Noise sensitivity for the 2D Stochastic Heat Equation and directed polymers

Francesco Caravenna

University of Milano-Bicocca

Workshop on "Workshop on Irregular Stochastic Analysis"

INdAM Meeting at Palazzone di Cortona $\,\sim\,$ 24 June 2025

Collaborators

Joint work with Anna Donadini

Collaborators

Joint work with Anna Donadini

Previous works with

Rongfeng Sun (NUS)
Nikos Zygouras (Warwick)

Outline

1. The critical 2D SHF

2. Which equation for the SHF?

3. Noise sensitivity

Heat equation with multiplicative singular potential

$$t > 0, x \in \mathbb{R}^d$$

$$\partial_t u(t,x) = \Delta_x u(t,x) + \beta u(t,x) \, \xi(t,x)$$
 (SHE)

Heat equation with multiplicative singular potential

$$t > 0, x \in \mathbb{R}^d$$

$$\partial_t u(t,x) = \Delta_x u(t,x) + \beta u(t,x) \, \xi(t,x) \tag{SHE}$$

$$\beta \geq 0$$
 coupling constant

$$\xi(t,x)$$
 = "space-time white noise"

Heat equation with multiplicative singular potential

$$t > 0, x \in \mathbb{R}^d$$

$$\partial_t u(t,x) = \Delta_x u(t,x) + \beta u(t,x) \, \xi(t,x) \tag{SHE}$$

$$\beta \geq 0$$
 coupling constant

$$\xi(t,x)$$
 = "space-time white noise"

$$(d = 1)$$
 sub-critical: well-posed

Ito-Walsh / Robust solution theories
[Chen-Dalang 15] [Hairer-Pardoux 15]

Heat equation with multiplicative singular potential

$$t > 0, x \in \mathbb{R}^d$$

$$\partial_t u(t,x) = \Delta_x u(t,x) + \beta u(t,x) \, \xi(t,x) \tag{SHE}$$

$$\beta \geq 0$$
 coupling constant

$$\xi(t,x)$$
 = "space-time white noise"

$$(d=1)$$
 sub-critical: well-posed

Ito-Walsh / Robust solution theories
[Chen-Dalang 15] [Hairer-Pardoux 15]

$$(d=2)$$
 critical

[C.S.Z. 23]

Heat equation with multiplicative singular potential

$$t \ge 0$$
, $x \in \mathbb{R}^d$

$$\partial_t u(t,x) = \Delta_x u(t,x) + \beta u(t,x) \, \xi(t,x) \tag{SHE}$$

$$\beta \geq 0$$
 coupling constant

$$\xi(t,x)$$
 = "space-time white noise"

$$(d=1)$$
 sub-critical: well-posed

Ito-Walsh / Robust solution theories
[Chen-Dalang 15] [Hairer-Pardoux 15]

$$(d=2)$$
 critical

[C.S.Z. 23]

Natural candidate solution: the critical 2D Stochastic Heat Flow (SHF)

```
Regularized noise \xi_N(t,x) (discretization, mollification, ...)
```

```
Regularized noise \xi_N(t,x) \iff well-defined solution u_N(t,x) (discretization, mollification, . . . )  \begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \beta \ u_N(t,x) \ \xi_N(t,x) \end{cases}
```

```
Regularized noise \xi_N(t,x) \rightsquigarrow \text{well-defined solution } u_N(t,x) (discretization, mollification, ...) \begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \beta \ u_N(t,x) \ \xi_N(t,x) \\ u_N(0,x) \equiv 1 \ \text{(for simplicity)} \end{cases} (reg-SHE)
```

Convergence of
$$u_N(t, \varphi) = \int_{\mathbb{R}^2} u_N(t, x) \varphi(x) dx$$
 as $N \to \infty$?

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x$$

Variance convergence? for $\beta \sim \frac{\hat{\beta}}{\sqrt{\log N}}$ with $\hat{\beta} = \sqrt{\pi}$

(easy)

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$\boxed{ \text{for} \quad \beta \sim \frac{\hat{\beta}}{\sqrt{\log N}} \quad \text{with} \ \ \hat{\beta} = \sqrt{\pi} \left(1 + \frac{\vartheta}{\log N} \right) }$$

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$\boxed{ \text{for} \quad \pmb{\beta} \sim \frac{\hat{\pmb{\beta}}}{\sqrt{\log N}} \quad \text{with} \ \ \hat{\pmb{\beta}} = \sqrt{\pmb{\pi}} \left(1 + \frac{\pmb{\vartheta}}{\log N} \right) }$$

$$\operatorname{ iny Var}ig[u_N(t,oldsymbol{arphi})ig] \xrightarrow[N o \infty]{} \mathcal{K}_t^{artheta}(oldsymbol{arphi},oldsymbol{arphi}) > 0$$

[Bertini-Cancrini 98] [C.S.Z. 19]

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$| \text{for} \quad \pmb{\beta} \sim \frac{\hat{\pmb{\beta}}}{\sqrt{\log N}} \quad \text{ with } | \hat{\pmb{\beta}} = \sqrt{\pmb{\pi}} \left(1 + \frac{\pmb{\vartheta}}{\log N} \right) |$$

$$\operatorname{Var}ig[u_N(t, oldsymbol{arphi}ig)ig] \xrightarrow[N o \infty]{} \mathcal{K}_t^{artheta}(oldsymbol{arphi}, oldsymbol{arphi}) > 0$$

[Bertini-Cancrini 98] [C.S.Z. 19]

Higher moments convergence

[C.S.Z. 19] [Gu-Quastel-Tsai 21]

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$\boxed{ \text{for} \quad \beta \sim \frac{\hat{\beta}}{\sqrt{\log N}} \quad \text{with} \ \ \hat{\beta} = \sqrt{\pi} \left(1 + \frac{\vartheta}{\log N} \right) }$$

$$\operatorname{ iny Var}ig[u_N(t,oldsymbol{arphi})ig] \xrightarrow[N o \infty]{} \mathcal{K}_t^{artheta}(oldsymbol{arphi},oldsymbol{arphi}) > 0$$

[Bertini-Cancrini 98] [C.S.Z. 19]

Higher moments convergence

[C.S.Z. 19] [Gu-Quastel-Tsai 21]

Convergence in law of $u_N(t, \varphi)$?

