# On the Rearranged stochastic heat equation

François Delarue (Nice, Université Côte d'Azur, France)

Conference 'IndaM' Irregular Stochastic Analysis
June 26, 2025

Joint works W. Hammersley (ex: Nice) and R. Likibi Pellat (Nice)

### 1. Motivation

• Well-known fact in stochastic analysis:

$$\dot{X}_t = b_t(X_t)$$

- $\circ$  b continuous  $\Rightarrow$  existence but uniqueness
- $\circ$  restore uniqueness by adding a Brownian motion  $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + dB_t$$

• Well-known fact in stochastic analysis:

$$\dot{X}_t = b_t(X_t)$$

- $\circ$  b continuous  $\Rightarrow$  existence but uniqueness
- $\circ$  restore uniqueness by adding a Brownian motion  $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + dB_t$$

• Picture for McKean-Vlasov equations

$$dX_t = b_t(X_t, \mathcal{L}(X_t))dt + dB_t$$

with  $\mathcal{L}(\cdot)$  standing for the law

 $\circ$  typically require Lipschitz continuity in  $\mu$  (e.g. w.r.t TV) [Lacker, Chaudru et al., Röckner and Zhang]

• Well-known fact in stochastic analysis:

$$\dot{X}_t = b_t(X_t)$$

- $\circ$  b continuous  $\Rightarrow$  existence but uniqueness
- $\circ$  restore uniqueness by adding a Brownian motion  $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + dB_t$$

• Picture for McKean-Vlasov equations

$$dX_t = b_t(X_t, \mathcal{L}(X_t))dt + dB_t$$

with  $\mathcal{L}(\cdot)$  standing for the law

 $\circ$  typically require Lipschitz continuity in  $\mu$  (e.g. w.r.t TV) [Lacker, Chaudru et al., Röckner and Zhang] because noise is 'too small'

• Well-known fact in stochastic analysis:

$$\dot{X}_t = b_t(X_t)$$

- $\circ$  b continuous  $\Rightarrow$  existence but uniqueness
- $\circ$  restore uniqueness by adding a Brownian motion  $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + dB_t$$

• Picture for McKean-Vlasov equations

$$dX_t = b_t(X_t, \mathcal{L}(X_t))dt + dB_t$$

- $\circ$  typically require Lipschitz continuity in  $\mu$  (e.g. w.r.t TV) [Lacker, Chaudru et al., Röckner and Zhang] because noise is 'too small'
- Program
  - o random forcing for

$$\partial_t \mu_t = -\text{div}(b_t(\cdot, \boldsymbol{\mu_t})\mu_t)$$

where  $\mu_t \in \mathcal{P}(\mathbb{R}^d)$ : what is *B* here?

• Well-known fact in stochastic analysis:

$$\dot{X}_t = b_t(X_t)$$

- $\circ$  b continuous  $\Rightarrow$  existence but uniqueness
- $\circ$  restore uniqueness by adding a Brownian motion  $(B_t)_{t\geq 0}$

$$dX_t = b_t(X_t)dt + dB_t$$

• Picture for McKean-Vlasov equations

$$dX_t = b_t(X_t, \mathcal{L}(X_t))dt + dB_t$$

- $\circ$  typically require Lipschitz continuity in  $\mu$  (e.g. w.r.t TV) [Lacker, Chaudru et al., Röckner and Zhang] because noise is 'too small'
- Program
  - o random forcing for

$$\partial_t \mu_t = -\mathrm{div}\big(b_t(\cdot, {\color{red}\mu_t})\mu_t\big) + {\color{red}\Delta\mu_t}$$

where  $\mu_t \in \mathcal{P}(\mathbb{R}^d)$ : what is *B* here?

• Semi-group generated by Fokker-Planck equation

$$\partial_t \mu_t + \operatorname{div}(b(\cdot, \mu_t)\mu_t) - \Delta \mu_t = 0$$

 $\circ$  if well-posed, let for a test function  $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ ,

$$\mathscr{P}_t \phi : \mu_0 \mapsto \phi(\mu_t)$$

• Semi-group generated by Fokker-Planck equation

$$\partial_t \mu_t + \operatorname{div} \left( b(\cdot, \mu_t) \mu_t \right) - \Delta \mu_t = 0$$

 $\circ$  if well-posed, let for a test function  $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ ,

$$\mathscr{P}_t \phi : \mu_0 \mapsto \phi(\mu_t)$$

 $\circ$  get a transport PDE for  $\mathcal{U}(t,\mu) = \mathscr{P}_t \phi(\mu)$ 

$$\partial_t \mathcal{U}(t,\mu) = \int_{\mathbb{R}^d} b(y,\mu) \cdot \nabla \mathcal{U}(t,\mu,y) d\mu(y) + \int_{\mathbb{R}^d} \operatorname{div}_y \nabla \mathcal{U}(t,\mu,y) d\mu(y)$$

• Semi-group generated by Fokker-Planck equation

$$\partial_t \mu_t + \operatorname{div} \left( \mathbf{b}(\cdot, \mu_t) \mu_t \right) - \Delta \mu_t = 0$$

