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1. Motivation



Background
•Well-known fact in stochastic analysis:

Ẋt = bt(Xt)

◦ b continuous⇒ existence but uniqueness

◦ restore uniqueness by adding a Brownian motion (Bt)t≥0

dXt = bt(Xt)dt + dBt

• Picture for McKean-Vlasov equations

dXt = bt
(
Xt,L(Xt)

)
dt + dBt

◦ typically require Lipschitz continuity in µ (e.g. w.r.t TV)
[Lacker, Chaudru et al., Röckner and Zhang]

because noise is ‘too small’

• Program

◦ random forcing for

∂tµt = −div
(
bt(·, µt)µt

)

+ ∆µt

where µt ∈ P(Rd): what is B here?
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Semi-group interpretation
• Semi-group generated by Fokker-Planck equation

∂tµt + div
(
b(·, µt)µt

)
− ∆µt = 0

◦ if well-posed, let for a test function φ : P2(Rd)→ R,

Ptφ : µ0 7→ φ
(
µt

)

◦ get a transport PDE forU(t, µ) = Ptφ(µ)

∂tU(t, µ) =

∫
Rd

b(y, µ) · ∇U
(
t, µ, y

)
dµ(y) +

∫
Rd

divy∇U
(
t, µ, y

)
dµ(y)

• Derivative [Albeverio et al., Ambrosio et al., Dawson, Lions...]

◦ for φ smooth function of µ

∇φ(m, y) =
d
dy

[ d
ds |s=0+φ

(
sδy + (1 − s)m

)]
•What about ‘true diffusive equations’? (useful for nonlinear ones)
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2. Several Candidates



Form of the noise
• Intuitively, use kind of Brownian motion on the space of P2(Rd)

• Approaches in 1d (work on P(R))

◦ earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], ...

◦ interest in small time large deviation principle: rate function
should be square W2-Wasserstein distance

•Works in higher dimension

◦ Albeverio, Kondratiev and Röckner [98], when working on the
space of configurations (locally finite sum of δ masses)

◦ Dello Schiavo [20,25], Sturm [24] on P(Rd) (or P(Td))

• Here, more interested in smoothing{ two routes

◦ infinite-dimensional particle system ([work with Martini and Sodini based on

Dello-Schiavo’s own works]), d ≥ 2

◦ rearranged SHE ([work with Hammersley]), d = 1



Form of the noise
• Intuitively, use kind of Brownian motion on the space of P2(Rd)

• Approaches in 1d (work on P2(R))

◦ earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], ...

◦ interest in small time large deviation principle: rate function
should be square W2-Wasserstein distance

•Works in higher dimension

◦ Albeverio, Kondratiev and Röckner [98], when working on the
space of configurations (locally finite sum of δ masses)

◦ Dello Schiavo [20,25], Sturm [24] on P(Rd) (or P(Td))

• Here, more interested in smoothing{ two routes

◦ infinite-dimensional particle system ([work with Martini and Sodini based on

Dello-Schiavo’s own works]), d ≥ 2

◦ rearranged SHE ([work with Hammersley]), d = 1



Form of the noise
• Intuitively, use kind of Brownian motion on the space of P2(Rd)

• Approaches in 1d (work on P2(R))

◦ earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], ...

◦ interest in small time large deviation principle: rate function
should be square W2-Wasserstein distance

•Works in higher dimension

◦ Albeverio, Kondratiev and Röckner [98], when working on the
space of configurations (locally finite sum of δ masses)

◦ Dello Schiavo [20,25], Sturm [24] on P(Rd) (or P(Td))

• Here, more interested in smoothing{ two routes

◦ infinite-dimensional particle system ([work with Martini and Sodini based on

Dello-Schiavo’s own works]), d ≥ 2

◦ rearranged SHE ([work with Hammersley]), d = 1



Form of the noise
• Intuitively, use kind of Brownian motion on the space of P2(Rd)

• Approaches in 1d (work on P2(R))

◦ earlier approaches but no canonical definition: Stannat [02,06],
Sturm and Von Renesse [09], Konarovskyi [15], ...

