Singular SPDEs with the Cauchy-Riemann operator on a torus

Evelina Shamarova

Federal University of Paraíba

Joint work with Zdzisław Brzeźniak and Mikhail Neklyudov

Cauchy-Riemann SPDE on the torus

Consider a C^3 -valued equation on a 2D torus \mathbb{T}^2 :

$$\partial_{\overline{z}}r = r \times \overline{r} + i\gamma \mathcal{W}, \tag{CR}$$

where $\partial_{\bar{z}} := \frac{1}{2}(\partial_x + i\partial_y)$ is the Cauchy-Riemann operator on \mathbb{T}^2 , $\mathcal{W} = (\mathcal{W}_1, \mathcal{W}_2, \mathcal{W}_3)$ is a real 3D white noise on \mathbb{T}^2 whose component \mathcal{W}_3 has zero mean over \mathbb{T}^2 , $\gamma := (\gamma_1, \gamma_2, \gamma_3)$ is an \mathbb{R}^3 -vector and $\gamma \mathcal{W} := (\gamma_1 \mathcal{W}_1, \gamma_2 \mathcal{W}_2, \gamma_3 \mathcal{W}_3)$.

Cauchy-Riemann SPDE on the torus

Consider a C^3 -valued equation on a 2D torus \mathbb{T}^2 :

$$\partial_{\overline{z}}r = r \times \overline{r} + i\gamma \mathcal{W}, \tag{CR}$$

where $\partial_{\bar{z}}:=\frac{1}{2}(\partial_x+i\partial_y)$ is the Cauchy-Riemann operator on \mathbb{T}^2 , $\mathscr{W}=(\mathscr{W}_1,\mathscr{W}_2,\mathscr{W}_3)$ is a real 3D white noise on \mathbb{T}^2 whose component \mathscr{W}_3 has zero mean over \mathbb{T}^2 , $\gamma:=(\gamma_1,\gamma_2,\gamma_3)$ is an \mathbb{R}^3 -vector and $\gamma\,\mathscr{W}:=(\gamma_1\mathscr{W}_1,\gamma_2\mathscr{W}_2,\gamma_3\mathscr{W}_3)$.

• The Cauchy-Riemann operator $\partial_{\bar{z}}$ and its complex conjugate $\partial_z := \frac{1}{2}(\partial_x - i\partial_y)$ satisfy the identity

$$\partial_z \partial_{\bar{z}} = \frac{1}{4} \Delta$$

so the operator $(\partial_{\bar{z}})^{-1}$ increases the regularity by 1.

• Cauchy-Riemann operator $\partial_{\bar{z}}$ and its complex conjugate ∂_z are building blocks of the 2D free Dirac operator

$$\mathcal{D}:=-2i\begin{pmatrix}0&\partial_z\\\partial_{\bar{z}}&0\end{pmatrix}.$$

• Cauchy-Riemann operator $\partial_{\bar{z}}$ and its complex conjugate ∂_z are building blocks of the 2D free Dirac operator

$$\mathcal{D}:=-2i\begin{pmatrix}0&\partial_z\\\partial_{\bar{z}}&0\end{pmatrix}.$$

Equation (CR) can be written in the following equivalent form

$$\mathcal{D}\begin{pmatrix} \overline{r} \\ r \end{pmatrix} = \begin{pmatrix} 2i \\ -2i \end{pmatrix} r \times \overline{r} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} (\gamma \mathscr{W}).$$

• Cauchy-Riemann operator $\partial_{\bar{z}}$ and its complex conjugate ∂_z are building blocks of the 2D free Dirac operator

$$\mathcal{D}:=-2i\begin{pmatrix}0&\partial_z\\\partial_{\bar{z}}&0\end{pmatrix}.$$

Equation (CR) can be written in the following equivalent form

$$\mathcal{D}\begin{pmatrix} \overline{r} \\ r \end{pmatrix} = \begin{pmatrix} 2i \\ -2i \end{pmatrix} r \times \overline{r} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} (\gamma \mathscr{W}).$$

 Dirac operators have applications in quantum mechanics, relativistic field theory, differential geometry, and Clifford algebras.

• The quadratic term $r \times \overline{r}$ represents a nonlinear self-interaction, introduces an interesting mathematical structure.

- The quadratic term $r \times \overline{r}$ represents a nonlinear self-interaction, introduces an interesting mathematical structure.
- One possible interpretation of this cross-product term is that it describes a nonlinear coupling between spinor-like components in a quantum mechanical system.

- The quadratic term $r \times \overline{r}$ represents a nonlinear self-interaction, introduces an interesting mathematical structure.
- One possible interpretation of this cross-product term is that it describes a nonlinear coupling between spinor-like components in a quantum mechanical system.
- Nonlinearities of quadratic type appear, for example, in Dirac-Klein-Gordon systems.

Main result

Theorem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{W} = (\mathcal{W}_1, \mathcal{W}_2, \mathcal{W}_3)$ be a 3D white noise on \mathbb{T}^2 such that \mathscr{W}_3 has zero mean over \mathbb{T}^2 . Further let $\mathscr{W}^{\varepsilon}$ be a mollification of \mathcal{W} by the standard mollifier. Assume that $\kappa \in (0, \frac{1}{2})$. Then, for every $\delta > 0$, there exists a number $\varsigma > 0$ and a set $\Omega_{\delta} \subset \Omega$, depending also on κ , with $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$, such that for every

$$\gamma=(\gamma_1,\gamma_2,\gamma_3)\in\mathbb{R}^3$$
 with $|\gamma|<\varsigma$, and for every $\varepsilon>0$, the system

$$=(\gamma_1,\gamma_2,\gamma_3)\in\mathbb{R}$$
 with $|\gamma|<\zeta$, and for every $\varepsilon>0$, the system

$$\partial_{\overline{z}}r^{\varepsilon} = r^{\varepsilon} \times \overline{r^{\varepsilon}} + i \gamma \mathscr{W}^{\varepsilon}, \tag{mCR}$$

considered for $\omega \in \Omega_{\delta}$, has a solution $r^{\varepsilon} \in C^{\infty}(\mathbb{T}^2, \mathbb{C}^3)$ such that ...