 $\circ$  if well-posed, let for a test function  $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ ,

$$\mathscr{P}_t \phi : \mu_0 \mapsto \phi(\mu_t)$$

 $\circ$  get a transport PDE for  $\mathcal{U}(t,\mu) = \mathscr{P}_t \phi(\mu)$ 

$$\partial_t \mathcal{U}(t,\mu) = \int_{\mathbb{R}^d} b(y,\mu) \cdot \nabla \mathcal{U}(t,\mu,y) d\mu(y) + \int_{\mathbb{R}^d} \operatorname{div}_y \nabla \mathcal{U}(t,\mu,y) d\mu(y)$$

- Derivative [Albeverio et al., Ambrosio et al., Dawson, Lions...]
  - $\circ$  for  $\phi$  smooth function of  $\mu$

$$\boldsymbol{\nabla}\phi(m,y) = \frac{d}{dy} \Big[ \frac{d}{ds} |_{s=0+} \phi \Big( s \delta_y + (1-s) m \Big) \Big]$$

• Semi-group generated by Fokker-Planck equation

$$\partial_t \mu_t + \operatorname{div}(b(\cdot, \mu_t)\mu_t) - \Delta \mu_t = 0$$

 $\circ$  if well-posed, let for a test function  $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ ,

$$\mathscr{P}_t \phi : \mu_0 \mapsto \phi(\mu_t)$$

 $\circ$  get a transport PDE for  $\mathcal{U}(t,\mu) = \mathscr{P}_t \phi(\mu)$ 

$$\partial_t \mathcal{U}(t,\mu) = \int_{\mathbb{D}^d} \frac{b(y,\mu)}{b} \cdot \nabla \mathcal{U}(t,\mu,y) d\mu(y) + \int_{\mathbb{D}^d} \frac{\text{div}_y}{b} \nabla \mathcal{U}(t,\mu,y) d\mu(y)$$

- Derivative [Albeverio et al., Ambrosio et al., Dawson, Lions...]
  - $\circ$  for  $\phi$  smooth function of  $\mu$

$$\nabla \phi(m, y) = \frac{d}{dy} \left[ \frac{d}{ds} |_{s=0+} \phi \left( s \delta_y + (1-s)m \right) \right]$$

• What about 'true diffusive equations'? (useful for nonlinear ones)

# 2. Several Candidates

• Intuitively, use kind of Brownian motion on the space of  $\mathcal{P}_2(\mathbb{R}^d)$ 

- Intuitively, use kind of Brownian motion on the space of  $\mathcal{P}_2(\mathbb{R}^d)$
- Approaches in 1d (work on  $\mathcal{P}_2(\mathbb{R})$ )
- o earlier approaches but no canonical definition: Stannat [02,06], Sturm and Von Renesse [09], Konarovskyi [15], ...
- $\circ$  interest in small time large deviation principle: rate function should be square  $W_2$ -Wasserstein distance

- Intuitively, use kind of Brownian motion on the space of  $\mathcal{P}_2(\mathbb{R}^d)$
- Approaches in 1d (work on  $\mathcal{P}_2(\mathbb{R})$ )
- o earlier approaches but no canonical definition: Stannat [02,06], Sturm and Von Renesse [09], Konarovskyi [15], ...
- $\circ$  interest in small time large deviation principle: rate function should be square  $W_2$ -Wasserstein distance
- Works in higher dimension
- $\circ$  Albeverio, Kondratiev and Röckner [98], when working on the space of configurations (locally finite sum of  $\delta$  masses)
  - $\circ$  Dello Schiavo [20,25], Sturm [24] on  $\mathcal{P}(\mathbb{R}^d)$  (or  $\mathcal{P}(\mathbb{T}^d)$ )

- Intuitively, use kind of Brownian motion on the space of  $\mathcal{P}_2(\mathbb{R}^d)$
- Approaches in 1d (work on  $\mathcal{P}_2(\mathbb{R})$ )
- o earlier approaches but no canonical definition: Stannat [02,06], Sturm and Von Renesse [09], Konarovskyi [15], ...
- $\circ$  interest in small time large deviation principle: rate function should be square  $W_2$ -Wasserstein distance
- Works in higher dimension
- $\circ$  Albeverio, Kondratiev and Röckner [98], when working on the space of configurations (locally finite sum of  $\delta$  masses)
  - $\circ$  Dello Schiavo [20,25], Sturm [24] on  $\mathcal{P}(\mathbb{R}^d)$  (or  $\mathcal{P}(\mathbb{T}^d)$ )
- Here, more interested in smoothing → two routes
- $\circ$  infinite-dimensional particle system ([work with Martini and Sodini based on Dello-Schiavo's own works]),  $d \geq 2$ 
  - $\circ$  rearranged SHE ([work with Hammersley]), d = 1

# Dirichlet-Fergusson process [following Dello Schiavo]

- Infinite but countable particle system
  - flow of purely atomic measures

$$\mu_t := \sum_{i \geq 1} \mathbf{s}_i \delta_{X_t^i}, \quad t \geq 0; \qquad dX_t^i = \frac{1}{\sqrt{\mathbf{s}_i}} dB_t^i, \quad i \in \mathbb{N}^*$$

where  $s_1 > s_2 > \cdots \geq 0$  with  $\sum_{i=1}^{+\infty} s_i = 1$  and  $\{B^i\}_{i=1}^{\infty}$  collection of d-dimensional independent Brownian motions

 $\circ$  particles regarded as in living in the torus  $\mathbb{T}^d$  (as otherwise need confining potential)