◦ interest in small time large deviation principle: rate function
should be square W2-Wasserstein distance

•Works in higher dimension

◦ Albeverio, Kondratiev and Röckner [98], when working on the
space of configurations (locally finite sum of δ masses)

◦ Dello Schiavo [20,25], Sturm [24] on P(Rd) (or P(Td))

• Here, more interested in smoothing{ two routes

◦ infinite-dimensional particle system ([work with Martini and Sodini based on

Dello-Schiavo’s own works]), d ≥ 2

◦ rearranged SHE ([work with Hammersley]), d = 1



Dirichlet-Fergusson process [following Dello Schiavo]

• Infinite but countable particle system

◦ flow of purely atomic measures

µt :=
∑
i≥1

siδXi
t
, t ≥ 0; dXi

t =
1
√

si
dBi

t, i ∈ N∗

where s1 > s2 > · · · ≥ 0 with
∑+∞

i=1 si = 1 and {Bi}∞i=1 collection of
d-dimensional independent Brownian motions

◦ particles regarded as in living in the torus Td (as otherwise need
confining potential)

•Main idea: randomize the weights s1 > s2 > · · · ≥ 0 and the initial
conditions (X1

0 ,X
2
0 , · · · )

◦ in other words, looks for a ‘convenient’ probability measure on
atomic probability measures
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Energy
•With m, probability measure on P(Td), associate quadratic form (or
energy), for smooth functions ϕ,

E(ϕ) = 1
2

∫
P(Td)

∥∥∥∇ϕ(µ)
∥∥∥2

L2(Td ,µ)dm(µ)

•Main question: identify m such that energy is a Dirichlet form
associated with the operator ∆ of the particle system:∫

P(Td)
∆U(µ)V(µ)dm(µ)

= −

∫
P(Td)

[∫
Td
∇U(µ, y) · ∇V(µ, y)dµ(y)

]
dm(µ)

•Makes it possible to define Sobolev H1 (derivatives in L2(m)) and
then solve in C([0,T]; L2) ∩ L2([0,T]; H1)

∂tUt + b · ∇Ut + 1
2∆Ut = 0 for t ∈ (0,T), ut

∣∣∣
t=T = g
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3. Rearranged Noise



General plan
• Follow P.L. Lions’ approach to differential calculus on P2(R)

◦ see function ϕ : P2(R) 3 µ 7→ ϕ(µ) ∈ R as

L2(S = R/Z, dx) 3 X 7→ ϕ
(
L(X)

)
... and change this into make random steps in L2(S, dx)

•Move according to

dXt(x) = ∆Xt(x)dt + dWt(x), x ∈ S, t ≥ 0,

◦ with
Wt(x) =

∑
m∈Z

Wm
t em(x)

where ((Wm
t )t≥0)m∈Z are ⊥⊥ Brownians and (em)m∈Z is Fourier basis

• Recall the shape of the solution
in order to make it intrinsic{ RE-ARRANGE
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Wm
t em(x)

where ((Wm
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• Recall the shape of the solution
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[
exp(dt∆)Xt+

∫ dt

0
exp
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)
dWt+s

]
{ re-arrangement = Xt+dt

in order to make it intrinsic{ RE-ARRANGE



Re-arrangement (or quantile) in 1d – plots
• Canonical random variable for representing µ ∈ P(R)

• Simplest example: X(x) =
1
N

N−1∑
i=0

ai1[i/N,(i+1)/N)(x)

◦ rearrangement on [0, 1): X∗(x) =
1
N

N−1∑
i=0

a(i)1[i/N,(i+1)/N)(x)

◦ where a(1) ≤ a(2) ≤ ... ≤ a(N) is the non-decreasing
rearrangement of a1, · · · , aN

◦ to get it on S, use contraction of rate 1/2 and symmetrize
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Euler scheme with white noise
• Naive idea (from the general plan)

Xh
n+1 =

[
eh∆Xh

n +

∫ h

0
e(h−s)∆dWnh+s

]∗
◦ h > 0 is a time step

• Not able to prove tightness (i.e., weak compactness)!

• Principle of the analysis taken from Brenier [09]

E
[∥∥∥∥Xh

n+1 − e((n+1)−N)h∆Xh
N

∥∥∥∥2

2,S

]
≤ E

[∥∥∥∥eh∆
(
Xh

n − e(n−N)h∆Xh
N

)∥∥∥∥2

2,S

]
+ E

[∥∥∥∥∫ h

0
e(h−s)∆dWnh+s

∥∥∥∥2

2,S

]
︸                            ︷︷                            ︸

h1−...