Mean convergence

$$\mathbb{E}\big[u_N(t,\varphi)\big] \xrightarrow[N\to\infty]{} \int_{\mathbb{R}^2} \varphi(x) \, \mathrm{d}x \qquad (\text{easy})$$

Variance convergence?

$$\boxed{ \text{for} \quad \beta \sim \frac{\hat{\beta}}{\sqrt{\log N}} \quad \text{with} \ \ \hat{\beta} = \sqrt{\pi} \left(1 + \frac{\vartheta}{\log N} \right) }$$

$$\operatorname{Var}ig[u_N(t,oldsymbol{arphi}ig)ig] \xrightarrow[N o\infty]{} \mathcal{K}_t^{artheta}(oldsymbol{arphi},oldsymbol{arphi})>0$$

[Bertini-Cancrini 98] [C.S.Z. 19]

Higher moments convergence

[C.S.Z. 19] [Gu-Quastel-Tsai 21]

Convergence in law of $u_N(t,\varphi)$? \iff of the measure $u_N(t,x) dx$?

Theorem

[C.S.Z. Invent. Math. 23]

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}}$$

Theorem

[C.S.Z. Invent. Math. 23]

Take

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}} \left(1 + \frac{\vartheta}{\log N} \right)$$

for some $\vartheta \in \mathbb{R}$

Theorem

[C.S.Z. Invent. Math. 23]

Take

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}} \left(1 + \frac{\vartheta}{\log N} \right)$$

for some $\vartheta \in \mathbb{R}$

Then u_N converges in law to a unique and non-trivial limit \mathscr{U}^{ϑ}

$$(u_N(t,x) dx)_{t\geq 0} \xrightarrow{N\to\infty} (\mathscr{U}^{\vartheta}(t,dx))_{t\geq 0}$$

Theorem

[C.S.Z. Invent. Math. 23]

Take

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}} \left(1 + \frac{\vartheta}{\log N} \right)$$

for some $\vartheta \in \mathbb{R}$

Then u_N converges in law to a unique and non-trivial limit \mathscr{U}^{ϑ}

$$(u_N(t,x) dx)_{t\geq 0} \xrightarrow{N\to\infty} (\mathscr{U}^{\vartheta}(t,dx))_{t\geq 0}$$

 $\mathscr{U}^{\vartheta} = \text{critical 2D Stochastic Heat Flow (SHF)}$

Theorem

[C.S.Z. Invent. Math. 23]

Take

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}} \left(1 + \frac{\vartheta}{\log N} \right)$$

for some $\vartheta \in \mathbb{R}$

Then u_N converges in law to a unique and non-trivial limit \mathscr{U}^{ϑ}

$$(u_N(t,x) dx)_{t\geq 0} \xrightarrow{N\to\infty} (\mathscr{U}^{\vartheta}(t,dx))_{t\geq 0}$$

$$\mathscr{U}^{\vartheta} = \text{critical 2D Stochastic Heat Flow (SHF)} = \begin{cases} \text{stochastic process of} \\ \text{random measures on } \mathbb{R}^2 \end{cases}$$

The SHF is a "candidate solution" of the critical 2d Stochastic Heat Equation

```
\mathscr{U}^{\vartheta}(t, dx) (initial condition 1 at time 0)
```

The SHF is a "candidate solution" of the critical 2d Stochastic Heat Equation

$$\mathscr{U}^{\vartheta}(t, dx)$$
 (initial condition 1 at time 0)

We actually build a two-parameter space-time process

$$\left(\mathscr{U}^{\vartheta}(s,dy;t,dx)\right)_{0\leq s\leq t<\infty}$$
 (starting at time s from dy)

The SHF is a "candidate solution" of the critical 2d Stochastic Heat Equation

$$\mathscr{U}^{\vartheta}(t, dx)$$
 (initial condition 1 at time 0)

We actually build a two-parameter space-time process

$$\left(\mathscr{U}^{\vartheta}(s,dy;t,dx)\right)_{0\leq s\leq t<\infty}$$
 (starting at time s from dy)

"Flow": Chapman-Kolmogorov property for s < t < u [Clark-Mian 2024+]

$$\mathscr{U}^{\vartheta}(s,dy;u,dz) = \int_{x \in \mathbb{R}^2} \mathscr{U}^{\vartheta}(s,dy;\underbrace{t,dx}) \mathscr{U}^{\vartheta}(t,dx;u,dz)$$

The SHF is a "candidate solution" of the critical 2d Stochastic Heat Equation

$$\mathscr{U}^{\vartheta}(t, dx)$$
 (initial condition 1 at time 0)

We actually build a two-parameter space-time process

$$\left(\mathscr{U}^{\vartheta}(s,dy;t,dx)\right)_{0\leq s\leq t<\infty}$$
 (starting at time s from dy)