# Dirichlet-Fergusson process [following Dello Schiavo]

- Infinite but countable particle system
  - flow of purely atomic measures

$$\mu_t := \sum_{i \ge 1} \mathbf{s}_i \delta_{X_t^i}, \quad t \ge 0; \qquad dX_t^i = \frac{1}{\sqrt{\mathbf{s}_i}} dB_t^i, \quad i \in \mathbb{N}^*$$

where  $s_1 > s_2 > \cdots \geq 0$  with  $\sum_{i=1}^{+\infty} s_i = 1$  and  $\{B^i\}_{i=1}^{\infty}$  collection of d-dimensional independent Brownian motions

- $\circ$  particles regarded as in living in the torus  $\mathbb{T}^d$  (as otherwise need confining potential)
- Main idea: randomize the weights  $s_1 > s_2 > \cdots \ge 0$  and the initial conditions  $(X_0^1, X_0^2, \cdots)$
- o in other words, looks for a 'convenient' probability measure on atomic probability measures

#### Energy

ullet With  $m{m}$ , probability measure on  $\mathcal{P}(\mathbb{T}^d)$ , associate quadratic form (or energy), for smooth functions  $\varphi$ ,

$$\mathcal{E}(\varphi) = \frac{1}{2} \int_{\mathcal{P}(\mathbb{T}^d)} \left\| \nabla \varphi(\mu) \right\|_{L^2(\mathbb{T}^d,\mu)}^2 d\mathbf{m}(\mu)$$

#### Energy

• With  $\mathbf{m}$ , probability measure on  $\mathcal{P}(\mathbb{T}^d)$ , associate quadratic form (or energy), for smooth functions  $\varphi$ ,

$$\mathcal{E}(\varphi) = \frac{1}{2} \int_{\mathcal{P}(\mathbb{T}^d)} \left\| \nabla \varphi(\mu) \right\|_{L^2(\mathbb{T}^d, \mu)}^2 d\mathbf{m}(\mu)$$

• Main question: identify  $\mathbf{m}$  such that energy is a Dirichlet form associated with the operator  $\Delta$  of the particle system:

$$\int_{\mathcal{P}(\mathbb{T}^d)} \Delta \mathcal{U}(\mu) \mathcal{V}(\mu) d\mathbf{m}(\mu)$$

$$= -\int_{\mathcal{P}(\mathbb{T}^d)} \left[ \int_{\mathbb{T}^d} \nabla \mathcal{U}(\mu, y) \cdot \nabla \mathcal{V}(\mu, y) d\mu(y) \right] d\mathbf{m}(\mu)$$

#### Energy

• With  $\mathbf{m}$ , probability measure on  $\mathcal{P}(\mathbb{T}^d)$ , associate quadratic form (or energy), for smooth functions  $\varphi$ ,

$$\mathcal{E}(\varphi) = \frac{1}{2} \int_{\mathcal{P}(\mathbb{T}^d)} \left\| \nabla \varphi(\mu) \right\|_{L^2(\mathbb{T}^d, \mu)}^2 d\mathbf{m}(\mu)$$

• Main question: identify  $\mathbf{m}$  such that energy is a Dirichlet form associated with the operator  $\Delta$  of the particle system:

$$\begin{split} & \int_{\mathcal{P}(\mathbb{T}^d)} \Delta \mathcal{U}(\mu) \mathcal{V}(\mu) d\mathbf{m}(\mu) \\ & = - \int_{\mathcal{P}(\mathbb{T}^d)} \left[ \int_{\mathbb{T}^d} \nabla \mathcal{U}(\mu, y) \cdot \nabla \mathcal{V}(\mu, y) d\mu(y) \right] d\mathbf{m}(\mu) \end{split}$$

• Makes it possible to define Sobolev  $H^1$  (derivatives in  $L^2(\mathfrak{m})$ ) and then solve in  $C([0,T];L^2) \cap L^2([0,T];H^1)$ 

$$\partial_t \mathcal{U}_t + \mathbf{b} \cdot \nabla \mathcal{U}_t + \frac{1}{2} \Delta \mathcal{U}_t = 0$$
 for  $t \in (0, T)$ ,  $u_t \Big|_{t=T} = g$ 

# 3. Rearranged Noise

# General plan

• Follow P.L. Lions' approach to differential calculus on  $\mathcal{P}_2(\mathbb{R})$ 

$$\circ$$
 see function  $\varphi : \mathcal{P}_2(\mathbb{R}) \ni \mu \mapsto \varphi(\mu) \in \mathbb{R}$  as

$$L^2(\mathbb{S} = \mathbb{R}/\mathbb{Z}, dx) \ni X \mapsto \varphi(\mathcal{L}(X))$$

... and change this into make random steps in  $L^2(\mathbb{S}, dx)$ 

### General plan

• Follow P.L. Lions' approach to differential calculus on  $\mathcal{P}_2(\mathbb{R})$ 

$$\circ$$
 see function  $\varphi : \mathcal{P}_2(\mathbb{R}) \ni \mu \mapsto \varphi(\mu) \in \mathbb{R}$  as

$$L^2(\mathbb{S} = \mathbb{R}/\mathbb{Z}, dx) \ni X \mapsto \varphi(\mathcal{L}(X))$$

