

)
ϑε2 = 2

(
∂1[(K ∗ W3

ε − K ∗ W3
ε(x))ξε21]− ∂2[(K ∗ W3

ε − K ∗ W3
ε(x))ξε11]

)
ϑε3 = 2

(
∂1[(K ∗ W1

ε − K ∗ W1
ε(x))ξε22]− ∂2[(K ∗ W1

ε − K ∗ W1
ε(x))ξε12]

)
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Lemma

Moreover, there exists a limit ϑ := limε→0 ϑ
ε in D′(T2) and the

components ϑk of ϑ, k = 1, 2, 3, are given by
ϑ1 = 2

(
∂1[(K ∗ W2)ξ23]− ∂2[(K ∗ W2)ξ13]

)
,

ϑ2 = 2
(
∂1[(K ∗ W3)ξ21]− ∂2[(K ∗ W3)ξ11]

)
,

ϑ3 = 2
(
∂1[(K ∗ W1)ξ22]− ∂2[(K ∗ W1)ξ12]

)
,

ϑ1 = 2
(
∂1[(K ∗ W2 − K ∗ W2(x))ξ23]− ∂2[(K ∗ W2 − K ∗ W2(x))ξ13]

)
,

ϑ2 = 2
(
∂1[(K ∗ W3 − K ∗ W3(x))ξ21]− ∂2[(K ∗ W3 − K ∗ W3(x))ξ11]

)
,

ϑ3 = 2
(
∂1[(K ∗ W1 − K ∗ W1(x))ξ22]− ∂2[(K ∗ W1 − K ∗ W1(x))ξ12]

)
,

where identities are valid for any x ∈ T2, and the products in the square

brackets are understood as Young products.
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Regularity of ζ = 2G ∗ [ξ × ξ]

Consider the first component of ϑ := ξ × ξ:

ϑ1 = 2
(
∂1[(K ∗ W2)ξ23︸ ︷︷ ︸

0−

]− ∂2[(K ∗ W2)ξ13]
)

Remark

We observe that ϑ1 is well defined since the expression inside the

square brackets can be understood in the Young product sense.

Moreover, this expression suggests that the expected regularity of ϑ is

−1−. Had this been the case, the expected regularity of ζ := 2iG ∗ ϑ

would be 0− and therefore the expected regularity of R would also be

0−. Such a regularity is too low for the product R × ξ to be

well-defined. Hence, a fixed-point argument cannot be realized.

Γε,σR := −2G ∗
(
R × R + (γξ)× R + R × (γξ)

)
− γ̃ζ + C
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Regularity of ζ = 2G ∗ [ξ × ξ]

Lemma

Assume that η ∈ Z −κ(T2), κ ∈ (0, 12), and let ηε = η ∗ ρε. Then, for all

ε ⩾ 0 and j = 1, 2, 3,

sup
x∈T2,λ∈(0,1],

φ∈D(B1(0)),∥φ∥∞⩽1

∣∣[(K ∗ W ε
j − K ∗ W ε

j (x))η
ε
]
(φλx )

∣∣
λ1−κ

≲ |K ∗ W
ε
j |1−κ

2
|ηε|−κ

2

≲ |W j |−1−κ
2
|η|−κ

2
,

where W 0
j := W j , η

0 := η, and for ε = 0 the product on the right-hand

side is understood as the Young product.
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Regularity of ϑ = ξ × ξ

Proposition

Let ϑ be the limit of ϑε := ξε × ξε in D′(T2). Then, for every κ ∈ (0, 12),

ϑ ∈ E−κ.

Furthermore, for all ε ⩾ 0, κ ∈ (0, 12), and for j = 1, 2, 3,

∥ϑεj ∥−κ ≲ |W j1 |−1−κ
2
|W j2 |−1−κ

2
,

∥ϑεj − ϑj∥−κ ≲ |W ε
j1 − W j1 |−1−κ

2
|W j2 |−1−κ

2
+ |W ε

j2 − W j2 |−1−κ
2
|W j1 |−1−κ

2
,

where j1 := j + 1 mod 3 and j2 := j + 2 mod 3, ϑ0 := ϑ.
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Regularity of ζ = 2G ∗ [ξ × ξ]

Corollary

Let ζ be the limit of ζε := 2G ∗ ϑε in D′(T2). Then,

ζ ∈ E1−κ.

Furthermore, for all ε ⩾ 0 and κ ∈ (0, 12),

∥ζε∥1−κ ≲ ∥W ∥2−1−κ,

∥ζεj − ζj∥1−κ ≲ |W ε
j1 − W j1 |−1−κ

2
|W j2 |−1−κ

2
+ |W ε

j2 − W j2 |−1−κ
2
|W j1 |−1−κ

2
,

where j = 1, 2, 3; j1 := j + 1 mod 3; j2 := j + 2 mod 3; ζ0 := ζ.
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Regularity of ϑ = ξ × ξ
Recall:

ϑ1 = 2
(
∂1[(K ∗ W2)ξ23]− ∂2[(K ∗ W2)ξ13]

)
,

ϑ1 = 2
(
∂1[(K ∗ W2 − K ∗ W2(x))ξ23]− ∂2[(K ∗ W2 − K ∗ W2(x))ξ13]

)
.

The latter representation holds for any x ∈ T2.

For the proof we will need

B̃1 := {φ ∈ D(B1(0)) : ∥∂kφ∥∞ ⩽ 1, |k | = 0, 1},

B̃0 := {φ ∈ D(B1(0)) : ∥φ∥∞ ⩽ 1}.