"Flow": Chapman-Kolmogorov property for s < t < u [Clark-Mian 2024+]

$$\mathscr{U}^{\vartheta}(s,\mathsf{d}y;u,\mathsf{d}z) = \int\limits_{\mathsf{x}\in\mathbb{R}^2} \mathscr{U}^{\vartheta}(s,\mathsf{d}y;\underbrace{\mathsf{t},\mathsf{d}x}) \, \mathscr{U}^{\vartheta}(\mathsf{t},\mathsf{d}x;u,\mathsf{d}z)$$
non-trivial "product" of measures

ightharpoonup a.s. $\mathscr{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue

[C.S.Z. arXiv 25]

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$

(in particular: non atomic)

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ "barely not a function"

(in particular: non atomic)

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ "barely not a function"

(in particular: non atomic)

Formulas for all moments

[C.S.Z. 19] [Gu-Quastel-Tsai 21]

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ "barely not a function"

(in particular: non atomic)

Formulas for all moments

- [C.S.Z. 19] [Gu-Quastel-Tsai 21]
- ► Scaling covariance $a^{-1} \mathcal{U}^{\vartheta}(at, d(\sqrt{a}x))$

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

- ▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ "barely not a function"
- (in particular: non atomic)

Formulas for all moments

- [C.S.Z. 19] [Gu-Quastel-Tsai 21]
- ► Scaling covariance $a^{-1} \mathcal{U}^{\vartheta}(at, d(\sqrt{a}x)) \stackrel{d}{=} \mathcal{U}^{\vartheta + \log a}(t, dx)$

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

- ▶ a.s. $\mathscr{U}^{\vartheta}(t, \mathsf{d} x) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ (in particular: non atomic) "barely not a function"
- Formulas for all moments

- [C.S.Z. 19] [Gu-Quastel-Tsai 21]
- ► Scaling covariance $a^{-1} \mathcal{U}^{\vartheta}(at, d(\sqrt{a}x)) \stackrel{d}{=} \mathcal{U}^{\vartheta + \log a}(t, dx)$
- ► Axiomatic characterization via independence & moments

[Tsai 24+]

► a.s. $\mathcal{U}^{\vartheta}(t, dx)$ is singular w.r.t. Lebesgue "not a function"

[C.S.Z. arXiv 25]

▶ a.s. $\mathscr{U}^{\vartheta}(t, dx) \in \mathscr{C}^{-\kappa}$ for any $\kappa > 0$ "barely not a function"

(in particular: non atomic)

Formulas for all moments

- [C.S.Z. 19] [Gu-Quastel-Tsai 21]
- ► Scaling covariance $a^{-1} \mathcal{U}^{\vartheta}(at, d(\sqrt{a}x)) \stackrel{d}{=} \mathcal{U}^{\vartheta + \log a}(t, dx)$
- ► Axiomatic characterization via independence & moments

[Tsai 24+]

► Universality w.r.t. approximation scheme

[C.S.Z. 23] [Tsai 24+]

Outline

1. The critical 2D SHF

2. Which equation for the SHF?

3. Noise sensitivity

Does SHF $\mathcal{U}^{\vartheta}(t, dx)$ satisfy a SPDE driven by white noise $\xi(t, x)$?

Does SHF $\mathcal{U}^{\vartheta}(t, dx)$ satisfy a SPDE driven by white noise $\xi(t, x)$?

► SHF $\mathscr{U}^{\vartheta}(t, dx)$ is the limit of regularised SHE solutions $u_N(t, x) dx$

Does SHF $\mathcal{U}^{\vartheta}(t, dx)$ satisfy a SPDE driven by white noise $\xi(t, x)$?

▶ SHF $\mathscr{U}^{\vartheta}(t, dx)$ is the limit of regularised SHE solutions $u_N(t, x) dx$

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \beta u_N(t,x) \, \xi_N(t,x) \\ u_N(0,x) \equiv 1 \quad \text{(for simplicity)} \end{cases}$$
 (reg-SHE)

Does SHF $\mathcal{U}^{\vartheta}(t, dx)$ satisfy a SPDE driven by white noise $\xi(t, x)$?

▶ SHF $\mathscr{U}^{\vartheta}(t, dx)$ is the limit of regularised SHE solutions $u_N(t, x) dx$

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \beta u_N(t,x) \xi_N(t,x) \\ u_N(0,x) \equiv 1 \text{ (for simplicity)} \end{cases}$$
 (reg-SHE)

• White noise $\xi(t,x)$ is the limit of regularised noise $\xi_N(t,x)$

Does SHF $\mathcal{U}^{\vartheta}(t, dx)$ satisfy a SPDE driven by white noise $\xi(t, x)$?