... and change this into make random steps in  $L^2(\mathbb{S}, dx)$ 

• Move according to

$$dX_t(x) = \Delta X_t(x)dt + dW_t(x), \quad x \in \mathbb{S}, \ t \ge 0,$$

o with

$$W_t(x) = \sum_{m \in \mathbb{Z}} W_t^m e_m(x)$$

where  $((W_t^m)_{t\geq 0})_{m\in\mathbb{Z}}$  are  $\mathbb{L}$  Brownians and  $(e_m)_{m\in\mathbb{Z}}$  is Fourier basis

• Recall the shape of the solution

$$X_t(x) = \left[ \exp(t\Delta)X_0 + \int_0^t \exp((t-s)\Delta)dW_s \right](x)$$

in order to make it intrinsic → RE-ARRANGE

### General plan

• Follow P.L. Lions' approach to differential calculus on  $\mathcal{P}_2(\mathbb{R})$ 

$$\circ$$
 see function  $\varphi : \mathcal{P}_2(\mathbb{R}) \ni \mu \mapsto \varphi(\mu) \in \mathbb{R}$  as

$$L^2(\mathbb{S} = \mathbb{R}/\mathbb{Z}, dx) \ni X \mapsto \varphi(\mathcal{L}(X))$$

... and change this into make random steps in  $L^2(\mathbb{S}, dx)$ 

• Move according to

$$dX_t(x) = \Delta X_t(x)dt + dW_t(x), \quad x \in \mathbb{S}, \ t \ge 0,$$

o with

$$W_t(x) = \sum_{t \in \mathcal{T}} W_t^m e_m(x)$$

where  $((W_t^m)_{t\geq 0})_{m\in\mathbb{Z}}$  are  $\mathbb{L}$  Brownians and  $(e_m)_{m\in\mathbb{Z}}$  is Fourier basis

• Recall the shape of the solution

$$X_t \sim \left[ \exp(dt\Delta) X_t + \int_0^{dt} \exp((dt-s)\Delta) dW_{t+s} \right] \sim \text{re-arrangement} = X_{t+dt}$$
  
in order to make it intrinsic  $\sim \boxed{\text{RE-ARRANGE}}$ 

# Re-arrangement (or quantile) in 1d – plots

- Canonical random variable for representing  $\mu \in \mathcal{P}(\mathbb{R})$
- Simplest example:  $X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i 1_{[i/N,(i+1)/N)}(x)$

• rearrangement on [0, 1): 
$$X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i/N,(i+1)/N)}(x)$$

- where  $a_{(1)} \le a_{(2)} \le ... \le a_{(N)}$  is the non-decreasing rearrangement of  $a_1, \dots, a_N$ 
  - $\circ$  to get it on S, use contraction of rate 1/2 and symmetrize

# Re-arrangement (or quantile) in 1d – plots

- Canonical random variable for representing  $\mu \in \mathcal{P}(\mathbb{R})$
- Simplest example:  $X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i 1_{[i/N,(i+1)/N)}(x)$ 
  - rearrangement on [0, 1):  $X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i/N,(i+1)/N)}(x)$
- where  $a_{(1)} \le a_{(2)} \le ... \le a_{(N)}$  is the non-decreasing rearrangement of  $a_1, \dots, a_N$ 
  - $\circ$  to get it on S, use contraction of rate 1/2 and symmetrize





# Re-arrangement (or quantile) in 1d – plots

- Canonical random variable for representing  $\mu \in \mathcal{P}(\mathbb{R})$
- Simplest example:  $X(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_i 1_{[i/N,(i+1)/N)}(x)$

• rearrangement on [0, 1): 
$$X^*(x) = \frac{1}{N} \sum_{i=0}^{N-1} a_{(i)} 1_{[i/N,(i+1)/N)}(x)$$

- where  $a_{(1)} \le a_{(2)} \le ... \le a_{(N)}$  is the non-decreasing rearrangement of  $a_1, \dots, a_N$ 
  - $\circ$  to get it on S, use contraction of rate 1/2 and symmetrize





• Naive idea (from the general plan)

$$X_{n+1}^h = \left[e^{h\Delta}X_n^h + \int_0^h e^{(h-s)\Delta}dW_{nh+s}\right]^*$$

 $\circ h > 0$  is a time step

• Naive idea (from the general plan)

$$X_{n+1}^h = \left[e^{h\Delta}X_n^h + \int_0^h e^{(h-s)\Delta}dW_{nh+s}\right]^*$$

- $\circ h > 0$  is a time step
- Not able to prove *tightness* (i.e., weak compactness)!

• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[ e^{h\Delta} X_n^h + \int_0^h e^{(h-s)\Delta} dW_{nh+s} \right]^*$$

- $\circ h > 0$  is a time step
- Not able to prove *tightness* (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]
  - use non-expansion of the re-arrangement

$$||u^* - v^*||_{2,\mathbb{S}}^2 = \int_{\mathbb{S}} |u^*(x) - v^*(x)|^2 dx \le \int_{\mathbb{S}} |u(x) - v(x)|^2 dx = ||u - v||_{2,\mathbb{S}}^2$$
with  $u^* = X_{n+1}^h$  and  $\underbrace{v^* = e^{((n+1)-N)h\Delta} X_N^h}_{\text{sym. } \nearrow}$  for  $N \le n$ 

and 
$$u = e^{h\Delta}X_n^h + \int_0^h e^{(h-s)\Delta}dW_{nh+s}$$
 and  $v = v^*$  for  $N \le n$ 