June 27, 2025

Main rerult (continued)

Theorem

... there exists a limit

$$r:=\lim_{arepsilon o 0}r^{arepsilon}\ \ {
m in}\ \ {
m C}^{-\kappa}(\mathbb{T}^2) \ \ \ {
m for\ every}\ \omega\in\Omega_\delta.$$

Moreover, the convergence holds with the following rate:

$$\|r^{\varepsilon} - r\|_{\mathrm{C}^{-\kappa}(\mathbb{T}^2)} \lesssim \varepsilon^{\frac{\kappa}{2}}$$
 uniformly in $\omega \in \Omega_{\delta}$.

• Our proof uses a fixed-point argument in a Hölder-Zygmund space.

- Our proof uses a *fixed-point argument* in a Hölder-Zygmund space.
- Our definition of the latter space is adapted to the periodic setting.

- Our proof uses a *fixed-point argument* in a Hölder-Zygmund space.
- Our definition of the latter space is adapted to the periodic setting.
- We start by introducing the dyadic interval

$$[0,1]_{\mathbb{D}}:=\{2^{-n}, n\in\mathbb{N}_0\}.$$

- Our proof uses a *fixed-point argument* in a Hölder-Zygmund space.
- Our definition of the latter space is adapted to the periodic setting.
- We start by introducing the dyadic interval

$$[0,1]_{\mathbb{D}}:=\{2^{-n},\ n\in\mathbb{N}_0\}.$$

• Let $\varphi \in \mathcal{D}(\mathbb{T}^d)$, define the rescaled centered function

$$\varphi_x^{\lambda}(y) := \frac{1}{\lambda^d} \varphi\Big(\frac{y-x}{\lambda}\Big), \qquad \lambda \in [0,1]_{\mathbb{D}}, \ x \in \mathbb{T}^d.$$

- Our proof uses a *fixed-point argument* in a Hölder-Zygmund space.
- Our definition of the latter space is adapted to the periodic setting.
- We start by introducing the dyadic interval

$$[0,1]_{\mathbb{D}}:=\{2^{-n},\ n\in\mathbb{N}_0\}.$$

• Let $\varphi \in \mathcal{D}(\mathbb{T}^d)$, define the rescaled centered function

$$\varphi_x^{\lambda}(y) := \frac{1}{\lambda^d} \varphi\Big(\frac{y-x}{\lambda}\Big), \qquad \lambda \in [0,1]_{\mathbb{D}}, \ x \in \mathbb{T}^d.$$

• Note that $\varphi_{\mathsf{x}}^{\lambda} \in \mathcal{D}(\mathbb{T}^d)$.

Let $r \in \mathbb{N}_0$ and $\alpha \geq 0$. Define the classes of test functions

$$\begin{cases} \mathscr{B}^r := \{\varphi \in \mathcal{D}(\mathbb{T}^d) : \|\partial^k \varphi\|_{\infty} \leqslant 1, \text{ for all } 0 \leqslant |k| \leqslant r\}, \\ \mathscr{B}_{\alpha} := \{\varphi \in \mathcal{D}(\mathbb{T}^d) : \int_{\mathbb{T}^d} \varphi(z) z^k dz = 0, \text{ for all } 0 \leqslant |k| \leqslant \alpha\}, \\ \mathscr{B}^r_{\alpha} := \mathscr{B}^r \cap \mathscr{B}_{\alpha}, \end{cases}$$

where $k=(k_1,\ldots,k_d)$; and $z^k:=z_1^{k_1}\ldots z_d^{k_d}$, $z=(z_1,\ldots,z_d)\in\mathbb{T}^d$.

DEFINITION (PERIODIC HÖLDER-ZYGMUND SPACES $\mathscr{Z}^{\alpha}(\mathbb{T}^d)$)

Let $\alpha \in \mathbb{R}$. Define a "pseudo-norm" $|f|_{\mathscr{Z}^{\alpha}}$ for $f \in \mathcal{D}'(\mathbb{T}^d)$ as follows. If $\alpha \geqslant 0$, then we put

$$|f|_{\mathscr{Z}^{lpha}}:=\sup_{\psi\in\mathscr{B}^0}|f(\psi)|+\sup_{\substack{\chi\in\mathbb{T}^d,\,\lambda\in[0,1]_{\mathbb{D}},\ arphi\in\mathscr{B}^0_lpha}}rac{|f(arphi_\chi^\lambda)|}{\lambda^lpha}.$$

If α < 0, then we put

$$|f|_{\mathscr{Z}^{lpha}} := \sup_{\substack{x \in \mathbb{T}^d, \, \lambda \in [0,1]_{\mathbb{D}}, \ \varphi \in \mathscr{B}^{[-lpha+1]}}} rac{|f(\varphi_x^{\lambda})|}{\lambda^{lpha}}.$$

We define the periodic Hölder-Zygmund space $\mathscr{Z}^{\alpha} := \mathscr{Z}^{\alpha}(\mathbb{T}^d)$ as the space of distributions $f \in \mathcal{D}'(\mathbb{T}^d)$ for which $|f|_{\mathscr{Z}^{\alpha}} < \infty$.

Remark

Our norm resembles that in

L. Broux, F. Caravenna and L. Zambotti, Hairer's multilevel Schauder estimates without regularity structures, Trans. Am. Math. Soc. 2024.

However, we define Hölder-Zygmund spaces using periodic test functions and dyadic scales.

If $\alpha \notin \mathbb{N}$, the definitions are equivalent, as we show in our paper.

For $\alpha \in \mathbb{N}$, $\mathscr{Z}^{\alpha}(\mathbb{T}^d)$ defines a distinct space, which is not utilized in our analysis.

REMARK

It is known that classical Hölder-Zygmund spaces are not separable and that the space C^{∞} is not dense in them. For this reason, we define so called little Hölder-Zygmund spaces \mathscr{Z}^{α} .

REMARK

It is known that classical Hölder-Zygmund spaces are not separable and that the space \mathbb{C}^{∞} is not dense in them. For this reason, we define so called little Hölder-Zygmund spaces \mathscr{Z}^{α} .

DEFINITION (PERIODIC LITTLE HÖLDER-ZYGMUND SPACES)

We define a periodic little Hölder-Zygmund space

$$\mathscr{Z}^{lpha}:=\mathscr{Z}^{lpha}(\mathbb{T}^d)$$
 as the closure of $\mathrm{C}^{\infty}(\mathbb{T}^d)$ in $\mathscr{Z}^{lpha}(\mathbb{T}^d).$

We furthermore denote by $|\cdot|_{\alpha}$, $\alpha \in \mathbb{R}$, the restriction of the norm $|\cdot|_{\mathscr{Z}^{\alpha}}$ to $\mathscr{Z}^{\alpha}(\mathbb{T}^d)$.