▶ SHF $\mathscr{U}^{\vartheta}(t, dx)$ is the limit of regularised SHE solutions $u_N(t, x) dx$

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \beta u_N(t,x) \, \xi_N(t,x) \\ u_N(0,x) \equiv 1 \quad \text{(for simplicity)} \end{cases}$$
 (reg-SHE)

• White noise $\xi(t,x)$ is the limit of regularised noise $\xi_N(t,x)$

$$\langle \boldsymbol{\xi}, \boldsymbol{\psi} \rangle = \lim_{N \to \infty} \int \boldsymbol{\xi}_N(t, x) \, \psi(t, x) \, \mathrm{d}x$$
 in distribution $\psi \in C_c^{\infty}(\mathbb{R}^{1+2})$

Theorem

[C.-Donadini 25+]

$$\left(\xi_{N}, u_{N}\right) \xrightarrow[N \to \infty]{d} \left(\xi, \mathscr{U}^{\vartheta}\right)$$

Theorem [C.–Donadini 25+] $(\xi_N, u_N) \xrightarrow[N \to \infty]{d} (\xi, \mathscr{U}^{\vartheta}) \qquad \xi \text{ and } \mathscr{U}^{\vartheta} \text{ independent}$

Puzzling: u_N is a **function** of ξ_N

Theorem [C.–Donadini 25+] $(\xi_N, u_N) \xrightarrow[N \to \infty]{d} (\xi, \mathscr{U}^{\vartheta}) \qquad \xi \text{ and } \mathscr{U}^{\vartheta} \text{ independent}$

Puzzling: u_N is a **function** of ξ_N yet dependence is lost in the limit!

Theorem

[C.-Donadini 25+]

$$(\xi_N, u_N) \xrightarrow[N \to \infty]{d} (\xi, \mathcal{U}^{\vartheta})$$
 ξ and \mathcal{U}^{ϑ} independent

Puzzling: u_N is a **function** of ξ_N yet dependence is lost in the limit!

This suggests that

$$\mathscr{U}^{\vartheta}$$
 cannot solve a SPDE driven by ξ

Theorem

[C.-Donadini 25+]

$$(\xi_N, u_N) \xrightarrow[N \to \infty]{d} (\xi, \mathscr{U}^{\vartheta})$$
 ξ and \mathscr{U}^{ϑ} independent

Puzzling: u_N is a **function** of ξ_N vet dependence is lost in the limit!

This suggests that

$$\mathscr{U}^{\vartheta}$$
 cannot solve a SPDE driven by ξ

Recently proved:
$$\mathcal{U}^{\vartheta}$$
 is a "black noise" (à la Tsirelson) [Gu-Tsai arXiv 25]

We prove independence of \mathscr{U}^{ϑ} and ξ showing that

(see next slides)

 u_N is sensitive to small perturbations of the driving noise ξ_N

We prove independence of \mathscr{U}^{ϑ} and ξ showing that

(see next slides)

 u_N is sensitive to small perturbations of the driving noise ξ_N

We take $\xi_N :=$ discretisation of white noise

on the lattice $\frac{1}{N}\mathbb{N}\times\frac{1}{\sqrt{N}}\mathbb{Z}^2$

We prove independence of \mathscr{U}^{ϑ} and ξ showing that

(see next slides)

 u_N is sensitive to small perturbations of the driving noise ξ_N

We take $\xi_N :=$ discretisation of white noise

$$\xi_N(t,x) = N \cdot \omega(n,z)$$
 i.i.d.

on the lattice $\frac{1}{N}\mathbb{N}\times\frac{1}{\sqrt{N}}\mathbb{Z}^2$

for
$$(t,x) = (\frac{n}{N}, \frac{z}{\sqrt{N}})$$

We prove independence of \mathscr{U}^{ϑ} and ξ showing that

(see next slides)

 u_N is sensitive to small perturbations of the driving noise ξ_N

We take $\xi_N :=$ discretisation of white noise

$$\xi_N(t,x) = N \cdot \omega(n,z)$$
 i.i.d.

on the lattice $\frac{1}{N}\mathbb{N}\times\frac{1}{\sqrt{N}}\mathbb{Z}^2$

for
$$(t,x) = \left(\frac{n}{N}, \frac{z}{\sqrt{N}}\right)$$

We have $u_N(t, \varphi) = f_N(\omega)$ for a suitable function $f_N(\cdot) = f_N^{t, \varphi}(\cdot)$

We prove independence of \mathscr{U}^{ϑ} and ξ showing that

(see next slides)

 u_N is sensitive to small perturbations of the driving noise ξ_N

We take $\xi_N :=$ discretisation of white noise

$$\xi_N(t,x) = N \cdot \omega(n,z)$$
 i.i.d.

on the lattice $\frac{1}{N}\mathbb{N} \times \frac{1}{\sqrt{N}}\mathbb{Z}^2$

for
$$(t,x) = \left(\frac{n}{N}, \frac{z}{\sqrt{N}}\right)$$

We have $u_N(t, \varphi) = f_N(\omega)$ for a suitable function $f_N(\cdot) = f_N^{t, \varphi}(\cdot)$

(partition function of 2D directed polymer in random environment)

Outline

1. The critical 2D SHF

2. Which equation for the SHF1

3. Noise sensitivity

Fix i.i.d. random variables $\omega = (\omega_i)_{i=1,2,...}$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad Var[\mathbf{\omega}_i] = 1$$

Fix i.i.d. random variables
$$\omega = (\omega_i)_{i=1,2,...}$$

Take a sequence of functions $f_N(\omega) \in L^2$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad Var[\mathbf{\omega}_i] = 1$$

$$\lim_{N o\infty} \mathbb{V}\mathrm{ar}[f_N({\color{olive}\omega})] = \sigma^2 \in (0,\infty)$$

Fix i.i.d. random variables
$$\omega = (\omega_i)_{i=1,2,...}$$

Take a sequence of functions
$$f_N(\omega) \in L^2$$

Define "
$$\varepsilon$$
-perturbation" $\omega^{\varepsilon} = (\omega_i^{\varepsilon})_{i=1,2,...}$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad Var[\mathbf{\omega}_i] = 1$$

$$\lim_{N o \infty} \mathbb{V}\operatorname{ar}[f_N({\color{olive}\omega})] = \sigma^2 \in (0,\infty)$$

$$oldsymbol{\omega}_i^{oldsymbol{arepsilon}} := egin{cases} oldsymbol{\omega}_i & ext{w. prob. } 1 - oldsymbol{arepsilon} \ \widetilde{oldsymbol{\omega}}_i \perp oldsymbol{\omega}_i & ext{w. prob. } oldsymbol{arepsilon} \end{cases}$$