• Naive idea (from the general plan)

$$X_{n+1}^{h} = \left[e^{h\Delta}X_{n}^{h} + \int_{0}^{h} e^{(h-s)\Delta}dW_{nh+s}\right]^{*}$$

- $\circ h > 0$  is a time step
- Not able to prove *tightness* (i.e., weak compactness)!
- Principle of the analysis taken from Brenier [09]

$$\begin{split} & \mathbb{E} \Big[ \Big\| X_{n+1}^h - e^{((n+1)-N)h\Delta} X_N^h \Big\|_{2,\mathbb{S}}^2 \Big] \\ & \leq \mathbb{E} \left[ \Big\| e^{h\Delta} \Big( X_n^h - e^{(n-N)h\Delta} X_N^h \Big) \Big\|_{2,\mathbb{S}}^2 \right] + \underbrace{\mathbb{E} \left[ \Big\| \int_0^h e^{(h-s)\Delta} dW_{nh+s} \Big\|_{2,\mathbb{S}}^2 \right]}_{h^{1-\dots}} \end{split}$$

- $\circ$  use contraction of  $e^{h\Delta} \sim h^{-1}h^{1-\dots} = h^{-\dots} \sim BAD$
- $\circ$  need to combine  $e^{h\Delta}$  and  $* \rightsquigarrow NO$  SIMPLE WAY

### **Euler scheme with colored noise**

• Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where  $\lambda \in (1/2, 1]$  and  $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$  are independent Brownian motions

- $\circ \mathbb{E}\big[ \|\widetilde{W}_t(\cdot)\|_2^2 \big] = ct < \infty$
- the noise takes values in  $L^2(\mathbb{S}, Leb)$

### **Euler scheme with colored noise**

• Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where  $\lambda \in (1/2, 1]$  and  $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$  are independent Brownian motions

- $\circ \mathbb{E}[\|\widetilde{W}_t(\cdot)\|_2^2] = ct < \infty$
- the noise takes values in  $L^2(\mathbb{S}, Leb)$
- May wonder why  $\Delta$  is still needed in the equation
  - o for the smoothing effect!! [Da Prato, ...]

### **Euler scheme with colored noise**

Replace white noise by colored noise

$$\widetilde{W}_t(x) = \sum_{m \in \mathbb{Z}} m^{-\lambda} W_t^m e_m(x)$$

where  $\lambda \in (1/2, 1]$  and  $((W_t^m)_{t \ge 0})_{m \in \mathbb{Z}}$  are independent Brownian motions

$$\circ \mathbb{E}[\|\widetilde{W}_t(\cdot)\|_2^2] = ct < \infty$$

- $\circ$  the noise takes values in  $L^2(\mathbb{S}, Leb)$
- New scheme

$$X_{n+1}^h = \left[ e^{h\Delta} X_n^h + \int_0^h e^{(h-s)\Delta} d\widetilde{W}_{nh+s} \right]^*$$

- $\circ h > 0$  is a time step
- get tightness in any  $C([0,T];H^{-1}(\mathbb{S}))$

# 3. Rearranged SHE

- Brenier's work → infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d {\color{blue} \eta_t}$$

∘ recall that  $X_t$  ∈  $L^2(\mathbb{S}, \text{Leb})$  by symmetric non-decreasing

- Brenier's work → infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d\eta_t$$

- $\circ$  recall that  $X_t \in L^2(\mathbb{S}, Leb)$  by symmetric non-decreasing
- o reflected SPDE → Donati-Martin & Pardoux, Nualart & Pardoux, Zambotti (reflection to preserve positivity), Barbu & Da Prato & Tubaro, Röckner & Zhu and & Zhu (more general treatment)

- Brenier's work → infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d \eta_t$$

- $\circ$  recall that  $X_t \in L^2(\mathbb{S}, Leb)$  by symmetric non-decreasing
- What is  $\eta_t$ ?

$$d\eta_t = \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)^* - \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)$$

 $\circ$  if u is smooth and symmetric non-decreasing

$$\langle u, d\eta_t \rangle_{2,\mathbb{S}} \geq 0$$

 $\circ$  if  $(z_t)_{t\geq 0}$  is smooth, symmetric  $\nearrow$  and varies smoothly in time

$$\int_0^t \langle z_s, d\eta_s \rangle_{2,\mathbb{S}}$$

makes sense (think of Stieltjes-integral) and  $\geq 0$ 

- Brenier's work → infinitesimal impact of re-arrangement = reflection on symmetric non-decreasing functions
- Get a reflected SHE

$$dX_t = \Delta X_t dt + d\widetilde{W}_t + d {\color{blue} \eta_t}$$

- $\circ$  recall that  $X_t \in L^2(\mathbb{S}, Leb)$  by symmetric non-decreasing
- What is  $\eta_t$ ?

$$d\eta_t = \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)^* - \left(e^{dt\Delta} X_t + \int_0^{dt} e^{(dt-s)\Delta} d\widetilde{W}_{t+s}\right)$$

 $\circ$  if *u* is smooth and symmetric non-decreasing

$$\langle u, d\eta_t \rangle_{2, \mathbb{S}} \ge 0$$

 $\circ$  if  $(z_t)_{t>0}$  is smooth, symmetric  $\nearrow$  and varies smoothly in time

$$\int_0^t \langle z_s, d\eta_s \rangle_{2,\mathbb{S}} = \sum_m \int_0^t \langle z_s, e_m \rangle_{2,\mathbb{S}} d\langle \eta_s, e_m \rangle_{2,\mathbb{S}}$$

makes sense (think of Stieltjes-integral) and  $\geq 0$ 

• For  $(X_t)_{t\geq 0}$  a continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  with each  $X_t$  symmetric non-decreasing