◦ use contraction of eh∆{ h−1h1−... = h−... { BAD

◦ need to combine eh∆ and ∗{ NO SIMPLE WAY
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Euler scheme with colored noise
• Replace white noise by colored noise

W̃t(x) =
∑
m∈Z

m−λWm
t em(x)

where λ ∈ (1/2, 1] and ((Wm
t )t≥0)m∈Z are independent Brownian

motions

◦ E
[
‖W̃t(·)‖22

]
= ct < ∞

◦ the noise takes values in L2(S,Leb)

• New scheme

Xh
n+1 =

[
eh∆Xh

n +

∫ h

0
e(h−s)∆dW̃nh+s

]∗
◦ h > 0 is a time step

◦ get tightness in any C([0,T]; H−1(S))
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3. Rearranged SHE



Equation satisfied by limit process
• Brenier’s work{ infinitesimal impact of re-arrangement =
reflection on symmetric non-decreasing functions

• Get a reflected SHE

dXt = ∆Xtdt + dW̃t + dηt

◦ recall that Xt ∈ L2(S,Leb) by symmetric non-decreasing

•What is ηt?

dηt =

(
edt∆ Xt +

∫ dt

0
e(dt−s)∆dW̃t+s

)∗
−

(
edt∆ Xt +

∫ dt

0
e(dt−s)∆dW̃t+s

)
◦ if u is smooth and symmetric non-decreasing〈

u, dηt
〉

2,S ≥ 0

◦ if (zt)t≥0 is smooth, symmetric↗ and varies smoothly in time∫ t

0

〈
zs, dηs

〉
2,S

makes sense (think of Stieltjes-integral) and ≥ 0
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Definition of a solution
• For (Xt)t≥0 a continuous process with values in L2(S,Leb) with each
Xt symmetric non-decreasing

•We require the equation to be satisfied in a weak sense〈
Xt − Xs, u

〉
2,S =

∫ t

s

〈
Xr,∆u

〉
2,Sdr +

〈
W̃t − W̃s, u

〉
2,S +

〈
ηt − ηs, u

〉
2,S

◦ for u smooth function on S

• Non-decreasing property of the reflection term∫ t

s

〈
eε∆Zr, dηr

〉
2,S ≥ 0,

◦ if (Zr)r≥0 continuous process with values in L2(S,Leb) such that
Zr is symmetric decreasing

◦ ε > 0 is an arbitrarily small regularization parameter

• Orthogonality principle

lim
ε↘0
E

∫ t

s

〈
eε∆Xr, dηr

〉
2,S = 0

• Implies uniqueness as in finite dimension
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4. Smoothing Effect



Result
• Smoothing effect of the semi-group is standard folklore of SPDEs

Pt : X0 ∈ L2(S,Leb) 7→ E
[
ϕ
(
X

X∗0
t

)]
◦ for ϕ : L2(S,Leb)→ R (or P2(R)→ R) bounded and

measurable

• Bound on the Lipschitz constant

∣∣∣Ptϕ
(
(X0 + z)∗

)
− Ptϕ(X∗0)

∣∣∣ ≤ CT

t(1+λ)/2 ‖ϕ‖∞‖z‖L2

for t ∈ (0,T] (so Lipschitz w.r.t. Wasserstein distanceW2)

• Discussion on the rate

◦ blow-up exponent (1 + λ)/2 ∈ (3/4, 1), close to 3/4 for λ ∼ 1/2

◦ NOT AS GOOD as in finite dimension (blow up like t−1/2)

◦ but INTEGRABLE in small time, crucial for nonlinear models



Result
• Smoothing effect of the semi-group is standard folklore of SPDEs

Pt : X0 ∈ L2(S,Leb) 7→ E
[
ϕ
(
X

X∗0
t

)]
◦ for ϕ : L2(S,Leb)→ R (or P2(R)→ R) bounded and

measurable

• Bound on the Lipschitz constant

∣∣∣Ptϕ
(
(X0 + z)∗

)
− Ptϕ(X∗0)

∣∣∣ ≤ CT

t(1+λ)/2 ‖ϕ‖∞‖z‖L2

for t ∈ (0,T] (so Lipschitz w.r.t. Wasserstein distanceW2)

• Discussion on the rate

◦ blow-up exponent (1 + λ)/2 ∈ (3/4, 1), close to 3/4 for λ ∼ 1/2

◦ NOT AS GOOD as in finite dimension (blow up like t−1/2)