Fix i.i.d. random variables
$$\omega = (\omega_i)_{i=1,2,...}$$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad Var[\mathbf{\omega}_i] = 1$$

Take a sequence of functions $f_N(\omega) \in L^2$

$$\lim_{N\to\infty} \mathbb{V}\operatorname{ar}[f_N(\omega)] = \sigma^2 \in (0,\infty)$$

Define "
$$\varepsilon$$
-perturbation" $\omega^{\varepsilon} = (\omega_i^{\varepsilon})_{i=1,2,...}$

$$oldsymbol{\omega}_i^{oldsymbol{arepsilon}} := egin{cases} oldsymbol{\omega}_i & ext{w. prob. } 1 - oldsymbol{arepsilon} \ \widetilde{oldsymbol{\omega}}_i \ oldsymbol{oldsymbol{\omega}}_i \ oldsymbol{oldsymbol{\omega}}_i & ext{w. prob. } oldsymbol{arepsilon} \end{cases}$$

We call
$$(f_N)_{N\in\mathbb{N}}$$
 noise sensitive if

[Garban-Steif 14] [O'Donnel 14]

$$\forall \varepsilon > 0$$
 $\lim_{N \to \infty} \mathbb{C}\text{ov}\left[f_N(\boldsymbol{\omega}^{\varepsilon}), f_N(\boldsymbol{\omega})\right] = 0$

Fix i.i.d. random variables
$$\omega = (\omega_i)_{i=1,2,...}$$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad \text{Var}[\mathbf{\omega}_i] = 1$$

Take a sequence of functions $f_N(\omega) \in L^2$

$$\lim_{N o\infty} \mathbb{V}\mathrm{ar}[f_N({\color{olive}\omega})] = \sigma^2 \in (0,\infty)$$

Define " ε -perturbation" $\omega^{\varepsilon} = (\omega_i^{\varepsilon})_{i=1,2,...}$

$$oldsymbol{\omega}_i^{oldsymbol{arepsilon}} := egin{cases} oldsymbol{\omega}_i & ext{w. prob. } 1 - oldsymbol{arepsilon} \ \widetilde{oldsymbol{\omega}}_i \perp oldsymbol{\omega}_i & ext{w. prob. } oldsymbol{arepsilon} \end{cases}$$

We call $(f_N)_{N\in\mathbb{N}}$ strongly noise sensitive if

$$\forall \phi, \psi \in C_c^{\infty}(\mathbb{R})$$

$$\forall \varepsilon > 0$$
 $\lim_{N \to \infty} \mathbb{C}\text{ov}\left[\phi\left(f_N(\omega^{\varepsilon})\right), \psi\left(f_N(\omega)\right)\right] = 0$

Fix i.i.d. random variables
$$\omega = (\omega_i)_{i=1,2,...}$$

Take a sequence of functions
$$f_N(\omega) \in L^2$$

Define "
$$\varepsilon$$
-perturbation" $\omega^{\varepsilon} = (\omega_i^{\varepsilon})_{i=1,2,...}$

$$\mathbb{E}[\mathbf{\omega}_i] = 0 \quad Var[\mathbf{\omega}_i] = 1$$

$$\lim_{N o \infty} \mathbb{V}\operatorname{ar}[f_N({\color{olive}\omega})] = \sigma^2 \in (0, \infty)$$

$$oldsymbol{\omega}_i^{oldsymbol{arepsilon}} := egin{cases} oldsymbol{\omega}_i & ext{w. prob. } 1 - oldsymbol{arepsilon} \ \widetilde{oldsymbol{\omega}}_i \perp oldsymbol{\omega}_i & ext{w. prob. } oldsymbol{arepsilon} \end{cases}$$

We call
$$(f_N)_{N\in\mathbb{N}}$$
 strongly noise sensitive if

$$\forall \varepsilon > 0$$
 $\lim_{N \to \infty} \mathbb{C}\text{ov}\left[\phi\left(f_N(\boldsymbol{\omega}^{\varepsilon})\right), \psi\left(f_N(\boldsymbol{\omega})\right)\right] = 0$

$$\iff \phi(f_N(\omega^{\varepsilon}))$$
 is noise sensitive

 $\forall \phi, \psi \in C_{\circ}^{\infty}(\mathbb{R})$

"Usual" functions are not noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \ldots + \omega_N}{\sqrt{N}}$$

"Usual" functions are not noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \ldots + \omega_N}{\sqrt{N}}$$

"Parity" is noise sensitive: $f_N(\omega) = \omega_1 \cdots \omega_N$ for symmetric $\omega_i = \pm 1$

$$f_N(\omega) = \omega_1 \cdots \omega_N$$

"Usual" functions are not noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \ldots + \omega_N}{\sqrt{N}}$$

"Parity" is noise sensitive:

$$f_N(\boldsymbol{\omega}) = \boldsymbol{\omega}_1 \cdots \boldsymbol{\omega}_N$$

for symmetric $\omega_i=\pm 1$

Chaos decomposition

$$f_{\mathcal{N}} = \mathbb{E}[f_{\mathcal{N}}] + \sum_{d=1}^{\infty} f_{\mathcal{N}}^{(d)}$$