Remark

A Gaussian white noise \mathcal{W} on \mathbb{T}^d , as well as its convolutions $K * \mathcal{W}$ and $G * \mathcal{W}$ are elements of little Hölder-Zygmund spaces. Furthermore, Young products are well defined (specifically, uniquely defined) when they are restricted to little Hölder-Zygmund spaces.

REMARK

A Gaussian white noise \mathcal{W} on \mathbb{T}^d , as well as its convolutions $K * \mathcal{W}$ and $G * \mathcal{W}$ are elements of little Hölder-Zygmund spaces. Furthermore, Young products are well defined (specifically, uniquely defined) when they are restricted to little Hölder-Zygmund spaces.

LEMMA

Let $\mathscr{W}:\Omega\to\mathcal{D}'(\mathbb{T}^d)$ be a Gaussian white noise. Then, for any $\kappa>0$, $\mathscr{W}\in\mathscr{Z}^{-\frac{d}{2}-\kappa}(\mathbb{T}^d)$ a.s. Furthermore, for any $\varepsilon>0$ and $\kappa>\varkappa>0$,

$$|\mathscr{W}^{\varepsilon} - \mathscr{W}|_{-\frac{d}{2} - \kappa} \lesssim \varepsilon^{\kappa - \varkappa} |\mathscr{W}|_{-\frac{d}{2} - \varkappa} \,, \quad \text{a.s.}$$

Green function for the Cauchy-Riemann operator

Let K be the Green function for the Laplacian on \mathbb{T}^2 . We define

$$G:=2\partial_z K=\partial_1 K-i\partial_2 K.$$

$$\begin{cases} \partial_{\overline{z}} r_{1}^{\varepsilon} = r_{2}^{\varepsilon} \overline{r_{3}^{\varepsilon}} - \overline{r_{2}^{\varepsilon}} r_{3}^{\varepsilon} + \gamma_{1} i \mathscr{W}_{1}^{\varepsilon}, \\ \partial_{\overline{z}} r_{2}^{\varepsilon} = \overline{r_{1}^{\varepsilon}} r_{3}^{\varepsilon} - r_{1}^{\varepsilon} \overline{r_{3}^{\varepsilon}} + \gamma_{2} i \mathscr{W}_{2}^{\varepsilon}, \\ \partial_{\overline{z}} r_{3}^{\varepsilon} = r_{1}^{\varepsilon} \overline{r_{2}^{\varepsilon}} - \overline{r_{1}^{\varepsilon}} r_{2}^{\varepsilon} + \gamma_{3} i \mathscr{W}_{3}^{\varepsilon}, \end{cases}$$
(mCR)

$$\begin{cases} \partial_{\overline{z}} r_{1}^{\varepsilon} = r_{2}^{\varepsilon} \overline{r_{3}^{\varepsilon}} - \overline{r_{2}^{\varepsilon}} r_{3}^{\varepsilon} + \gamma_{1} i \mathscr{W}_{1}^{\varepsilon}, \\ \partial_{\overline{z}} r_{2}^{\varepsilon} = \overline{r_{1}^{\varepsilon}} r_{3}^{\varepsilon} - r_{1}^{\varepsilon} \overline{r_{3}^{\varepsilon}} + \gamma_{2} i \mathscr{W}_{2}^{\varepsilon}, \\ \partial_{\overline{z}} r_{3}^{\varepsilon} = r_{1}^{\varepsilon} \overline{r_{2}^{\varepsilon}} - \overline{r_{1}^{\varepsilon}} r_{2}^{\varepsilon} + \gamma_{3} i \mathscr{W}_{3}^{\varepsilon}, \end{cases}$$

$$(\text{mCR})$$

Furthermore, introduce

$$\xi_k^{\varepsilon} := 2iG * \mathscr{W}_k^{\varepsilon} = 2G_2 * \mathscr{W}_k^{\varepsilon} + 2G_1 * \mathscr{W}_k^{\varepsilon}, \qquad k = 1, 2, 3,$$

$$G := G_1 + iG_2.$$

LEMMA

If $f \in C^{\alpha}(\mathbb{T}^2)$, $\alpha \in (0,1)$, $C \in \mathbb{C}$ and a function $r : \mathbb{T}^2 \to \mathbb{C}$ satisfies

$$r = G * f + C$$

then $r \in \mathrm{C}^{1+lpha}(\mathbb{T}^2)$ and satisfies the identity

$$-2\partial_{\bar{z}}r=f-[f],$$

where $[f] := (4\pi^2)^{-1} \int f$ denotes the average over \mathbb{T}^2 .

PROPOSITION

Let c>0, $\varepsilon>0$ and $\gamma_k\in\mathbb{R}$, k=1,2,3. There exist \mathbb{C} -valued Gaussian mean zero random variables a and b such that if $(r_1^{\varepsilon}, r_2^{\varepsilon}, r_3^{\varepsilon})$ is a $\mathbb{C}^{\alpha}(\mathbb{T}^2)$ -pathwise solution of the system (for some $\alpha\in(0,1)$),

$$\begin{cases} r_1^{\varepsilon} = 2G * \left(\overline{r_2^{\varepsilon}}r_3^{\varepsilon} - r_2^{\varepsilon}\overline{r_3^{\varepsilon}}\right) - \gamma_1\xi_1^{\varepsilon} + a, \\ r_2^{\varepsilon} = 2G * \left(r_1^{\varepsilon}\overline{r_3^{\varepsilon}} - \overline{r_1^{\varepsilon}}r_3^{\varepsilon}\right) - \gamma_2\xi_2^{\varepsilon} + b, \\ r_3^{\varepsilon} = 2G * \left(\overline{r_1^{\varepsilon}}r_2^{\varepsilon} - r_1^{\varepsilon}\overline{r_2^{\varepsilon}}\right) - \gamma_3\xi_3^{\varepsilon} + c, \end{cases}$$

then $r_k^{\varepsilon} \in C^{\infty}(\mathbb{T}^2)$, k = 1, 2, 3, and $(r_1^{\varepsilon}, r_2^{\varepsilon}, r_3^{\varepsilon})$ solves (mCR).

Define a and b by the formulas

$$2ac = i\gamma_2\eta_2, \qquad 2bc = -i\gamma_1\eta_1,$$

where η_1 and η_2 are independent standard real Gaussian random variables which are zero Fourier coefficients for \mathcal{W}_1 and \mathcal{W}_2 .