- For  $(X_t)_{t\geq 0}$  a continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  with each  $X_t$  symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2, \mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2, \mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2, \mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2, \mathbb{S}}$$
• for  $u$  smooth function on  $\mathbb{S}$ 

- For  $(X_t)_{t\geq 0}$  a continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  with each  $X_t$  symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2,\mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2,\mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2,\mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2,\mathbb{S}}$$

- $\circ$  for *u* smooth function on  $\mathbb{S}$
- Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle e^{\varepsilon \Delta} Z_{r}, d\eta_{r} \rangle_{2, \mathbb{S}} \geq 0,$$

- $\circ$  if  $(Z_r)_{r\geq 0}$  continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  such that  $Z_r$  is symmetric decreasing
  - $\circ \varepsilon > 0$  is an arbitrarily small regularization parameter

- For  $(X_t)_{t\geq 0}$  a continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  with each  $X_t$  symmetric non-decreasing
- We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2, \mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2, \mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2, \mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2, \mathbb{S}}$$

- o for *u* smooth function on S
- Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle e^{\varepsilon \Delta} Z_{r}, d\eta_{r} \rangle_{2, \mathbb{S}} \geq 0,$$

- $\circ$  if  $(Z_r)_{r\geq 0}$  continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  such that  $Z_r$  is symmetric decreasing
  - $\circ \varepsilon > 0$  is an arbitrarily small regularization parameter
- Orthogonality principle

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \int_{s}^{t} \langle e^{\varepsilon \Delta} X_{r}, d\eta_{r} \rangle_{2, \mathbb{S}} = 0$$

• We require the equation to be satisfied in a weak sense

$$\langle X_t - X_s, u \rangle_{2, \mathbb{S}} = \int_s^t \langle X_r, \Delta u \rangle_{2, \mathbb{S}} dr + \langle \widetilde{W}_t - \widetilde{W}_s, u \rangle_{2, \mathbb{S}} + \langle \eta_t - \eta_s, u \rangle_{2, \mathbb{S}}$$

- $\circ$  for *u* smooth function on  $\mathbb{S}$
- Non-decreasing property of the reflection term

$$\int_{s}^{t} \langle e^{\varepsilon \Delta} Z_{r}, d\eta_{r} \rangle_{2, \mathbb{S}} \geq 0,$$

- $\circ$  if  $(Z_r)_{r\geq 0}$  continuous process with values in  $L^2(\mathbb{S}, \text{Leb})$  such that  $Z_r$  is symmetric decreasing
  - $\circ \varepsilon > 0$  is an arbitrarily small regularization parameter
- Orthogonality principle

$$\lim_{\varepsilon \searrow 0} \mathbb{E} \int_{0}^{t} \langle e^{\varepsilon \Delta} X_{r}, d\eta_{r} \rangle_{2, \mathbb{S}} = 0$$

• Implies uniqueness as in finite dimension

# 4. Smoothing Effect

#### Result

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\left[\varphi\left(X_t^{X_0^*}\right)\right]$$

 $\circ$  for  $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$  (or  $\mathcal{P}^2(\mathbb{R}) \to \mathbb{R}$ ) bounded and measurable

#### Result

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\left[\varphi\left(X_t^{X_0^*}\right)\right]$$

 $\circ$  for  $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$  (or  $\mathcal{P}^2(\mathbb{R}) \to \mathbb{R}$ ) bounded and measurable

• Bound on the Lipschitz constant

$$\left|\mathcal{P}_t\varphi\big((X_0+z)^*\big)-\mathcal{P}_t\varphi(X_0^*)\right|\leq \frac{C_T}{t^{(1+\lambda)/2}}\|\varphi\|_\infty\|z\|_{L^2}$$

for  $t \in (0, T]$  (so Lipschitz w.r.t. Wasserstein distance  $W_2$ )

#### Result

• Smoothing effect of the semi-group is standard folklore of SPDEs

$$\mathcal{P}_t: X_0 \in L^2(\mathbb{S}, \text{Leb}) \mapsto \mathbb{E}\left[\varphi\left(X_t^{X_0^*}\right)\right]$$

- $\circ$  for  $\varphi: L^2(\mathbb{S}, \text{Leb}) \to \mathbb{R}$  (or  $\mathcal{P}^2(\mathbb{R}) \to \mathbb{R}$ ) bounded and measurable
- Bound on the Lipschitz constant

$$\left|\mathcal{P}_t\varphi\big((X_0+z)^*\big)-\mathcal{P}_t\varphi(X_0^*)\right|\leq \frac{C_T}{t^{(1+\lambda)/2}}\|\varphi\|_\infty\|z\|_{L^2}$$

for  $t \in (0, T]$  (so Lipschitz w.r.t. Wasserstein distance  $W_2$ )

- Discussion on the rate
  - $\circ$  blow-up exponent  $(1 + \lambda)/2 \in (3/4, 1)$ , close to 3/4 for  $\lambda \sim 1/2$
  - NOT AS GOOD as in finite dimension (blow up like  $t^{-1/2}$ )
  - but INTEGRABLE in small time, crucial for nonlinear models

