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Semi-group interpretation

e Semi-group generated by Fokker-Planck equation
Dupty + div(b (-, ) = Aty = 0
o if well-posed, let for a test function ¢ : Pr(RY) - R,
P - po = P(uy)

o get a transport PDE for U(t, u) = ZP:p(u)

Ut ) = fR 0w - VU 1, y)dp () + fR | divy VU s y)du(y)

e Derivative [Albeverio et al., Ambrosio et al., Dawson, Lions...]

o for ¢ smooth function of u

Vo(m,y) = %[%|S:0+¢(s5y +(1=s)m)|

e What about ‘true diffusive equations’? (useful for nonlinear ones)
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Sturm and Von Renesse [09], Konarovskyi [15], ...

o interest in small time large deviation principle: rate function
should be square W,-Wasserstein distance

e Works in higher dimension

o Albeverio, Kondratiev and Rockner [98], when working on the
space of configurations (locally finite sum of § masses)

o Dello Schiavo [20,25], Sturm [24] on P(R?) (or P(T¢))
e Here, more interested in smoothing ~» two routes

o infinite-dimensional particle system ([work with Martini and Sodini based on

Dello-Schiavo’s own Wnrks]), d Z 2

o rearranged SHE ([work with Hammersley]), d=1
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Dirichlet-Fergusson process [following Dello Schiavo]

o Infinite but countable particle system
o flow of purely atomic measures

M = Sl'(SX;, t> 0, dX; = _dB;, i€ N*
,-Z‘ Vi

where 51 > 50 > --- > 0 with ) 7% -y si=1land {Bl -2, collection of

d-dimensional independent Brownian motions

o particles regarded as in living in the torus T¢ (as otherwise need
confining potential)

e Main idea: randomize the weights s; > 5o > -+ > 0 and the initial
conditions (X}, X3,---)

o in other words, looks for a ‘convenient’ probability measure on
atomic probability measures
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Energy

e With m, probability measure on P(T¢), associate quadratic form (or
energy), for smooth functions ¢,

&) =1 L(Td)||V‘P('u)||iz(T"#>dm(ﬂ)

e Main question: identify m such that energy is a Dirichlet form
associated with the operator A of the particle system:

f AUV ()dm(u)
P(T)

__ f [ f V(L) - VY () [dm(e)
Perd)LJTd

e Makes it possible to define Sobolev H I (derivatives in L*(m)) and
then solve in C([0, T1; L?) N L*([0, T]; H")

U +b- VU + AU =0 forte©0,T), w|_,=g



3. Rearranged Noise



General plan

e Follow P.L. Lions’ approach to differential calculus on £>(R)
o see function ¢ : Pr(R) 3 u — ¢(u) € R as

L3S =R/Z,dx) 3 X - o(L(X))

... and change this into make random steps in L(S, dx)



General plan

e Follow P.L. Lions’ approach to differential calculus on $»(R)
o see function ¢ : Pr(R) > u — (1) € R as
L3S =R/Z,dx) 3 X - o(L(X))
... and change this into make random steps in L%(S, dx)

e Move according to
dX,(x) = AX;(x)dt + dW,(x), x€8S,t>0,

o with

Wix) = > W en(x)
mez
where (W}")=0)mez are 1L Brownians and (e,,)nez is Fourier basis

e Recall the shape of the solution

t
Xi(x) = [exp(tA)Xo + f exp((t — s)A)dWS](x)
0

in order to make it intrinsic ~» ’ RE-ARRANGE ‘




General plan

e Follow P.L. Lions’ approach to differential calculus on $»(R)
o see function ¢ : Pr(R) > u — (1) € R as
L3S =R/Z,dx) 3 X - o(L(X))
... and change this into make random steps in L(S, dx)

e Move according to
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o with

Wix) = > Wen(x)
mez
where (W}")>0)mez are 1L Brownians and (e, )n,ez is Fourier basis

e Recall the shape of the solution

X~

1
exp(dtA)X,+ fd exp((dt—s)A)dWm] ~» re-arrangement = X4
0

in order to make it intrinsic ~» ’ RE-ARRANGE ‘
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Euler scheme with white noise

