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General remarks of Mean Field problems

Consider an interacting particle system of the Mean Field type

dX it =
1
N

N

Â
j=1
K
(
X it ,X

j
t

)
dt + sdW i

t

and the PDE

∂tu (x , t) + div
(
u (x , t)

Z
K (x , y) u (y , t) dy

)
=

s2

2
Du

satisfied (in a weak sense) by the weak limit of the empirical measure

µNt (dx) =
1
N

N

Â
i=1

dX it (dx) .

There are several approaches to convergence.
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General keywords
and references in the case of 2D Euler equations

Sznitman coupling argument; McKean-Vlasov

Entropy + Fisher Information arguments (s 6= 0, e.g.
Fournier-Hauray-Mischler JEMS ’14)

semigroup approach (s 6= 0, F.-Olivera-Simon SIMA ’20)
compactness argument (also for s = 0; Schochet CPAM ’96)

PDE comparison (also for s = 0, main topic of this talk)

related to the modulated energy approach, Duerinckx SIMA ’16,
Serfaty Duke ’20, Rosenzweig ARMA ’22

Franco Flandoli, Scuola Normale Superiore , , Irregular Stochastic Analysis ()Point vortices and their links to PDEs Cortona 3 / 36



The PDE comparison started probably with Dobrushin FAA ’79: the
empirical measure of

dX it
dt

=
1
N

N

Â
j=1
K
(
X it ,X

j
t

)
dt

is already a measure-valued solution of the limit PDE

∂tu (x , t) + div
(
u (x , t)

Z
K (x , y) u (y , t) dy

)
= 0.

Convergence of µNt (dx) to u (x , t) dx becomes then a question of stability
and uniqueness for the PDE in the space of measures. Handled by
Wasserstein metric.
It can be extended to s 6= 0 by considering the identity satisfied by the
empirical measure

dµNt + div
(

µNt

Z
K (x , y) µNt (dy)

)
= dMN

t

Remark: as for Sznitman coupling argument, the PDE comparison
provides quantitative estimates.
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Two important ideas enriched later Dobrushin approach:

1 the use of negative-order topologies instead of Wasserstein metric on
measures

2 the application of weak-strong stability arguments, when possible.

The idea of 1 is that, given the measure µNt (dx) =
1
N ÂN

i=1 dX it (dx), we
may introduce functions like

fN (x , t) =
(

D−1µNt
)
(x) =

1
N

N

Â
i=1
G
(
x ,X it

)

and compare ∥∥∥fN (t)− f (t)
∥∥∥
X

in some function space X , where f (x , t) =
(
D−1ut

)
(x).

Method 2 applies when the equation for f (t) has suitable cancellations.
Let us explain these two ideas in the case of the 2D Euler equations.
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The 2D Euler equations

An ideal incompressible fluid in a domanin D ⊂ R2 is described by the
velocity and the pressure fields u : D ! R2, p : D ! R satisfying

∂tu + u ·ru +rp = 0
div u = 0

or equivalently by the vorticity field

w = r? · u = −∂2u1 + ∂1u2

satisfying
∂tw+ u ·rw = 0

where u is recovered by w solving

Df = w, f (x , t) =
Z

D
G (x , y)w (y , t) dy G (x) Green fct

u (x , t) = r?f (x , t) =
Z

D
r?G (x , y)w (y , t) dy .

with appropriate decay or boundary conditions.
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Two basic results on the 2D Euler equations

Yudovich CMMP ’63: in the class

kwk• < • ("Yudovich class")

there is existence and uniqueness of weak solutions

u is only log-Lipschitz, the flow

∂tF (t, x) = uN ,e (F (t, x) , t) , F (0, x) = x

is only Hölder continuous.

Kato, ARMA ’67: in the class w 2 C a there is existence and
uniqueness of weak solutions

u and the flow are Lipschitz,

kruk• < •. ("Kato class")

Remark: although w = r? · u, Yudovich and Kato classes are not the
same; ru is only BMO when kwk• < •.
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The velocity field is a complex object, even from the intuitive viewpoint,
but the vorticity field is a scalar field, just transported by u

∂tw+ u ·rw = 0

hence the intuition about w is stronger. In particular, the concept of
vortex structure emerges. There is no precise definition, but we observe
"blobs", a "condensates", a "patches" in the profile of w:
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If we have a decomposition at time zero

w (x , 0) = wblob (x , 0) +wbackgr (x , 0)

then we may consider the individual coupled evolutions of wblob (x , t) and
wbackgr (x , t)

∂twblob + u ·rwblob = 0

∂twbackgr + u ·rwbackgr = 0

u = r?D−1 (wblob +wbackgr )

wblob |t=0 = wblob (·, 0) , wbackgr |t=0 = wbackgr (·, 0) .