LEMMA

For $\varepsilon > 0$, let

$$R^{\varepsilon} := r^{\varepsilon} + \gamma \xi^{\varepsilon},$$

where $\gamma \xi^{\varepsilon} := (\gamma_1 \xi_1^{\varepsilon}, \gamma_2 \xi_2^{\varepsilon}, \gamma_3 \xi_3^{\varepsilon})$. Then, the above system is equivalent to

$$R^{arepsilon} = -2G * \left(R^{arepsilon} imes \overline{R^{arepsilon}} - (\gamma \xi^{arepsilon}) imes \overline{R}^{arepsilon} - R^{arepsilon} imes (\gamma \overline{\xi^{arepsilon}})
ight) - \widetilde{\gamma} \zeta^{arepsilon} + egin{pmatrix} a \ b \ c \end{pmatrix}$$

where

$$\zeta^\varepsilon := 2G * (\xi^\varepsilon \times \overline{\xi^\varepsilon}), \quad \tilde{\gamma} := (\gamma_2 \gamma_3, \gamma_1 \gamma_3, \gamma_1 \gamma_2), \quad \tilde{\gamma} \zeta^\varepsilon := (\tilde{\gamma}_1 \zeta_1^\varepsilon, \tilde{\gamma}_2 \zeta_2^\varepsilon, \tilde{\gamma}_3 \zeta_3^\varepsilon).$$

• For every $\nu \in \mathbb{R}$, introduce the Banach space

$$E_{\nu} = \{ R = (R_1, R_2, R_3) : \mathbb{T}^2 \to \mathbb{C}^3 : R_k \in \mathscr{Z}^{\nu}(\mathbb{T}^2), k = 1, 2, 3 \}$$

• For every $\nu \in \mathbb{R}$, introduce the Banach space

$$E_{\nu} = \left\{ R = (R_1, R_2, R_3) : \mathbb{T}^2 \to \mathbb{C}^3 : R_k \in \mathscr{Z}^{\nu}(\mathbb{T}^2), k = 1, 2, 3 \right\}$$

• For every $\sigma > 0$, we set $c = \frac{\sigma}{4}$ and define a, b via c.

• For every $\nu \in \mathbb{R}$, introduce the Banach space

$$E_{\nu} = \left\{ R = (R_1, R_2, R_3) : \mathbb{T}^2 \to \mathbb{C}^3 : R_k \in \mathscr{Z}^{\nu}(\mathbb{T}^2), k = 1, 2, 3 \right\}$$

- For every $\sigma > 0$, we set $c = \frac{\sigma}{4}$ and define a, b via c.
- Given $\varepsilon > 0$, $\sigma > 0$, and $\kappa \in (0, \frac{1}{2})$, define a map

$$\begin{split} &\Gamma_{\varepsilon,\sigma}: E_{1-\kappa} \to E_{1-\kappa}, \\ &\Gamma_{\varepsilon,\sigma} R:= -2G * \left(R \times \overline{R} + (\gamma \xi^{\varepsilon}) \times \overline{R} + R \times (\gamma \overline{\xi^{\varepsilon}})\right) - \tilde{\gamma} \boldsymbol{\zeta}^{\varepsilon} + (a,b,c)^{\top}. \end{split}$$

• For every $\nu \in \mathbb{R}$, introduce the Banach space

$$E_{\nu} = \left\{ R = (R_1, R_2, R_3) : \mathbb{T}^2 \to \mathbb{C}^3 : R_k \in \mathscr{Z}^{\nu}(\mathbb{T}^2), k = 1, 2, 3 \right\}$$

- For every $\sigma > 0$, we set $c = \frac{\sigma}{4}$ and define a, b via c.
- Given $\varepsilon > 0$, $\sigma > 0$, and $\kappa \in (0, \frac{1}{2})$, define a map

$$\begin{split} &\Gamma_{\varepsilon,\sigma}: E_{1-\kappa} \to E_{1-\kappa}, \\ &\Gamma_{\varepsilon,\sigma} R := -2G * \left(R \times \overline{R} + (\gamma \xi^{\varepsilon}) \times \overline{R} + R \times (\gamma \overline{\xi^{\varepsilon}}) \right) - \widetilde{\gamma} \zeta^{\varepsilon} + (a,b,c)^{\top}. \end{split}$$

• $\zeta^{\varepsilon} := 2G * (\xi^{\varepsilon} \times \overline{\xi^{\varepsilon}})$

A note on $\zeta^{\varepsilon} := 2G * (\xi^{\varepsilon} \times \overline{\xi^{\varepsilon}})$

LEMMA

Let $\kappa \in (0, \frac{1}{2})$. Then ζ^{ε} has a limit ζ in $E_{1-\kappa}$ as $\varepsilon \to 0$. Furthermore, for all $\varepsilon \geqslant 0$ and $\kappa \in (0, \frac{1}{2})$,

$$\|\zeta^{\varepsilon}\|_{1-\kappa} \lesssim \|\mathscr{W}\|_{-1-\kappa}^{2},$$

where $\zeta^0 := \zeta$, and the constant in the above inequality does not depend on $\varepsilon \geqslant 0$.

A note on $\zeta^{\varepsilon}:=2G*(\xi^{\varepsilon} imes\overline{\xi^{\varepsilon}})$

LEMMA

Let $\kappa \in (0, \frac{1}{2})$. Then ζ^{ε} has a limit ζ in $E_{1-\kappa}$ as $\varepsilon \to 0$. Furthermore, for all $\varepsilon \geqslant 0$ and $\kappa \in (0, \frac{1}{2})$,

$$\|\zeta^{\varepsilon}\|_{1-\kappa} \lesssim \|\mathscr{W}\|_{-1-\kappa}^{2},$$

where $\zeta^0 := \zeta$, and the constant in the above inequality does not depend on $\varepsilon \geqslant 0$.

The above lemma is a fundamental result of this work, underpinning the proof of the main result. Its proof is postponed to next slides.

The fixed-point argument

• Consider the closed ball $M_{1-\kappa,\sigma} := \{R \in E_{1-\kappa} : ||R||_{1-\kappa} \leq \sigma\}$, of radius $\sigma > 0$ (to be fixed later), which is a complete metric space.

The fixed-point argument

• Consider the closed ball $M_{1-\kappa,\sigma} := \{R \in E_{1-\kappa} : ||R||_{1-\kappa} \leq \sigma\}$, of radius $\sigma > 0$ (to be fixed later), which is a complete metric space.