5. Combining with idiosyncratic noise

## **Prospects**

- Applications
  - ∘ drifted equations and related gradient descent ✓

$$dX_t(x) = b(X_t(x), \mathsf{Leb}_{\mathbb{S}} \circ X_t^{-1})dt + \Delta X_t(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$$

 $\circ$  nonlinear models (in the sense of BSDEs, or equivalently, nonlinear PDEs on  $\mathcal{P}(\mathbb{R})$   $\checkmark$ 

## **Prospects**

- Applications
  - ∘ drifted equations and related gradient descent ✓

$$dX_t(x) = b(X_t(x), \text{Leb}_{\mathbb{S}} \circ X_t^{-1})dt + \Delta X_t(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$$

- $\circ$  nonlinear models (in the sense of BSDEs, or equivalently, nonlinear PDEs on  $\mathcal{P}(\mathbb{R})$   $\checkmark$
- Extensions
  - higher rearrangement given by optimal transport X
  - o copula?
  - o below: (idiosyncratic vs. common) noise for

$$\partial_t \mu_t = -\text{div}(b_t(\cdot, \mu_t)\mu_t) + \frac{1}{2}\Delta\mu_t$$

not reachable by Dello Schiavo or Sturm constructions

## **Principle**

• Consider  $(B_t)_{t\geq 0}$  another Brownian motion constructed on some  $\Omega$  (corresponding to idiosyncratic noise), whilst  $\widetilde{W}$  (corresponding to common noise) is constructed on some  $\Omega^0$ 

o naively, consider (something like)

$$X_t(x, \omega_0) + B_t(\omega)$$

but DOES NOT make sense because each 'x' should have its own noise

## **Principle**

• Consider  $(B_t)_{t\geq 0}$  another Brownian motion constructed on some  $\Omega$  (corresponding to idiosyncratic noise), whilst  $\widetilde{W}$  (corresponding to common noise) is constructed on some  $\Omega^0$ 

naively, consider (something like)

$$X_t(x, \omega_0) + B_t(\omega)$$

but DOES NOT make sense because each 'x' should have its own noise

• Replace by

$$\mu_t(\omega_0) = \mathcal{L}_{x,\omega} \Big( X_t(x,\omega_0) + B_t(\omega) \Big) = g_t \star \mathcal{L}_x \Big( X_t(x,\omega_0) \Big)$$

with  $g_t$  Gaussian kernel

## **Principle**

- Consider  $(B_t)_{t\geq 0}$  another Brownian motion constructed on some  $\Omega$  (corresponding to idiosyncratic noise), whilst  $\widetilde{W}$  (corresponding to common noise) is constructed on some  $\Omega^0$ 
  - naively, consider (something like)

$$X_t(x, \omega_0) + B_t(\omega)$$

but DOES NOT make sense because each 'x' should have its own noise

• Replace by

$$\mu_t(\omega_0) = \mathcal{L}_{x,\omega} \Big( X_t(x,\omega_0) + B_t(\omega) \Big) = g_t \star \mathcal{L}_x \Big( X_t(x,\omega_0) \Big)$$

with  $g_t$  Gaussian kernel

• Make it proper: Trotter-Kato

$$X_0 \leadsto X_{dt}^{X_0}(x,\omega_0) \leadsto g_{dt} \star \mathcal{L}_x \left( X_{dt}^{X_0}(x,\omega_0) \right)$$

#### **New scheme**

• Subdivision  $t_0 = 0 < t_1 = h < t_2 = 2h < \cdots < t_n = nh$ ,

$$X_{t_n}^h \rightsquigarrow \text{RSHE}(X_{t_n}^h, [t_n, t_n + 1]) \rightsquigarrow \star g_h$$

 $\circ$  on a time step  $[t_n, t_{n+1}] \sim \text{RSHE dynamics}$ 

$$\widetilde{X}_t^h(x) = X_{t_n}^h(x) + \int_{t_n}^t \Delta \widetilde{X}_s^h(x) ds + (\widetilde{W}_t - \widetilde{W}_{t_n})(x) + (\eta_t^h - \eta_{t_n}^h)(x)$$

for 
$$t \in [t_n, t_n + 1]$$

 $\circ$  at time  $t_{n+1}$ , convolution

$$X_{t_{n+1}}^h(x) = \left( \operatorname{Leb}_{\mathbb{S}} \circ (\widetilde{X}_{t_{n+1}}^h)^{-1} \star g_h \right)^{-1} (x), \quad x \in \mathbb{S}$$

#### **New scheme**

• Subdivision  $t_0 = 0 < t_1 = h < t_2 = 2h < \cdots < t_n = nh$ ,

$$X_{t_n}^h \rightsquigarrow \text{RSHE}(X_{t_n}^h, [t_n, t_n + 1]) \rightsquigarrow \star g_h$$

 $\circ$  on a time step  $[t_n, t_{n+1}] \sim \text{RSHE dynamics}$ 

$$\widetilde{X}_t^h(x) = X_{t_n}^h(x) + \int_{t_n}^t \Delta \widetilde{X}_s^h(x) ds + (\widetilde{W}_t - \widetilde{W}_{t_n})(x) + (\eta_t^h - \eta_{t_n}^h)(x)$$

for  $t \in [t_n, t_n + 1]$ 

 $\circ$  at time  $t_{n+1}$ , convolution

$$X^h_{t_{n+1}}(x) = \left(\mathrm{Leb}_{\mathbb{S}} \circ (\widetilde{X}^h_{t_{n+1}})^{-1} \star g_h\right)^{-1}(x), \quad x \in \mathbb{S}$$