◦ but INTEGRABLE in small time, crucial for nonlinear models



Result
• Smoothing effect of the semi-group is standard folklore of SPDEs

Pt : X0 ∈ L2(S,Leb) 7→ E
[
ϕ
(
X

X∗0
t

)]
◦ for ϕ : L2(S,Leb)→ R (or P2(R)→ R) bounded and

measurable

• Bound on the Lipschitz constant

∣∣∣Ptϕ
(
(X0 + z)∗

)
− Ptϕ(X∗0)

∣∣∣ ≤ CT

t(1+λ)/2 ‖ϕ‖∞‖z‖L2

for t ∈ (0,T] (so Lipschitz w.r.t. Wasserstein distanceW2)

• Discussion on the rate

◦ blow-up exponent (1 + λ)/2 ∈ (3/4, 1), close to 3/4 for λ ∼ 1/2

◦ NOT AS GOOD as in finite dimension (blow up like t−1/2)

◦ but INTEGRABLE in small time, crucial for nonlinear models



5. Combining with idiosyncratic noise



Prospects
• Applications

◦ drifted equations and related gradient descent X

dXt(x) = b
(
Xt(x),LebS ◦ X−1

t
)
dt + ∆Xt(x)dt + dW̃t(x) + dηt(x)

◦ nonlinear models (in the sense of BSDEs, or equivalently,
nonlinear PDEs on P(R) X

• Extensions

◦ higher rearrangement given by optimal transport

◦ copula ?

◦ below: (idiosyncratic vs. common) noise for

∂tµt = −div
(
bt(·, µt)µt

)
+

1
2

∆µt

not reachable by Dello Schiavo or Sturm constructions
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Principle
• Consider (Bt)t≥0 another Brownian motion constructed on some Ω

(corresponding to idiosyncratic noise), whilst W̃ (corresponding to
common noise) is constructed on some Ω0

◦ naively, consider (something like)

Xt(x, ω0) + Bt(ω)

but DOES NOT make sense because each ‘x’ should have its own
noise

• Replace by

µt(ω0) = Lx,ω
(
Xt(x, ω0) + Bt(ω)

)
= gt ?Lx

(
Xt(x, ω0)

)
with gt Gaussian kernel

•Make it proper: Trotter-Kato

X0 { XX0
dt (x, ω0){ gdt ?Lx

(
XX0

dt (x, ω0)
)
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New scheme
• Subdivision t0 = 0 < t1 = h < t2 = 2h < · · · < tn = nh,

Xh
tn { RSHE

(
Xh

tn , [tn, tn + 1]
)
{ ?gh

◦ on a time step [tn, tn+1]{ RSHE dynamics

X̃h
t (x) = Xh

tn(x) +

∫ t

tn
∆X̃h

s (x)ds + (W̃t − W̃tn)(x) + (ηh
t − η

h
tn)(x)

for t ∈ [tn, tn + 1]

◦ at time tn+1, convolution

Xh
tn+1

(x) =
(
LebS ◦ (X̃h

tn+1
)−1 ? gh

)−1
(x), x ∈ S

• New term to understand is

Sh
tn :=

n∑
j=1

[
Xh

tj − X̃h
tj

]
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Approximating the new term
• Standard computation

◦ µ a probability measure, with Fµ as cdf and F−1
µ as quantile on S

◦ φ symmetric (non-decreasing)∫
S
φ(x)

(
F−1
µ?gh

(x) − F−1
µ (x)

)
dx =

1
2

∫ h

0

∫
S

φ′(x)
(Fµ ? gr)−1 (x)dx dr

• Consequences

◦ approximation

Sh
tn ≈

h
2

n∑
j=1

∫
S

φ′(x)
(Xh

tj )
′(x)

dx

◦ justify existence of term above

1
2
E

∫ h

0

∫
S

φ′(x)
(LebS ◦ (Xh

tj )
−1 ? gr)−1(x)

dx dr ≤ C(‖φ′‖∞)
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Retrieving the derivative of the entropy
• Limiting equation

dXt(x) = −
( 1
X′t (x)

)′
dt + X′′t (x)dt + dW̃t(x) + dηt(x)

with
1
2
E

∫ T

0

∫
S

1
|X′t |

(x)dx dt ≤ C

• Interpretation

◦ new term corresponds to derivative of entropy

d
dε |ε=0

[
−

∫
S

ln
(
|X′(x)+εφ′(x)|

)
dx

]
= −

∫
S

φ′(x)
X′(x)

dx =

∫
S
φ(x)

( 1
X′(x)

)′
dx

◦ bound provides existence of a density (in L2)

•More

◦ uniqueness is X

◦ need for reflection? regularization properties?
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