Recall: ξ3 := G ∗ W3, ξ23 := Re ξ3, ξ13 := Im ξ3.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 31 / 38



Regularity of ϑ = ξ × ξ
Recall:

ϑ1 = 2
(
∂1[(K ∗ W2)ξ23]− ∂2[(K ∗ W2)ξ13]

)
,

ϑ1 = 2
(
∂1[(K ∗ W2 − K ∗ W2(x))ξ23]− ∂2[(K ∗ W2 − K ∗ W2(x))ξ13]

)
.

The latter representation holds for any x ∈ T2.

For the proof we will need

B̃1 := {φ ∈ D(B1(0)) : ∥∂kφ∥∞ ⩽ 1, |k | = 0, 1},

B̃0 := {φ ∈ D(B1(0)) : ∥φ∥∞ ⩽ 1}.

Recall: ξ3 := G ∗ W3, ξ23 := Re ξ3, ξ13 := Im ξ3.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 31 / 38



Regularity of ϑ = ξ × ξ
Recall:

ϑ1 = 2
(
∂1[(K ∗ W2)ξ23]− ∂2[(K ∗ W2)ξ13]

)
,

ϑ1 = 2
(
∂1[(K ∗ W2 − K ∗ W2(x))ξ23]− ∂2[(K ∗ W2 − K ∗ W2(x))ξ13]

)
.

The latter representation holds for any x ∈ T2.

For the proof we will need

B̃1 := {φ ∈ D(B1(0)) : ∥∂kφ∥∞ ⩽ 1, |k | = 0, 1},

B̃0 := {φ ∈ D(B1(0)) : ∥φ∥∞ ⩽ 1}.

Recall: ξ3 := G ∗ W3, ξ23 := Re ξ3, ξ13 := Im ξ3.

Evelina Shamarova Cauchy-Riemann SPDE on the torus June 27, 2025 31 / 38



Regularity of ϑ = ξ × ξ

Outline of proof

|ϑε1|−κ = sup
x∈T2, λ∈[0,1]D,

φ∈B1

|ϑε1(φλx )|
λ−κ

≃ sup
x∈T2, λ∈(0,1],

φ∈B̃1

|ϑε1(φλx )|
λ−κ

= sup
x∈T2, λ∈(0,1],

φ∈B̃1

λκ
∣∣∣∂2[(K ∗ W1

ε − K ∗ W1
ε(x)

)
ξε23

]
(φλx )

− ∂1
[(
K ∗ W1

ε − K ∗ W1
ε(x)

)
ξε13

]
(φλx )

∣∣∣
⩽ sup

x∈T2, λ∈(0,1],
φ∈B̃1

∣∣[(K ∗ W1
ε − K ∗ W1

ε(x)
)
ξε23

]
(∂1φ)

λ
x

∣∣
λ1−κ

+ sup
x∈T2, λ∈(0,1],

φ∈B̃1

∣∣[(K ∗ W1
ε − K ∗ W1

ε(x)
)
ξε13

]
(∂2φ)

λ
x

∣∣
λ1−κ

.
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Outline of Proof

Evaluating the first term:

sup
x∈T2, λ∈(0,1],

φ∈B̃1

∣∣[(K ∗ W1
ε − K ∗ W1

ε(x)
)
ξε23

]
(∂1φ)

λ
x

∣∣
λ1−κ

⩽ sup
x∈T2, λ∈(0,1],

ψ∈B̃0

∣∣[(K ε ∗ W1 − K ε ∗ W1(x)
)
ξε23

]
ψλx

∣∣
λ1−κ

⩽ |K ∗ W1
ε|1−κ

2
|ξε23|−κ

2
⩽ |K ∗ W1|1−κ

2
|ξ23|−κ

2
≲ |W1|−1−κ

2
|W2|−1−κ

2
.
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Rate of convergence

Lemma

The following inequalities are satisfied for all ε > 0 and κ ∈ (0, 12) :

∥ξε − ξ∥−κ ≲ ε
κ
2 ∥W ∥2−1−κ,

∥ϑε − ϑ∥−κ ≲ ε
κ
2 ∥W ∥2−1−κ,

∥ζε − ζ∥1−κ ≲ ε
κ
2 ∥W ∥2−1−κ.

The proof follows from

|W ε
j − W j |−1−κ ≲ ε

κ
2 |W j |−1−κ

2
, j = 1, 2, 3, a.s.
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Rate of convergence

Lemma

Let δ > 0, κ ∈ (0, 12), Ωδ ⊂ Ω, and σ, ς > 0 be the same as previously

constructed, so that the maps Γε,σ and Γ0,σ possess unique fixed points Rε

and, respectively, R in Mσ,1−κ for |γ| < ς. Then, there exists a constant

Cδ > 0, depending only on δ, such that for all ω ∈ Ωδ,

∥R − Rε∥1−κ ⩽ Cδ ε
κ
2 ,

∥r − r ε∥−κ ⩽ Cδ ε
κ
2 ,

where r := R − γξ and r ε := Rε − γξε.
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Main result

Theorem

Let (Ω,F ,P) be a probability space and let W = (W1,W2,W3) be a 3D

white noise on T2 such that W3 has zero mean over T2. Assume that

κ ∈ (0, 12). Then, for every δ > 0, there exists a number ς > 0 and a set

Ωδ ⊂ Ω, depending also on κ, with P(Ωδ) > 1− δ, such that for every

γ = (γ1, γ2, γ3) with |γ| < ς, and for every ε > 0, the system

∂z̄ r
ε = r ε × r ε + i γW ε,

considered for ω ∈ Ωδ, has a solution r ε ∈ C∞(T2,C3) such that

∥r ε − r∥−κ ≲ ε
κ
2 uniformly in ω ∈ Ωδ.
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This talk is based on the paper

Z. Brzeźniak, M. Neklyudov, E. Shamarova, Singular SPDEs with the

Cauchy-Riemann operator on a torus, arXiv:2503.20075, 2025
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Thank you!
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