e Naive idea (from the general plan)

h *
XZH = [ehAX;}zl + f e(h_s)Adehﬂ
0

o h > 0 is a time step
e Not able to prove tightness (i.e., weak compactness)!
e Principle of the analysis taken from Brenier [09]

o use non-expansion of the re-arrangement
w2 _ * % 2d < _ 2d _ 2
lu” =vil5g = | @) —v@Fdx < | |ulx) — vl dx = llu—-vll;g
S S

with u* = XZH and v' = e((”“)fN)hAX,}\’, forN <n

sym. /"

h
and u = ehAX,’f + f e(h_s)Adehﬂ andv=v forN <n
0



Euler scheme with white noise

o Naive idea (from the general plan)
h *
X" | = [ehAXf; + f P OAAW
0

o h > 0 is a time step
e Not able to prove tightness (i.e., weak compactness)!

e Principle of the analysis taken from Brenier [09]

7

2
h ((n+1)-N)hAvyh
Xn+1 - XN“2 S]

2 h 2
hA(yh _ (n-N)hAyh (h-9)A
=E [”e (X” ¢ XN)”Z,S] +E [”fo ¢ AW Z,S]
i
o use contraction of ¢’ ~» h=1h!= = b= ~ BAD

o need to combine ¢"® and * ~» NO SIMPLE WAY
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e May wonder why A is still needed in the equation

o for the smoothing effect!! [Da Prato, ...]



Euler scheme with colored noise

e Replace white noise by colored noise

Wix) = > m ™ Wey(x)

mezZ

where A € (1/2, 1] and ((W]")s»0)mez are independent Brownian
motions

o E[IW,()I3] = et < oo
o the noise takes values in L(S, Leb)

e New scheme

*

n+l —

h
X = [ehAXZ 4 f A
0

o h > 0 is a time step

o get tightness in any C([0, T1; H~'(S))
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e Get a|reflected SHE
dX, = AX,dt + dW, + dn,

o recall that X, € L%(S, Leb) by symmetric non-decreasing

o reflected SPDE ~» Donati-Martin & Pardoux, Nualart &
Pardoux, Zambotti (reflection to preserve positivity), Barbu & Da
Prato & Tubaro, Rockner & Zhu and & Zhu (more general treatment)
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reflection on symmetric non-decreasing functions

e Get a|reflected SHE
dX, = AX,dt + dW, + dn,

o recall that X, € L%(S, Leb) by symmetric non-decreasing

e What is 7,?

dt * dt
dn, = ( oA X 4 f Sdi=9A dW,H) _ ( oA X 4 f Sdi=9A dW,H)
0 0
o if u is smooth and symmetric non-decreasing

(u,dn)y s 20

o if (z)s>0 is smooth, symmetric ,”* and varies smoothly in time

! t
L <ZSa d’]s)z’g = Z fo <Zs, em>2’§d<77s,€m>2’g

makes sense (think of Stieltjes-integral) and > 0
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Definition of a solution

e We require the equation to be satisfied in a weak sense

t
Xi = X5, u)y 5 = f (X, Au)y odr + (Wi = W, u)y o + (1 = 15, )
N

o for u smooth function on S

e Non-decreasing property of the reflection term

!
f (¢**Zy,dny)y g > 0,
N

o if (Z,),>0 continuous process with values in L?*(S, Leb) such that
Z, is symmetric decreasing

o & > ( is an arbitrarily small regularization parameter
e Orthogonality principle
!
HmE | ("X, dn,),5=0
timE [ (X dn s

e Implies uniqueness as in finite dimension
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Result
e Smoothing effect of the semi-group is standard folklore of SPDEs