PROPOSITION

For every $\delta \in (0,1)$ and $\kappa \in (0,\frac{1}{2})$, there exists a set $\Omega_{\delta} \subset \Omega$, $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$, and a number $\sigma > 0$ such that for all $\omega \in \Omega_{\delta}$, $\varepsilon \geqslant 0$, and $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ satisfying $|\gamma| \lesssim \sigma^2$,

$$\Gamma_{\varepsilon,\sigma}:M_{1-\kappa,\sigma}\to M_{1-\kappa,\sigma}$$

is a strict contraction and hence has a unique fixed point in $M_{1-\kappa,\sigma}$. Moreover, the contraction constant does not depend on $\varepsilon \geqslant 0$ and $\omega \in \Omega_{\delta}$.

The fixed-point argument

REMARK

The proposition is also valid for the map $\Gamma_{0,\sigma}$. In particular, ξ^0 and ζ^0 are well-defined. The products involved in $\Gamma_{0,\sigma}$ are understood as Young products.

• Let $\delta \in (0,1)$. $\exists \Lambda \in (0,+\infty)$ such that if

$$\Omega_{\delta} := \Big\{ \omega : \| \mathscr{W} \|_{-1-\kappa} + |\eta_1| + |\eta_2| < \Lambda \Big\},\,$$

then $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$.

• Let $\delta \in (0,1)$. $\exists \Lambda \in (0,+\infty)$ such that if

$$\Omega_{\delta} := \Big\{ \omega : \| \mathscr{W} \|_{-1-\kappa} + |\eta_1| + |\eta_2| < \Lambda \Big\},\,$$

then $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$.

• One can bound $\|\xi^{\varepsilon}\|_{-\kappa}$ and $\|\zeta^{\varepsilon}\|_{-\kappa}$ by $\|\mathscr{W}\|_{-1-\kappa}$ uniformly in $\varepsilon \geqslant 0$.

• Let $\delta \in (0,1)$. $\exists \Lambda \in (0,+\infty)$ such that if

$$\Omega_{\delta} := \Big\{\omega : \|\mathscr{W}\|_{-1-\kappa} + |\eta_1| + |\eta_2| < \Lambda\Big\},\,$$

then $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$.

- One can bound $\|\xi^{\varepsilon}\|_{-\kappa}$ and $\|\zeta^{\varepsilon}\|_{-\kappa}$ by $\|\mathscr{W}\|_{-1-\kappa}$ uniformly in $\varepsilon \geqslant 0$.
- If $c \sim \sigma$ and $|\gamma| \sim \sigma^2$, one can prove that

$$\|\Gamma_{\varepsilon,\sigma}R\|_{1-\kappa}\leqslant\sigma$$
 on Ω_{δ} .

• Let $\delta \in (0,1)$. $\exists \Lambda \in (0,+\infty)$ such that if

$$\Omega_{\delta} := \Big\{\omega: \|\mathscr{W}\|_{-1-\kappa} + |\eta_1| + |\eta_2| < \Lambda\Big\},\,$$

then $\mathbb{P}(\Omega_{\delta}) > 1 - \delta$.

- One can bound $\|\xi^{\varepsilon}\|_{-\kappa}$ and $\|\zeta^{\varepsilon}\|_{-\kappa}$ by $\|\mathscr{W}\|_{-1-\kappa}$ uniformly in $\varepsilon \geqslant 0$.
- If $c \sim \sigma$ and $|\gamma| \sim \sigma^2$, one can prove that

$$\|\Gamma_{\varepsilon,\sigma}R\|_{1-\kappa}\leqslant\sigma$$
 on Ω_{δ} .

• and for $R, \hat{R} \in M_{1-\kappa,\sigma}$,

$$\|\Gamma_{\varepsilon,\sigma}R - \Gamma_{\varepsilon,\sigma}\hat{R}\|_{1-\kappa} \leqslant C\|R - \hat{R}\|_{1-\kappa} \quad C < 1.$$

LEMMA

Let $A \in \mathbb{R}$ be a constant and let for $\alpha \in (0,1)$, $g_k \in C^{\alpha}(\mathbb{T}^2, \mathbb{R})$ and $f_k = iG * g_k$, for k = 1, 2. Then,

$$f_1\overline{f_2} - \overline{f_1}f_2 = \partial_1((K*g_1 - A)\partial_2K*g_2) - \partial_2((K*g_1 - A)\partial_1K*g_2).$$

LEMMA

Let $A \in \mathbb{R}$ be a constant and let for $\alpha \in (0,1)$, $g_k \in C^{\alpha}(\mathbb{T}^2,\mathbb{R})$ and $f_k = iG * g_k$, for k = 1,2. Then,

$$f_1\overline{f_2} - \overline{f_1}f_2 = \partial_1\big((K*g_1 - A)\partial_2K*g_2\big) - \partial_2\big((K*g_1 - A)\partial_1K*g_2\big).$$

Idea of Proof: Since $G = \partial_{\bar{z}}K$, the result follows by differentiation of the products. The constant A cancels by differentiation.

The components of $\vartheta := \xi \times \overline{\xi}$ satisfy the following relations:

$$\begin{cases} \vartheta_1^\varepsilon = 2 \big(\partial_1 [(K * \mathscr{W}_2^\varepsilon) \xi_{23}^\varepsilon] - \partial_2 [(K * \mathscr{W}_2^\varepsilon) \xi_{13}^\varepsilon] \big), \\ \vartheta_2^\varepsilon = 2 \big(\partial_1 [(K * \mathscr{W}_3^\varepsilon) \xi_{21}^\varepsilon] - \partial_2 [(K * \mathscr{W}_3^\varepsilon) \xi_{11}^\varepsilon] \big), \\ \vartheta_3^\varepsilon = 2 \big(\partial_1 [(K * \mathscr{W}_1^\varepsilon) \xi_{22}^\varepsilon] - \partial_2 [(K * \mathscr{W}_1^\varepsilon) \xi_{12}^\varepsilon] \big), \end{cases}$$

where $\xi_{1k}^{\varepsilon} = \operatorname{Im} \xi_k$, $\xi_{2k}^{\varepsilon} = \operatorname{Re} \xi_k$.