Each substructure is transported by the global velocity field

u (x , t) =
Z

D
r?G (x , y) (wblob +wbackgr ) (y , t) dy .
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Evolution of small patches

This coherent-structure vision has been performed on many objects, in
particular on small separated patches:

∂tw
i
e + uN ,e ·rwi

e = 0 wi
e (x , 0) =

Gi
pe2

1B(x 0i ,e)
(x)

for each i = 1, ...,N

If the supports B
(
x0i , e

)
at time t = 0 are disjoint, they remain disjoint:

wi
e (x , t) =

Gi
pe2

1S ie(t) (x)

whereSie (t) = Ft
(
B
(
x0i , e

))
are disjoint sets

∂tF (t, x) = uN ,e (F (t, x) , t) , F (0, x) = x

(Hölder flow).
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A priori, it may happen that such supports Sie (t) interlace each other very
much:
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Theorem (Marchioro and Pulvirenti CMP ’93)
Consider the point vortex dynamics

dxi (t)
dt

= Â
j=1,...,N
j 6=i

Gjr?G (xi (t) , xj (t)) , xi (0) = x0i

and let [0, t] be an interval where (xi (t))i=1,...,N remain at a distance
r0 > 0. Then, if e is small enough w.r.t. r0,

S ie (t) ⊂ B (xi (t) , r0) i = 1, ...,N

Moreover, for all t 2 [0, t],

lim
e!0

N

Â
i=1

wi
e (·, t) =

N

Â
i=1

Gi dxi (t).

A power law estimate of e w.r.t. r0 has been given in Flandoli, CPDE ’18.
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Moreover (e.g. on the torus T2)

Theorem (Dürr-Pulvirenti CMP ’82)
Consider the point vortex dynamics

dxi (t)
dt

= Â
j=1,...,N
j 6=i

Gjr?G (xi (t) , xj (t)) , xi (0) = x0i .

For a.e. i.c.
(
x01 , ..., x

0
N

)
w.r.t. Lebesgue measure on T2N , no collapse

occurs (for all t ≥ 0).

Therefore the point vortex dynamics is well defined, without collapse, for
a.e. initial condition; and it is approximated by smooth solutions of 2D
Euler equations.
In the rest of the talk I will discuss the opposite approximation: every
smooth solution of the 2D Euler equations can be approximated by point
vortices.
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Let us remark that this system fits into the category of Irregular Stochastic
Analysis if we stress the singularity of the Green function and of the kernel
in the point vortex dynamics

G (x , y) ∼
1
2p

log |x − y | , r?G (x , y) ∼
1
2p

(x − y)?

|x − y |2

and we stress that we need Probability to study the point vortex dynamics
and its convergence to 2D Euler equations, even if the framework is a
priori deterministic.
Moreover, extensions and variants to point vortices perturbed by noise
have been widely considered and are very important.
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The convergence of the empirical measure µNt (dx) of

dxi (t)
dt

=
1
N Â
j=1,...,N
j 6=i

r?G (xi (t) , xj (t))

to the solution w (x , t) dx of the 2d Euler equations in vorticity form

∂tw+ u ·rw = 0

is an example of the general Mean Field problem, since

u (x , t) ·rw (x , t)
div u=0
= div

(
w (x , t)

Z

D
r?G (x , y)w (y , t) dy

)
.

However, the kernel r?G is very singular
∣∣∣r?G (x , y)

∣∣∣ ≤
C

|x − y |
and prevents from using classical approaches (for s = 0). Apart from the
(outstanding) compactness approach performed by Schochet, the first
results, by the modulated energy approach, are due to Duerinckx SIMA
’16, Serfaty Duke ’20, Rosenzweig ARMA ’22.
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Why negative-order topologies? Instead of investigating the mean field
equation for measures wt (dx)

∂tw+ u ·rw = 0

u (x , t) =
Z

D
r?G (x , y)wt (dy)

one can investigate the equivalent equation for functions

∂tu + u ·ru +rp = 0
div u = 0

and use, for instance, energy estimates (but see below a di¢culty)

∥∥∥uN (t)− u (t)
∥∥∥
2

L2

instead of Wasserstein metric on wN ,w.
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Moreover, the weak-strong cancellation occurs here (as remarked by
Serfaty Duke ’20). Assume u(a), a = 1, 2 are two smooth solutions (with
pressures p(a), a = 1, 2) of equations

∂tu + u ·ru +rp = 0
div u = 0

Set
u = u(1) − u(2), p = p(1) − p(2).