P, : Xo € LA(S, Leb) > E[g(X,")]

o for ¢ : L*(S,Leb) — R (or P?(R) — R) bounded and
measurable

e Bound on the Lipschitz constant

R . Cr
[Pip((Xo + ) = PrpXp)| < 575 Iellollllz2

for ¢ € (0, T] (so Lipschitz w.r.t. Wasserstein distance W>)
e Discussion on the rate
o blow-up exponent (1 + 1)/2 € (3/4,1), close to 3/4 for A ~ 1/2
o NOT AS GOOD as in finite dimension (blow up like 172y

o but INTEGRABLE in small time, crucial for nonlinear models
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Prospects
e Applications

o drifted equations and related gradient descent v/
dX;(x) = b(X;(x), Lebs o X, 1)dt + AX,(x)dt + dW,(x) + dn,(x)

o nonlinear models (in the sense of BSDEs, or equivalently,
nonlinear PDEs on P(R) /
e Extensions

o higher rearrangement given by optimal transport X

o copula ?

o below: (idiosyncratic vs. common) noise for

. 1
Oty = _le(bt("llt)ﬂt)+§Allt

not reachable by Dello Schiavo or Sturm constructions
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e Consider (B;);>0 another Brownian motion constructed on some

(corresponding to idiosyncratic noise), whilst w (corresponding to
common noise) is constructed on some Q°

o naively, consider (something like)
Xl‘(-x’ CUO) + B[(Q))

but DOES NOT make sense because each ‘x’ should have its own
noise
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Principle
e Consider (B;);>0 another Brownian motion constructed on some

(corresponding to idiosyncratic noise), whilst w (corresponding to
common noise) is constructed on some Q°

o naively, consider (something like)
Xl‘(-xa CUO) + B[(Q))

but DOES NOT make sense because each ‘x’ should have its own
noise

e Replace by

p(w0) = Lew(Xi(x, ) + Bi(w)) = g * L(Xi(x, wp))

with g, Gaussian kernel

e Make it proper: Trotter-Kato

X ~> Xfi(t‘)(x, wo) ~ 8ar * Lx(Xff(x, wo))



New scheme

e Subdivisionfp =0<t;=h<thp =2h<---<t, =nh,
X"~ RSHE(X], [ty t, + 1]) ~> g
o on a time step [1y, #,+1] ~ RSHE dynamics
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o at time t,41, convolution
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New scheme

e Subdivisionfp =0<t;=h<thp =2h<---<t, =nh,
X' ~> RSHE(X], [ty tn + 1]) ~ *gy,
o on a time step [#,, ,+1] ~ RSHE dynamics

!
X!'(x) = X' (x) + f AX"(0)ds + (W = W, )(x) + (1] = 11 )(x)

fort € [t,,t, + 1]

o at time t,41, convolution

Th -1 -1
Xp (x)=(Lebs o (X' )" % g4) (@), x€S

e New term to understand is

Z[Xh x|
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Approximating the new term

e Standard computation
o u a probability measure, with F, as cdf and F;l as quantile on S

o ¢ symmetric (non-decreasing)

¢’ (x)
f¢(x)( N*gh(X) l(x))dx— f f(F g -(x)dx dr

e Consequences

o approximation

AN
%3 Z oW
o justify existence of term above

e (" ¢ ,
EEJO‘ L(Lebs o (X)) * gr)—l(x)dXdr < C(l¢'ll)
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Retrieving the derivative of the entropy

e Limiting equation

dX,(x) = (= — ) dt + X} ()dt + dW,(x) + diy(x)

X[ (x)

1T 1
with =E —~(x)dxdt < C
2 Jo Js Xl

o Interpretation

o new term corresponds to derivative of entropy

O eed Y (ACo 1
- fs In(|X’(x)+&¢ (x)l)dX] = XYoo= fs ¢(x)(X’(x)

4
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Retrieving the derivative of the entropy

e Limiting equation

dX,(x) = (= — ) dt + X} ()dt + dW,(x) + diy(x)

X[ (x)

1T 1
with =E —~(x)dxdt < C
2 Jo Js Xl

o Interpretation

o new term corresponds to derivative of entropy

d f ¢’ (x) 1 v
— — | In(IX’ (x)+&¢’ (x)] dx] =— | —Zdx= f (%) dx
d€|e=0 s ( (D s X' (x) S ¢ (X’(x))

o bound provides existence of a density (in L?)
e More

o uniqueness is v/

o need for reflection? regularization properties?



