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2. Which equation for the SHF?

3. Noise sensitivity



The Stochastic Heat Equation

Heat equation with multiplicative singular potential t ≥ 0, x ∈ Rd

∂tu(t,x) = ∆xu(t,x)+ β u(t,x) ξ (t,x) (SHE)

β ≥ 0 coupling constant ξ (t,x) = “space-time white noise”

(d = 1) sub-critical: well-posed Ito-Walsh / Robust solution theories

[Chen–Dalang 15] [Hairer–Pardoux 15]

(d = 2) critical [C.S.Z. 23]

Natural candidate solution: the critical 2D Stochastic Heat Flow (SHF)
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Regularisation

How we define a solution of 2D SHE?

Regularized noise ξN(t,x)

⇝ well-defined solution uN(t,x)

(discretization, mollification, . . . )∂tuN(t,x) = ∆xuN(t,x) + β uN(t,x) ξN(t,x)

uN(0,x)≡ 1 (for simplicity)
(reg-SHE)

Convergence of uN(t,ϕ) =
∫

R2
uN(t,x)ϕ(x)dx as N → ∞ ?
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Renormalisation

Mean convergence E
[
uN(t,ϕ)

]
−−−−→
N→∞

∫
R2

ϕ(x)dx (easy)

Variance convergence? for β ∼ β̂√
logN

with β̂ =
√

π

(
1+

ϑ

logN

)

Var
[
uN(t,ϕ)

]
−−−−→
N→∞

Kϑ
t (ϕ,ϕ) > 0 [Bertini–Cancrini 98] [C.S.Z. 19]

Higher moments convergence [C.S.Z. 19] [Gu–Quastel–Tsai 21]

Convergence in law of uN(t,ϕ) ? ⇐⇒ of the measure uN(t,x)dx ?
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The critical 2D Stochastic Heat Flow

Theorem [C.S.Z. Invent. Math. 23]

Take β =

√
π√

logN

(
1 +

ϑ

logN

)
for some ϑ ∈ R

Then uN converges in law to a unique and non-trivial limit U ϑ

(
uN(t,x) dx

)
t≥0

d−−−−→
N→∞

(
U ϑ (t,dx)

)
t≥0

U ϑ = critical 2D Stochastic Heat Flow (SHF) =
stochastic process of
random measures on R2
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SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

U ϑ (t,dx) ( initial condition 1 at time 0)

We actually build a two-parameter space-time process(
U ϑ (s,dy ; t,dx)

)
0≤s≤t<∞

(starting at time s from dy)

“Flow”: Chapman-Kolmogorov property for s < t < u [Clark–Mian 2024+]

U ϑ (s,dy ; u,dz) =
∫

x∈R2

U ϑ (s,dy ; t,dx) U ϑ (t,dx︸ ︷︷ ︸

non-trivial “product”
of measures

; u,dz)



SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

U ϑ (t,dx) ( initial condition 1 at time 0)

We actually build a two-parameter space-time process(
U ϑ (s,dy ; t,dx)

)
0≤s≤t<∞

(starting at time s from dy)

“Flow”: Chapman-Kolmogorov property for s < t < u [Clark–Mian 2024+]

U ϑ (s,dy ; u,dz) =
∫

x∈R2

U ϑ (s,dy ; t,dx) U ϑ (t,dx︸ ︷︷ ︸

non-trivial “product”
of measures

; u,dz)



SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

U ϑ (t,dx) ( initial condition 1 at time 0)

We actually build a two-parameter space-time process(
U ϑ (s,dy ; t,dx)

)
0≤s≤t<∞

(starting at time s from dy)

“Flow”: Chapman-Kolmogorov property for s < t < u [Clark–Mian 2024+]

U ϑ (s,dy ; u,dz) =
∫

x∈R2

U ϑ (s,dy ; t,dx) U ϑ (t,dx︸ ︷︷ ︸

non-trivial “product”
of measures

; u,dz)



SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

U ϑ (t,dx) ( initial condition 1 at time 0)

We actually build a two-parameter space-time process(
U ϑ (s,dy ; t,dx)

)
0≤s≤t<∞

(starting at time s from dy)

“Flow”: Chapman-Kolmogorov property for s < t < u [Clark–Mian 2024+]

U ϑ (s,dy ; u,dz) =
∫

x∈R2

U ϑ (s,dy ; t,dx) U ϑ (t,dx︸ ︷︷ ︸
non-trivial “product”

of measures

; u,dz)



Key properties of the SHF

▶ a.s. U ϑ (t,dx) is singular w.r.t. Lebesgue [C.S.Z. arXiv 25]

“not a function”

▶ a.s. U ϑ (t,dx) ∈ C−κ for any κ > 0 (in particular: non atomic)

“barely not a function”

▶ Formulas for all moments [C.S.Z. 19] [Gu–Quastel–Tsai 21]

▶ Scaling covariance a−1 U ϑ (a t,d(
√
ax))

d
= U ϑ+loga(t,dx)

▶ Axiomatic characterization via independence & moments [Tsai 24+]

▶ Universality w.r.t. approximation scheme [C.S.Z. 23] [Tsai 24+]
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SHF and the white noise

Does SHF U ϑ (t,dx) satisfy a SPDE driven by white noise ξ (t,x) ?