• New term to understand is

$$S_{t_n}^h := \sum_{i=1}^n \left[ X_{t_j}^h - \widetilde{X}_{t_j}^h \right]$$

# **Approximating the new term**

- Standard computation
  - $\circ \mu$  a probability measure, with  $F_{\mu}$  as cdf and  $F_{\mu}^{-1}$  as quantile on  $\mathbb{S}$
  - $\circ \phi$  symmetric (non-decreasing)

$$\int_{\mathbb{S}} \phi(x) (F_{\mu \star g_h}^{-1}(x) - F_{\mu}^{-1}(x)) dx = \frac{1}{2} \int_{0}^{h} \int_{\mathbb{S}} \frac{\phi'(x)}{(F_{\mu} \star g_r)^{-1}}(x) dx \, dr$$

# **Approximating the new term**

- Standard computation
  - $\circ \mu$  a probability measure, with  $F_{\mu}$  as cdf and  $F_{\mu}^{-1}$  as quantile on  $\mathbb{S}$
  - $\circ \phi$  symmetric (non-decreasing)

$$\int_{\mathbb{S}} \phi(x) (F_{\mu \star g_h}^{-1}(x) - F_{\mu}^{-1}(x)) dx = \frac{1}{2} \int_{0}^{h} \int_{\mathbb{S}} \frac{\phi'(x)}{(F_{\mu} \star g_r)^{-1}}(x) dx \, dr$$

- Consequences
  - o approximation

$$S_{t_n}^h \approx \frac{h}{2} \sum_{j=1}^n \int_{\mathbb{S}} \frac{\phi'(x)}{(X_{t_j}^h)'(x)} dx$$

# **Approximating the new term**

- Standard computation
  - $\circ \mu$  a probability measure, with  $F_{\mu}$  as cdf and  $F_{\mu}^{-1}$  as quantile on  $\mathbb{S}$
  - $\circ \phi$  symmetric (non-decreasing)

$$\int_{\mathbb{S}} \phi(x) \big( F_{\mu \star g_h}^{-1}(x) - F_{\mu}^{-1}(x) \big) dx = \frac{1}{2} \int_{0}^{h} \int_{\mathbb{S}} \frac{\phi'(x)}{(F_{\mu} \star g_r)^{-1}}(x) dx \, dr$$

- Consequences
  - approximation

$$S_{t_n}^h \approx \frac{h}{2} \sum_{j=1}^n \int_{\mathbb{S}} \frac{\phi'(x)}{(X_{t_j}^h)'(x)} dx$$

o justify existence of term above

$$\frac{1}{2}\mathbb{E}\int_0^h \int_{\mathbb{S}} \frac{\phi'(x)}{(\mathrm{Leb}_{\mathbb{S}}\circ (X_{t_i}^h)^{-1}\star g_r)^{-1}(x)} dx\,dr \leq C(\|\phi'\|_{\infty})$$

# **Retrieving the derivative of the entropy**

• Limiting equation

$$dX_t(x) = -\left(\frac{1}{X_t'(x)}\right)'dt + X_t''(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$$

with 
$$\frac{1}{2}\mathbb{E}\int_{0}^{T}\int_{\mathbb{S}}\frac{1}{|X_{t}'|}(x)dx\,dt\leq C$$

## Retrieving the derivative of the entropy

Limiting equation

$$dX_t(x) = -\left(\frac{1}{X_t'(x)}\right)'dt + X_t''(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$$

with 
$$\frac{1}{2}\mathbb{E}\int_0^T \int_{\mathbb{S}} \frac{1}{|X_t'|}(x) dx dt \le C$$

- Interpretation
  - o new term corresponds to derivative of entropy

$$\frac{d}{d\epsilon}_{|\epsilon=0} \left[ -\int_{\mathbb{S}} \ln(|X'(x) + \varepsilon \phi'(x)|) dx \right] = -\int_{\mathbb{S}} \frac{\phi'(x)}{X'(x)} dx = \int_{\mathbb{S}} \phi(x) \left( \frac{1}{X'(x)} \right)' dx$$

 $\circ$  bound provides existence of a density (in  $L^2$ )

## Retrieving the derivative of the entropy

Limiting equation

$$dX_t(x) = -\left(\frac{1}{X_t'(x)}\right)'dt + X_t''(x)dt + d\widetilde{W}_t(x) + d\eta_t(x)$$

with 
$$\frac{1}{2}\mathbb{E}\int_0^T \int_{\mathbb{S}} \frac{1}{|X_t'|}(x) dx dt \le C$$

- Interpretation
  - o new term corresponds to derivative of entropy

$$\frac{d}{d\epsilon}_{|\epsilon=0} \left[ -\int_{\mathbb{S}} \ln(|X'(x) + \varepsilon \phi'(x)|) dx \right] = -\int_{\mathbb{S}} \frac{\phi'(x)}{X'(x)} dx = \int_{\mathbb{S}} \phi(x) \left( \frac{1}{X'(x)} \right)' dx$$

- $\circ$  bound provides existence of a density (in  $L^2$ )
- More
  - ∘ uniqueness is ✓
  - o need for reflection? regularization properties?