"Usual" functions are not noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \ldots + \omega_N}{\sqrt{N}}$$

"Parity" is noise sensitive:

$$f_N(\omega) = \omega_1 \cdots \omega_N$$

for symmetric $\omega_i = \pm 1$

Chaos decomposition

$$f_N = \mathbb{E}[f_N] + \sum_{d=1}^{\infty} f_N^{(d)}$$

$$\mathbb{V}\operatorname{ar}[f_N] = \sum_{d=1}^{\infty} \left\| f_N^{(d)} \right\|_2^2$$

"Usual" functions are not noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \ldots + \omega_N}{\sqrt{N}}$$

"Parity" is noise sensitive:

$$f_N(\boldsymbol{\omega}) = \boldsymbol{\omega}_1 \cdots \boldsymbol{\omega}_N$$

for symmetric $\omega_i = \pm 1$

$$f_N = \mathbb{E}[f_N] + \sum_{d=1}^{\infty} f_N^{(d)}$$

$$Var[f_N] = \sum_{d=1}^{\infty} \|f_N^{(d)}\|_2^2$$

$$f_N^{(d)}(\mathbf{\omega}) = \sum_{\{i_1,\ldots,i_d\}} c_N(i_1,\ldots,i_d) \mathbf{\omega}_{i_1} \cdots \mathbf{\omega}_{i_d}$$

(polynomial chaos)

"Usual" functions are not noise sensitive, e.g.

$$f_N(\boldsymbol{\omega}) = \frac{\boldsymbol{\omega}_1 + \ldots + \boldsymbol{\omega}_N}{\sqrt{N}}$$

"Parity" is noise sensitive:

$$f_N(\boldsymbol{\omega}) = \boldsymbol{\omega}_1 \cdots \boldsymbol{\omega}_N$$

for symmetric $\omega_i = \pm 1$

$$f_{\mathcal{N}} = \mathbb{E}[f_{\mathcal{N}}] + \sum_{d=1}^{\infty} f_{\mathcal{N}}^{(d)}$$

$$\operatorname{Var}[f_N] = \sum_{d=1}^{\infty} \left\| f_N^{(d)} \right\|_2^2$$

$$f_N^{(d)}(\mathbf{\omega}) = \sum_{\{i_1,\ldots,i_d\}} c_N(i_1,\ldots,i_d) \mathbf{\omega}_{i_1} \cdots \mathbf{\omega}_{i_d}$$

(polynomial chaos)

Spectral criterion

$$\iff$$
 $\forall d \in \mathbb{N}$:

$$\|f_N^{(d)}\|_2^2 \xrightarrow[N\to\infty]{} 0$$

Boolean setting: binary functions $f(\omega)$ of binary variables ω_i

Boolean setting: binary functions $f(\omega)$ of binary variables ω_i

Robust condition for noise sensitivity based on influences

$$I_i(f) := \mathbb{P}(f(\mathbf{\omega}_+^i) \neq f(\mathbf{\omega}_-^i))$$

Boolean setting: binary functions $f(\omega)$ of binary variables ω_i

Robust condition for noise sensitivity based on influences

$$I_i(f) := \mathbb{P}(f(\mathbf{\omega}_+^i) \neq f(\mathbf{\omega}_-^i))$$
 $\mathcal{W}(f) := \sum_i I_i(f)^2$

Boolean setting: binary functions $f(\omega)$ of binary variables ω_i

Robust condition for noise sensitivity based on influences

$$I_i(f) := \mathbb{P}(f(\boldsymbol{\omega}_+^i) \neq f(\boldsymbol{\omega}_-^i))$$
 $\mathscr{W}(f) := \sum_i I_i(f)^2$

Theorem

[Benjamini–Kalai–Schramm 99]

$$(f_N)_{N\in\mathbb{N}}$$
 is noise sensitive if

$$\lim_{N\to\infty}\mathscr{W}(f_N)=0$$

[B.K.S. 99]

Boolean setting: binary functions $f(\omega)$ of binary variables ω_i

Robust condition for noise sensitivity based on influences

$$I_i(f) := \mathbb{P}(f(\boldsymbol{\omega}_+^i) \neq f(\boldsymbol{\omega}_-^i))$$
 $\mathscr{W}(f) := \sum_i I_i(f)^2$

Theorem

[Benjamini–Kalai–Schramm 99]

$$(f_N)_{N\in\mathbb{N}}$$
 is noise sensitive if $\lim_{N\to\infty} \mathscr{W}(f_N) = 0$ [B.K.S. 99]

$$\forall \varepsilon > 0$$
: \mathbb{C} ov $\left[f(\omega^{\varepsilon}), f(\omega) \right] \leq C \, \mathscr{W}(f)^{\alpha \, \varepsilon}$ [Keller-Kindler 13]

Influences beyond the Boolean setting

Define
$$\delta_i f := f - \mathbb{E}_i[f]$$
 with $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\mathbf{\omega}_j : j \neq i)]$ [Talagrand 94]

Influences beyond the Boolean setting

Define
$$\delta_i f := f - \mathbb{E}_i[f]$$
 with $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\omega_j : j \neq i)]$ [Talagrand 94]

Two notions of influence

$$I_i^{(1)}(f) := \|\delta_i f\|_1 = \mathbb{E}[|\delta_i f|]$$

Influences beyond the Boolean setting

Define
$$\delta_i f := f - \mathbb{E}_i[f]$$
 with $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\omega_j : j \neq i)]$ [Talagrand 94]