▶ SHF U ϑ (t,dx) is the limit of regularised SHE solutions uN(t,x) dx∂tuN(t,x) = ∆xuN(t,x) + β uN(t,x) ξN(t,x)

uN(0,x)≡ 1 (for simplicity)
(reg-SHE)

▶ White noise ξ (t,x) is the limit of regularised noise ξN(t,x)

⟨ξ ,ψ⟩ = lim
N→∞

∫
ξN(t,x)ψ(t,x)dx in distribution ψ ∈ C∞

c (R
1+2)
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No equation for the SHF

Theorem [C.–Donadini 25+](
ξN , uN

) d−−−−→
N→∞

(
ξ , U ϑ

)

ξ and U ϑ independent

Puzzling: uN is a function of ξN yet dependence is lost in the limit!

This suggests that

U ϑ cannot solve a SPDE driven by ξ

Recently proved: U ϑ is a “black noise” (à la Tsirelson) [Gu-Tsai arXiv 25]
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Noise sensitivity

We prove independence of U ϑ and ξ showing that (see next slides)

uN is sensitive to small perturbations of the driving noise ξN

We take ξN := discretisation of white noise on the lattice 1
NN× 1√

N
Z2

ξN(t,x) = N ·ω(n,z) i.i.d. for (t,x) =
(
n
N ,

z√
N

)
We have uN(t,ϕ) = fN(ω) for a suitable function fN(·) = f

t,ϕ
N (·)

(partition function of 2D directed polymer in random environment)
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1. The critical 2D SHF

2. Which equation for the SHF?

3. Noise sensitivity



Noise sensitivity

Fix i.i.d. random variables ω = (ω i )i=1,2,... E[ω i ] = 0 Var[ω i ] = 1

Take a sequence of functions fN(ω) ∈ L2 lim
N→∞

Var[fN(ω)] = σ
2 ∈ (0,∞)

Define “ε-perturbation” ωε = (ωε
i )i=1,2,... ω

ε
i :=

{
ω i w. prob. 1− ε

ω̃ i ⊥⊥ ω i w. prob. ε
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Cov
[
fN(ω

ε) , fN(ω)
]
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Noise sensitivity

“Usual” functions are not noise sensitive, e.g. fN(ω) =
ω1+ . . .+ωN√

N

“Parity” is noise sensitive: fN(ω) = ω1 · · ·ωN for symmetric ω i =±1

Chaos decomposition fN = E[fN ]+
∞

∑
d=1

f
(d)
N Var[fN ] =

∞

∑
d=1

∥∥f (d)N

∥∥2
2

For instance f
(d)
N (ω) = ∑

{i1,...,id}
cN(i1, . . . , id) ω i1 · · ·ω id (polynomial chaos)

Spectral criterion

Noise sensitivity ⇐⇒ ∀d ∈ N:
∥∥f (d)N

∥∥2
2
−−−→
N→∞

0
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The BKS Theorem

Boolean setting: binary functions f (ω) of binary variables ω i

Robust condition for noise sensitivity based on influences

Ii (f ) := P
(
f (ω i

+) ̸= f (ω i
−)

)
W (f ) := ∑

i

Ii (f )
2

Theorem [Benjamini–Kalai–Schramm 99]

(fN)N∈N is noise sensitive if lim
N→∞

W (fN) = 0 [B.K.S. 99]

∀ε > 0: Cov
[
f (ωε), f (ω)

]
≤ C W (f )α ε [Keller–Kindler 13]
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Influences beyond the Boolean setting

Define δi f := f −Ei [f ] with Ei [·] = E[·|σ(ω j : j ̸= i)] [Talagrand 94]

Two notions of influence

I
(1)
i (f ) := ∥δi f ∥1 = E

[
|δi f |

]
I
(2)
i (f ) := ∥δi f ∥22 = E

[
(δi f )

2
]

(for Boolean f they coincide up to a factor 2)

It is the L1 influence that is relevant for us: W (f ) := ∑
i

I
(1)
i (f )2
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Main result

We extend BKS in either of the following settings:

▶ ω i take finitely many values & f (ω) is any function in L2

▶ E[|ω i |q]< ∞ for some q > 2 & f (ω) is a polynomial chaos or . . .