Furthermore, ϑ^{ε} satisfy, for any $x \in \mathbb{T}^2$, the additional relations

$$\begin{cases} \vartheta_1^{\varepsilon} = 2(\partial_1[(K * \mathscr{W}_2^{\varepsilon} - K * \mathscr{W}_2^{\varepsilon}(x))\xi_{23}^{\varepsilon}] - \partial_2[(K * \mathscr{W}_2^{\varepsilon} - K * \mathscr{W}_2^{\varepsilon}(x))\xi_{13}^{\varepsilon}]) \\ \vartheta_2^{\varepsilon} = 2(\partial_1[(K * \mathscr{W}_3^{\varepsilon} - K * \mathscr{W}_3^{\varepsilon}(x))\xi_{21}^{\varepsilon}] - \partial_2[(K * \mathscr{W}_3^{\varepsilon} - K * \mathscr{W}_3^{\varepsilon}(x))\xi_{11}^{\varepsilon}]) \\ \vartheta_3^{\varepsilon} = 2(\partial_1[(K * \mathscr{W}_1^{\varepsilon} - K * \mathscr{W}_1^{\varepsilon}(x))\xi_{22}^{\varepsilon}] - \partial_2[(K * \mathscr{W}_1^{\varepsilon} - K * \mathscr{W}_1^{\varepsilon}(x))\xi_{12}^{\varepsilon}]) \end{cases}$$

LEMMA

Moreover, there exists a limit $\vartheta := \lim_{\varepsilon \to 0} \vartheta^{\varepsilon}$ in $\mathcal{D}'(\mathbb{T}^2)$ and the components ϑ_k of ϑ , k = 1, 2, 3, are given by

$$\begin{cases} \vartheta_{1} = 2(\partial_{1}[(K * \mathscr{W}_{2})\xi_{23}] - \partial_{2}[(K * \mathscr{W}_{2})\xi_{13}]), \\ \vartheta_{2} = 2(\partial_{1}[(K * \mathscr{W}_{3})\xi_{21}] - \partial_{2}[(K * \mathscr{W}_{3})\xi_{11}]), \\ \vartheta_{3} = 2(\partial_{1}[(K * \mathscr{W}_{1})\xi_{22}] - \partial_{2}[(K * \mathscr{W}_{1})\xi_{12}]), \end{cases}$$

$$\begin{cases} \vartheta_{1} = 2(\partial_{1}[(K * \mathscr{W}_{2} - K * \mathscr{W}_{2}(x))\xi_{23}] - \partial_{2}[(K * \mathscr{W}_{2} - K * \mathscr{W}_{2}(x))\xi_{13}]), \\ \vartheta_{2} = 2(\partial_{1}[(K * \mathscr{W}_{3} - K * \mathscr{W}_{3}(x))\xi_{21}] - \partial_{2}[(K * \mathscr{W}_{3} - K * \mathscr{W}_{3}(x))\xi_{11}]), \\ \vartheta_{3} = 2(\partial_{1}[(K * \mathscr{W}_{1} - K * \mathscr{W}_{1}(x))\xi_{22}] - \partial_{2}[(K * \mathscr{W}_{1} - K * \mathscr{W}_{1}(x))\xi_{12}]), \end{cases}$$

where identities are valid for any $x \in \mathbb{T}^2$, and the products in the square brackets are understood as Young products.

Consider the first component of $\vartheta := \xi \times \overline{\xi}$:

$$\vartheta_1 = 2 \left(\partial_1 \left[\underbrace{(K * \mathscr{W}_2) \xi_{23}}_{0^-} \right] - \partial_2 \left[(K * \mathscr{W}_2) \xi_{13} \right] \right)$$

Consider the first component of $\vartheta := \xi \times \overline{\xi}$:

$$\vartheta_1 = 2 \left(\partial_1 \left[\underbrace{(K * \mathscr{W}_2) \xi_{23}}_{0^-} \right] - \partial_2 \left[(K * \mathscr{W}_2) \xi_{13} \right] \right)$$

REMARK

We observe that ϑ_1 is well defined since the expression inside the square brackets can be understood in the Young product sense. Moreover, this expression suggests that the expected regularity of ϑ is -1^- . Had this been the case, the expected regularity of $\zeta := 2iG * \vartheta$ would be 0^- and therefore the expected regularity of R would also be 0^- . Such a regularity is too low for the product $R \times \overline{\xi}$ to be well-defined. Hence, a fixed-point argument cannot be realized.

Consider the first component of $\vartheta := \xi \times \overline{\xi}$:

$$\vartheta_1 = 2\left(\partial_1\left[\underbrace{(K * \mathscr{W}_2)\xi_{23}}_{0^-}\right] - \partial_2\left[(K * \mathscr{W}_2)\xi_{13}\right]\right)$$

REMARK

We observe that ϑ_1 is well defined since the expression inside the square brackets can be understood in the Young product sense. Moreover, this expression suggests that the expected regularity of ϑ is -1^- . Had this been the case, the expected regularity of $\zeta := 2iG * \vartheta$ would be 0^- and therefore the expected regularity of R would also be 0^- . Such a regularity is too low for the product $R \times \overline{\xi}$ to be well-defined. Hence, a fixed-point argument cannot be realized.

$$\Gamma_{arepsilon,\sigma}R:=-2G*\left(R imes\overline{R}+(\gamma\xi) imes\overline{R}+R imes(\gamma\overline{\xi})
ight)- ilde{\gamma}oldsymbol{\zeta}+C$$

LEMMA

Assume that $\eta \in \mathscr{Z}^{-\kappa}(\mathbb{T}^2)$, $\kappa \in (0, \frac{1}{2})$, and let $\eta^{\varepsilon} = \eta * \rho_{\varepsilon}$. Then, for all $\varepsilon \geqslant 0$ and j = 1, 2, 3,

$$\sup_{\substack{x \in \mathbb{T}^2, \lambda \in (0,1], \\ \varphi \in \mathcal{D}(B_1(0)), \|\varphi\|_\infty \leqslant 1}} \frac{\left|\left[\left(K * \mathscr{W}_j^\varepsilon - K * \mathscr{W}_j^\varepsilon(x)\right)\eta^\varepsilon\right](\varphi_x^\lambda)\right|}{\lambda^{1-\kappa}} \lesssim |K * \mathscr{W}_j^\varepsilon|_{1-\frac{\kappa}{2}}|\eta^\varepsilon|_{-\frac{\kappa}{2}}$$

$$\lesssim |\mathscr{W}_j|_{-1-\frac{\kappa}{2}}|\eta|_{-\frac{\kappa}{2}},$$

where $\mathcal{W}_{j}^{0} := \mathcal{W}_{j}$, $\eta^{0} := \eta$, and for $\varepsilon = 0$ the product on the right-hand side is understood as the Young product.