Two notions of influence

$$I_i^{(1)}(f) := \|\delta_i f\|_1 = \mathbb{E}[|\delta_i f|]$$
 $I_i^{(2)}(f) := \|\delta_i f\|_2^2 = \mathbb{E}[(\delta_i f)^2]$

Influences beyond the Boolean setting

Define
$$\delta_i f := f - \mathbb{E}_i[f]$$
 with $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\omega_j : j \neq i)]$ [Talagrand 94]

Two notions of influence

$$I_i^{(1)}(f) := \|\delta_i f\|_1 = \mathbb{E}[|\delta_i f|]$$
 $I_i^{(2)}(f) := \|\delta_i f\|_2^2 = \mathbb{E}[(\delta_i f)^2]$

(for Boolean f they coincide up to a factor 2)

Influences beyond the Boolean setting

Define
$$\delta_i f := f - \mathbb{E}_i[f]$$
 with $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\omega_j : j \neq i)]$ [Talagrand 94]

Two notions of influence

$$I_i^{(1)}(f) := \|\delta_i f\|_1 = \mathbb{E}[|\delta_i f|]$$
 $I_i^{(2)}(f) := \|\delta_i f\|_2^2 = \mathbb{E}[(\delta_i f)^2]$

(for Boolean f they coincide up to a factor 2)

It is the L^1 influence that is relevant for us:

$$\mathscr{W}(f) := \sum_{i} I_i^{(1)}(f)^2$$

We extend BKS in either of the following settings:

We extend BKS in either of the following settings:

 $ightharpoonup \omega_i$ take finitely many values & $f(\omega)$ is any function in L^2

We extend BKS in either of the following settings:

- \bullet ω_i take finitely many values & $f(\omega)$ is any function in L^2
- ▶ $\mathbb{E}[|\omega_i|^q] < \infty$ for some q > 2 & $f(\omega)$ is a polynomial chaos or ...

We extend BKS in either of the following settings:

- \bullet ω_i take finitely many values & $f(\omega)$ is any function in L^2
- ▶ $\mathbb{E}[|\omega_i|^q] < \infty$ for some q > 2 & $f(\omega)$ is a polynomial chaos or . . .

Both settings ensure a suitable hypercontractivity $L^2 \rightarrow L^q$

We extend BKS in either of the following settings:

- $ightharpoonup \omega_i$ take finitely many values & $f(\omega)$ is any function in L^2
- ▶ $\mathbb{E}[|\omega_i|^q] < \infty$ for some q > 2 & $f(\omega)$ is a polynomial chaos or . . .

Both settings ensure a suitable hypercontractivity $L^2 \rightarrow L^q$

Generalized BKS

[C.-Donadini 25+]

$$\forall d \in \mathbb{N}: \qquad \|f^{(d)}\|_2^2 \le (c_q)^d \, \mathcal{W}(f)^{1-\frac{2}{q}}$$

We extend BKS in either of the following settings:

- \triangleright ω_i take finitely many values & $f(\omega)$ is any function in L^2
- ▶ $\mathbb{E}[|\omega_i|^q] < \infty$ for some q > 2 & $f(\omega)$ is a polynomial chaos or . . .

Both settings ensure a suitable hypercontractivity $L^2 \rightarrow L^q$

Noise sensitivity of 2D SHE

$$\mathscr{W}(u_N(t,\varphi)) \sim \frac{c_{t,\varphi}}{\log N}$$

Noise sensitivity of 2D SHE

[C.-Donadini 25+]

$$\mathscr{W}(u_N(t, \varphi)) \sim \frac{c_{t, \varphi}}{\log N} \quad \Longrightarrow \quad u_N(t, \varphi) ext{ is noise sensitive}$$

Noise sensitivity of 2D SHE

[C.-Donadini 25+]

$$\mathscr{W}(u_N(t, \varphi)) \sim \frac{c_{t, \varphi}}{\log N} \quad \Longrightarrow \quad u_N(t, \varphi) \text{ is noise sensitive}$$

Influences are stable under composition with Lipschitz functions:

$$\mathscr{W}(\phi(f)) \leq 4 \|\phi'\|_{\infty}^2 \mathscr{W}(f)$$

Noise sensitivity of 2D SHE

[C.-Donadini 25+]

$$\mathscr{W}(u_N(t,\varphi)) \sim \frac{c_{t,\varphi}}{\log N} \quad \Longrightarrow \quad u_N(t,\varphi) \text{ is noise sensitive}$$

Influences are stable under composition with Lipschitz functions:

$$\mathscr{W}(\phi(f)) \leq 4 \|\phi'\|_{\infty}^2 \mathscr{W}(f)$$

Enhanced noise sensitivity

C.-Donadini 25+]

 $\phi(u_N(t, \varphi))$ is noise sensitive \forall Lipschitz ϕ if the ω_i 's take finitely many values

Noise sensitivity of 2D SHE

[C.-Donadini 25+]

$$\mathscr{W}(u_N(t, \varphi)) \sim \frac{c_{t, \varphi}}{\log N} \quad \Longrightarrow \quad u_N(t, \varphi) ext{ is noise sensitive}$$

Influences are stable under composition with Lipschitz functions:

$$\mathscr{W}(\phi(f)) \leq 4 \|\phi'\|_{\infty}^2 \mathscr{W}(f)$$

Enhanced noise sensitivity

C.-Donadini 25+]

 $\phi(u_N(t, \varphi))$ is noise sensitive \forall Lipschitz ϕ if the ω_i 's take finitely many values