Both settings ensure a suitable hypercontractivity L2 → Lq

Generalized BKS [C.–Donadini 25+]

∀d ∈ N :
∥∥f (d)∥∥2

2
≤ (cq)

d W (f )1−
2
q

∀ε > 0: Cov
[
f (ωε), f (ω)

]
≤ C W (f )αq ε
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Back to SHE

Noise sensitivity of 2D SHE [C.–Donadini 25+]

W (uN(t,ϕ))∼
ct,ϕ
logN

=⇒ uN(t,ϕ) is noise sensitive

Influences are stable under composition with Lipschitz functions:

W (φ(f )) ≤ 4∥φ
′∥2∞ W (f )

Enhanced noise sensitivity [C.–Donadini 25+]

φ(uN(t,ϕ)) is noise sensitive ∀ Lipschitz φ if the ω i ’s take finitely many values

=⇒ uN(t,ϕ) is asymptotically independent of any bounded order chaos
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Conclusion

We extended the BKS Theorem beyond the Boolean setting

▶ Robust conditions for noise sensitivity (stable under composition)

▶ Quantitative bounds

Our proof refines Keller-Kindler: optimal estimate for binary ω i ’s
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f (ωε), f (ω)
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≤ W (f )

ε

2−ε
+o(1)

The assumption that ω i ’s take finitely many values can hopefully be removed
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Directed Polymer in Random Environment

▶ S = (Sn)n≥0 simple random walk on Zd

▶ Independent Gaussians ω(n,x)∼ N (0,1)

▶ H(S ,ω) :=
N

∑
n=k+1

ω(n,Sn)

∼ N (0,N−k)

Partition Functions (k ∈ N, z ∈ Zd)

Zω

N,β (k ,z) = E
[

eβH(S ,ω)− 1
2 β2 (N−k)

∣∣∣Sk = z
]
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Partition functions and SHE

Diff. rescaled partition functions

= discretized SHE solutions

Zω

N,β

(
N(1− t),

√
Nx

)

= uN(t,x)

(time rev.)

Partition functions solve a difference equation: with ξN ≈ ω∂tuN(t,x) = ∆xuN(t,x) + β N
2−d
4︸ ︷︷ ︸ uN(t,x) ξN(t,x)

uN(0,x) ≡ 1

βSHE

(reg-SHE)

Discrete analogue of Feynman-Kac

uN(t,x) ≈ E
[

eβSHE
∫ 1
1−t ξ (s,Bs)− 1

2β2
SHE t

∣∣∣B1−t = x
]



Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions

Zω

N,β

(
N(1− t),

√
Nx

)
= uN(t,x) (time rev.)

Partition functions solve a difference equation: with ξN ≈ ω∂tuN(t,x) = ∆xuN(t,x) + β N
2−d
4︸ ︷︷ ︸ uN(t,x) ξN(t,x)

uN(0,x) ≡ 1

βSHE

(reg-SHE)

Discrete analogue of Feynman-Kac

uN(t,x) ≈ E
[

eβSHE
∫ 1
1−t ξ (s,Bs)− 1

2β2
SHE t

∣∣∣B1−t = x
]



Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions

Zω

N,β

(
N(1− t),

√
Nx

)
= uN(t,x) (time rev.)

Partition functions solve a difference equation: with ξN ≈ ω∂tuN(t,x) = ∆xuN(t,x) + β N
2−d
4︸ ︷︷ ︸ uN(t,x) ξN(t,x)

uN(0,x) ≡ 1

βSHE

(reg-SHE)

Discrete analogue of Feynman-Kac

uN(t,x) ≈ E
[

eβSHE
∫ 1
1−t ξ (s,Bs)− 1

2β2
SHE t

∣∣∣B1−t = x
]



Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions

Zω

N,β

(
N(1− t),

√
Nx

)
= uN(t,x) (time rev.)

Partition functions solve a difference equation: with ξN ≈ ω∂tuN(t,x) = ∆xuN(t,x) + β N
2−d
4︸ ︷︷ ︸ uN(t,x) ξN(t,x)

uN(0,x) ≡ 1 βSHE

(reg-SHE)

Discrete analogue of Feynman-Kac

uN(t,x) ≈ E
[

eβSHE
∫ 1
1−t ξ (s,Bs)− 1

2β2
SHE t

∣∣∣B1−t = x
]



Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions

Zω

N,β

(
N(1− t),

√
Nx

)
= uN(t,x) (time rev.)

Partition functions solve a difference equation: with ξN ≈ ω∂tuN(t,x) = ∆xuN(t,x) + β N
2−d
4︸ ︷︷ ︸ uN(t,x) ξN(t,x)

uN(0,x) ≡ 1 βSHE

(reg-SHE)

Discrete analogue of Feynman-Kac

uN(t,x) ≈ E
[

eβSHE
∫ 1
1−t ξ (s,Bs)− 1

2β2
SHE t

∣∣∣B1−t = x
]


	The critical 2D SHF
	Which equation for the SHF?
	Noise sensitivity