PROPOSITION

Let ϑ be the limit of $\vartheta^{\varepsilon}:=\xi^{\varepsilon} imes \overline{\xi^{\varepsilon}}$ in $\mathcal{D}'(\mathbb{T}^2)$. Then, for every $\kappa\in(0,\frac{1}{2})$,

$$\vartheta \in \mathcal{E}_{-\kappa}$$
.

Furthermore, for all $\varepsilon \geqslant 0$, $\kappa \in (0, \frac{1}{2})$, and for j = 1, 2, 3,

$$\|\vartheta_j^{\varepsilon}\|_{-\kappa} \lesssim |\mathscr{W}_{j_1}|_{-1-\frac{\kappa}{2}}|\mathscr{W}_{j_2}|_{-1-\frac{\kappa}{2}},$$

$$\|\vartheta_j^{\varepsilon} - \vartheta_j\|_{-\kappa} \lesssim |\mathscr{W}_{j_1}^{\varepsilon} - \mathscr{W}_{j_1}|_{-1 - \frac{\kappa}{2}} |\mathscr{W}_{j_2}|_{-1 - \frac{\kappa}{2}} + |\mathscr{W}_{j_2}^{\varepsilon} - \mathscr{W}_{j_2}|_{-1 - \frac{\kappa}{2}} |\mathscr{W}_{j_1}|_{-1 - \frac{\kappa}{2}},$$

where $j_1 := j + 1 \mod 3$ and $j_2 := j + 2 \mod 3$, $\vartheta^0 := \vartheta$.

◆ロト ◆御 ▶ ◆ き ▶ ◆ き * りへ○

COROLLARY

Let ζ be the limit of $\zeta^{\varepsilon} := 2G * \vartheta^{\varepsilon}$ in $\mathcal{D}'(\mathbb{T}^2)$. Then,

$$\zeta \in \mathcal{E}_{1-\kappa}$$
.

Furthermore, for all $\varepsilon \geqslant 0$ and $\kappa \in (0, \frac{1}{2})$,

$$\|\zeta^{\varepsilon}\|_{1-\kappa} \lesssim \|\mathscr{W}\|_{-1-\kappa}^{2},$$

$$\|\zeta_{j}^{\varepsilon} - \zeta_{j}\|_{1-\kappa} \lesssim |\mathscr{W}_{j_{1}}^{\varepsilon} - \mathscr{W}_{j_{1}}|_{-1-\frac{\kappa}{2}}|\mathscr{W}_{j_{2}}|_{-1-\frac{\kappa}{2}} + |\mathscr{W}_{j_{2}}^{\varepsilon} - \mathscr{W}_{j_{2}}|_{-1-\frac{\kappa}{2}}|\mathscr{W}_{j_{1}}|_{-1-\frac{\kappa}{2}},$$

where j = 1, 2, 3; $j_1 := j + 1 \mod 3$; $j_2 := j + 2 \mod 3$; $\zeta^0 := \zeta$.

Recall:

$$\begin{split} \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2) \xi_{13}] \big), \\ \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{13}] \big). \end{split}$$

The latter representation holds for any $x \in \mathbb{T}^2$.

Recall:

$$\begin{split} \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2) \xi_{13}] \big), \\ \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{13}] \big). \end{split}$$

The latter representation holds for any $x \in \mathbb{T}^2$.

For the proof we will need

$$\begin{split} \tilde{\mathscr{B}}^1 &:= \{\varphi \in \mathcal{D}(B_1(0)) : \|\partial^k \varphi\|_\infty \leqslant 1, \ |k| = 0, 1\}, \\ \tilde{\mathscr{B}}^0 &:= \{\varphi \in \mathcal{D}(B_1(0)) : \|\varphi\|_\infty \leqslant 1\}. \end{split}$$

Recall:

$$\begin{split} \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2) \xi_{13}] \big), \\ \vartheta_1 &= 2 \big(\partial_1 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{23}] - \partial_2 [(K * \mathscr{W}_2 - K * \mathscr{W}_2(x)) \xi_{13}] \big). \end{split}$$

The latter representation holds for any $x \in \mathbb{T}^2$.

For the proof we will need

$$\begin{split} \tilde{\mathscr{B}}^1 &:= \{\varphi \in \mathcal{D}(B_1(0)) : \|\partial^k \varphi\|_\infty \leqslant 1, \ |k| = 0, 1\}, \\ \tilde{\mathscr{B}}^0 &:= \{\varphi \in \mathcal{D}(B_1(0)) : \|\varphi\|_\infty \leqslant 1\}. \end{split}$$

Recall: $\xi_3 := G * W_3$, $\xi_{23} := \operatorname{Re} \xi_3$, $\xi_{13} := \operatorname{Im} \xi_3$.

Outline of proof

$$\begin{split} |\vartheta_{1}^{\varepsilon}|_{-\kappa} &= \sup_{\substack{x \in \mathbb{T}^{2}, \, \lambda \in [0,1]_{\mathbb{D}}, \\ \varphi \in \mathscr{B}^{1}}} \frac{|\vartheta_{1}^{\varepsilon}(\varphi_{x}^{\lambda})|}{\lambda^{-\kappa}} \simeq \sup_{\substack{x \in \mathbb{T}^{2}, \, \lambda \in (0,1], \\ \varphi \in \widetilde{\mathscr{B}}^{1}}} \frac{|\vartheta_{1}^{\varepsilon}(\varphi_{x}^{\lambda})|}{\lambda^{-\kappa}} \\ &= \sup_{\substack{x \in \mathbb{T}^{2}, \, \lambda \in (0,1], \\ \varphi \in \widetilde{\mathscr{B}}^{1}}} \lambda^{\kappa} \bigg| \vartheta_{2} \Big[\big(K * \mathscr{W}_{1}^{\varepsilon} - K * \mathscr{W}_{1}^{\varepsilon}(\mathbf{x}) \big) \xi_{23}^{\varepsilon} \Big] \big(\varphi_{\mathbf{x}}^{\lambda} \big) \\ &\quad - \vartheta_{1} \Big[\big(K * \mathscr{W}_{1}^{\varepsilon} - K * \mathscr{W}_{1}^{\varepsilon}(\mathbf{x}) \big) \xi_{13}^{\varepsilon} \Big] \big(\varphi_{\mathbf{x}}^{\lambda} \big) \bigg| \\ &\leqslant \sup_{\substack{x \in \mathbb{T}^{2}, \, \lambda \in (0,1], \\ \varphi \in \widetilde{\mathscr{B}}^{1}}} \frac{\big| \Big[\big(K * \mathscr{W}_{1}^{\varepsilon} - K * \mathscr{W}_{1}^{\varepsilon}(\mathbf{x}) \big) \xi_{23}^{\varepsilon} \Big] \big(\vartheta_{1} \varphi \big)_{\lambda}^{\lambda} \big|}{\lambda^{1-\kappa}} \\ &\quad + \sup_{\substack{x \in \mathbb{T}^{2}, \, \lambda \in (0,1], \\ \varphi \in \widetilde{\mathscr{B}}^{1}}} \frac{\big| \Big[\big(K * \mathscr{W}_{1}^{\varepsilon} - K * \mathscr{W}_{1}^{\varepsilon}(\mathbf{x}) \big) \xi_{13}^{\varepsilon} \Big] \big(\vartheta_{2} \varphi \big)_{\lambda}^{\lambda} \big|}{\lambda^{1-\kappa}} \end{split}$$