 $\implies u_N(t, \varphi)$ is asymptotically independent of any bounded order chaos

We extended the BKS Theorem beyond the Boolean setting

We extended the BKS Theorem beyond the Boolean setting

► Robust conditions for noise sensitivity

(stable under composition)

We extended the BKS Theorem beyond the Boolean setting

Robust conditions for noise sensitivity

(stable under composition)

Quantitative bounds

We extended the BKS Theorem beyond the Boolean setting

- ► Robust conditions for noise sensitivity (stable under composition)
- Quantitative bounds

Our proof refines Keller-Kindler: optimal estimate for binary ω_i 's

$$\mathbb{C}$$
ov $\left[f(\boldsymbol{\omega}^{\varepsilon}), f(\boldsymbol{\omega})\right] \leq \mathscr{W}(f)^{\frac{\varepsilon}{2-\varepsilon} + o(1)}$

We extended the BKS Theorem beyond the Boolean setting

- ► Robust conditions for noise sensitivity (stable under composition)
- Quantitative bounds

Our proof refines Keller-Kindler: optimal estimate for binary ω_i 's

$$\mathbb{C}$$
ov $\left[f(\boldsymbol{\omega}^{\varepsilon}), f(\boldsymbol{\omega})\right] \leq \mathscr{W}(f)^{\frac{\varepsilon}{2-\varepsilon} + o(1)}$

The assumption that ω_i 's take finitely many values can hopefully be removed

Grazie

► $S = (S_n)_{n \ge 0}$ simple random walk on \mathbb{Z}^d

- ▶ $S = (S_n)_{n>0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n,x) \sim \mathcal{N}(0,1)$

- ► $S = (S_n)_{n \ge 0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n,x) \sim \mathcal{N}(0,1)$
- $H(S, \boldsymbol{\omega}) := \sum_{n=k+1}^{N} \boldsymbol{\omega}(n, S_n)$

- ▶ $S = (S_n)_{n>0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n,x) \sim \mathcal{N}(0,1)$
- $H(S, \mathbf{\omega}) := \sum_{n=k+1}^{N} \mathbf{\omega}(n, S_n) \sim \mathcal{N}(0, N-k)$

- ▶ $S = (S_n)_{n>0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n,x) \sim \mathcal{N}(0,1)$
- $H(S, \boldsymbol{\omega}) := \sum_{n=k+1}^{N} \boldsymbol{\omega}(n, S_n) \sim \mathcal{N}(0, N-k)$

Partition Functions

$$(k \in \mathbb{N}, z \in \mathbb{Z}^d)$$

$$Z_{N,\beta}^{\omega}(k,z)$$

- ▶ $S = (S_n)_{n>0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n,x) \sim \mathcal{N}(0,1)$
- $H(S, \boldsymbol{\omega}) := \sum_{n=k+1}^{N} \boldsymbol{\omega}(n, S_n) \sim \mathcal{N}(0, N-k)$

Partition Functions

 $(k \in \mathbb{N}, z \in \mathbb{Z}^d)$

$$Z_{N,\beta}^{\mathbf{o}}(k,z) = E\left[e^{\beta H(S,\mathbf{o}) - \frac{1}{2}\beta^2(N-k)} \middle| S_k = z\right]$$

Diff. rescaled partition functions

$$Z_{N,\beta}^{\mathbf{o}}(N(1-t),\sqrt{N}x)$$

(time rev.)

Diff. rescaled partition functions = discretized SHE solutions

$$Z_{N,\beta}^{\mathbf{o}}(N(1-t),\sqrt{N}x) = u_N(t,x)$$
 (time rev.)

Diff. rescaled partition functions = discretized SHE solutions

$$Z_{N,\beta}^{\mathbf{o}}(N(1-t),\sqrt{N}x) = u_N(t,x)$$
 (time rev.)

Partition functions solve a difference equation:

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \underbrace{\beta \, N^{\frac{2-d}{4}}}_{} \, u_N(t,x) \, \xi_N(t,x) \\ u_N(0,x) \, \equiv \, 1 \end{cases} \tag{reg-SHE}$$

with $\xi_N \approx \omega$

Diff. rescaled partition functions = discretized SHE solutions

$$Z_{N,\beta}^{\mathbf{o}}(N(1-t),\sqrt{N}x) = u_N(t,x)$$
 (time rev.)

Partition functions solve a difference equation:

with $\xi_N \approx \omega$

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \underbrace{\beta N^{\frac{2-d}{4}}}_{\text{SHE}} u_N(t,x) \, \xi_N(t,x) \end{cases}$$
 (reg-SHE)

Diff. rescaled partition functions = discretized SHE solutions

$$Z_{N,\beta}^{\mathbf{o}}(N(1-t),\sqrt{N}x) = u_N(t,x)$$
 (time rev.)

Partition functions solve a difference equation:

$$\begin{cases} \partial_t u_N(t,x) = \Delta_x u_N(t,x) + \underbrace{\beta N^{\frac{2-d}{4}}}_{\text{N}} u_N(t,x) \, \xi_N(t,x) \\ u_N(0,x) \equiv 1 \end{cases} \qquad \text{(reg-SHE)}$$

Discrete analogue of Feynman-Kac

$$u_N(t,x) \approx \mathbb{E}\left[e^{\beta_{\text{SHE}}\int_{1-t}^1 \xi(s,B_s) - \frac{1}{2}\beta_{\text{SHE}}^2 t} \middle| B_{1-t} = x\right]$$

with $\xi_N \approx \omega$