Evaluating the first term:

$$\begin{split} \sup_{x \in \mathbb{T}^2, \, \lambda \in (0,1],} & \frac{\left| \left[\left(K * \mathscr{W}_1^\varepsilon - K * \mathscr{W}_1^\varepsilon(x) \right) \xi_{23}^\varepsilon \right] (\partial_1 \varphi)_x^\lambda \right|}{\lambda^{1-\kappa}} \\ \leqslant \sup_{x \in \mathbb{T}^2, \, \lambda \in (0,1],} & \frac{\left| \left[\left(K^\varepsilon * \mathscr{W}_1 - K^\varepsilon * \mathscr{W}_1(x) \right) \xi_{23}^\varepsilon \right] \psi_x^\lambda \right|}{\lambda^{1-\kappa}} \\ \leqslant \left| K * \mathscr{W}_1^\varepsilon \right|_{1-\frac{\kappa}{2}} \left| \xi_{23}^\varepsilon \right|_{-\frac{\kappa}{2}} \leqslant \left| K * \mathscr{W}_1 \right|_{1-\frac{\kappa}{2}} \left| \xi_{23} \right|_{-\frac{\kappa}{2}} \lesssim \left| \mathscr{W}_1 \right|_{-1-\frac{\kappa}{2}} \left| \mathscr{W}_2 \right|_{-1-\frac{\kappa}{2}}. \end{split}$$

Rate of convergence

LEMMA

The following inequalities are satisfied for all $\varepsilon > 0$ and $\kappa \in (0, \frac{1}{2})$:

$$\begin{split} &\|\xi^{\varepsilon} - \xi\|_{-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathcal{W}\|_{-1-\kappa}^{2}, \\ &\|\vartheta^{\varepsilon} - \vartheta\|_{-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathcal{W}\|_{-1-\kappa}^{2}, \\ &\|\zeta^{\varepsilon} - \zeta\|_{1-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathcal{W}\|_{-1-\kappa}^{2}. \end{split}$$

Rate of convergence

LEMMA

The following inequalities are satisfied for all $\varepsilon > 0$ and $\kappa \in (0, \frac{1}{2})$:

$$\begin{split} &\|\xi^{\varepsilon} - \xi\|_{-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathscr{W}\|_{-1-\kappa}^{2}, \\ &\|\vartheta^{\varepsilon} - \vartheta\|_{-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathscr{W}\|_{-1-\kappa}^{2}, \\ &\|\zeta^{\varepsilon} - \zeta\|_{1-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} \|\mathscr{W}\|_{-1-\kappa}^{2}. \end{split}$$

The proof follows from

$$|\mathscr{W}_{j}^{arepsilon} - \mathscr{W}_{j}|_{-1-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}} |\mathscr{W}_{j}|_{-1-\frac{\kappa}{2}}, \quad j=1,2,3, \quad \text{a.s.}$$

Rate of convergence

LEMMA

Let $\delta>0$, $\kappa\in(0,\frac{1}{2})$, $\Omega_{\delta}\subset\Omega$, and $\sigma,\varsigma>0$ be the same as previously constructed, so that the maps $\Gamma_{\varepsilon,\sigma}$ and $\Gamma_{0,\sigma}$ possess unique fixed points R^{ε} and, respectively, R in $M_{\sigma,1-\kappa}$ for $|\gamma|<\varsigma$. Then, there exists a constant $C_{\delta}>0$, depending only on δ , such that for all $\omega\in\Omega_{\delta}$,

$$||R - R^{\varepsilon}||_{1-\kappa} \leqslant C_{\delta} \varepsilon^{\frac{\kappa}{2}},$$

$$||r - r^{\varepsilon}||_{-\kappa} \leqslant C_{\delta} \varepsilon^{\frac{\kappa}{2}},$$

where $r := R - \gamma \xi$ and $r^{\varepsilon} := R^{\varepsilon} - \gamma \xi^{\varepsilon}$.

Main result

Theorem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathscr{W} = (\mathscr{W}_1, \mathscr{W}_2, \mathscr{W}_3)$ be a 3D white noise on \mathbb{T}^2 such that \mathscr{W}_3 has zero mean over \mathbb{T}^2 . Assume that $\kappa \in (0, \frac{1}{2})$. Then, for every $\delta > 0$, there exists a number $\varsigma > 0$ and a set $\Omega_\delta \subset \Omega$, depending also on κ , with $\mathbb{P}(\Omega_\delta) > 1 - \delta$, such that for every $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ with $|\gamma| < \varsigma$, and for every $\varepsilon > 0$, the system

$$\partial_{\overline{z}}r^{\varepsilon} = r^{\varepsilon} \times \overline{r^{\varepsilon}} + i \gamma \mathscr{W}^{\varepsilon},$$

considered for $\omega \in \Omega_{\delta}$, has a solution $r^{\varepsilon} \in \mathrm{C}^{\infty}(\mathbb{T}^2,\mathbb{C}^3)$ such that

$$\|r^{\varepsilon} - r\|_{-\kappa} \lesssim \varepsilon^{\frac{\kappa}{2}}$$
 uniformly in $\omega \in \Omega_{\delta}$.

This talk is based on the paper

Z. Brzeźniak, M. Neklyudov, E. Shamarova, Singular SPDEs with the Cauchy-Riemann operator on a torus, arXiv:2503.20075, 2025

Thank you!