Then
∂tu + u(1) ·ru + u ·ru(2) +rp = 0

(because u(1) ·ru + u ·ru(2) = u(1) ·ru(1) − u(2) ·ru(2)).
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From
∂tu + u(1) ·ru + u ·ru(2) +rp = 0

we deduce

1
2
d
dt
kuk2L2 +

D
u(1) ·ru, u

E
+
D
u ·ru(2), u

E
+ hrp, ui = 0

but
D
u(1) ·ru, u

E
=
1
2

Z

D
u(1) ·r |u|2 dx = −

1
2

Z

D
div u(1) |u|2 dx = 0

hrp, ui =
Z

D
rp · udx = −

Z

D
p div u = 0.

Hence
1
2
d
dt
kuk2L2 = −

D
u ·ru(2), u

E
.
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From
1
2
d
dt
kuk2L2 = −

D
u ·ru(2), u

E

we deduce
1
2
d
dt
kuk2L2 ≤

∥∥∥ru(2)
∥∥∥

•
kuk2L2

hence by Gronwall lemma

ku (t)k2L2 ≤ ku (0)k
2
L2 e

2Tkru(2)k• .

If u (0) = u(1) (0)− u(2) (0) = 0, then also u (t) = u(1) (t)− u(2) (t) = 0.
We have proved the uniqueness of smooth solutions.
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Working to minimize the smoothness, we see from

ku (t)k2L2 ≤ ku (0)k
2
L2 e

2Tkru(2)k•

that we need ∥∥∥ru(2)
∥∥∥

•
< •.

This is a (nontrivial) regularity condition, however only on one of the two
solutions. The weak-strong uniqueness principle is precisely this fact, that
we just need regularity of one of the two solutions.
Up to details, one of the most general theorems requires
u(1) (0) = u(2) (0) 2 C 1,a, u(2) 2 L• (0,T ;C 1,a

)
(which exists) and

u(2) 2 L• (0,T ; L2
)
(satisfying a certain energy property).
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Of course the stability also follows by the same principle: if

u(n) (0)
L2! u (0)

with u (0) 2 C 1,a and u 2 L• (0,T ;C 1,a
)
is the unique solution

associated to u (0), and u(n) are (even weaker) solutions associated to
u(n) (0), then from

∥∥∥u(n) (t)− u (t)
∥∥∥
2

L2
≤
∥∥∥u(n) (0)− u (0)

∥∥∥
2

L2
e2T kruk•

we deduce the convergence

u(n) (t)
L2! u (t) .
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The reason why the weak-strong uniqueness principle could be relevant for
convergence of particles to PDEs, in the deterministic case, is that

1 (usually, in particular for point vortices) the empirical measure of the
particles, here

wN (dx , t) =
1
N

N

Â
i=1

dxi (t) (dx)

is already a very weak solution of the limit PDE
2 at time t = 0 we assume convergence of wN (dx , 0) to w (x , 0) dx .

The idea is great but there is a fundamental di¢culty, in the case of point
vortices and 2D Euler equations.
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The di¢culty is that, with

wN (dx , t) =
1
N

N

Â
i=1

dxi (t) (dx)

the corresponding velocity field

uN (x , t) =
1
N

N

Â
i=1

1
2p

(x − xi (t))?

|x − xi (t)|2

is not of class L2. Hence we cannot perform the weak-strong uniqueness
computation above.
This is why Duerinckx SIMA ’16, Serfaty Duke ’20, Rosenzweig ARMA ’22
apply the modulated energy approach, a method where an analog of the

energy
∥∥∥u(n) (t)− u (t)

∥∥∥
2

L2
, but defined on particles, is introduced.
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However, let us stay a bit more on the topic of weak-strong estimates and
improve the estimate

1
2
d
dt
kuk2L2 ≤

∥∥∥ru(2)
∥∥∥

•
kuk2L2 u = u(1) − u(2)

with the purpose to assume only
∥∥∥w(2)

∥∥∥
•
< •.

Recall that
∥∥∥ru(2)

∥∥∥
•
< • holds in the Kato class w 2 C a, while

∥∥∥w(2)
∥∥∥

•
< • in the more general Yudovich class.

Remark: This is precisely the di§erence between Serfaty Duke ’20, and
Rosenzweig ARMA ’22.
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Let us apply Yudovich method:

1
2
d
dt
kuk2L2 = −

D
u ·ru(2), u

E

≤
∥∥∥ru(2)

∥∥∥
Lp

(Z

D
|u|2q dx

)1/q

≤
∥∥∥ru(2)

∥∥∥
Lp
kuk

2q−2
q

•

(Z

D
|u|2 dx

)1/q

with 1
p +

1
q = 1, namely

d
dt
kuk2L2 ≤ 2

∥∥∥ru(2)
∥∥∥
Lp
kuk

2q−2
q

• kuk
2(1− 1

p )
L2
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d
dt
kuk2L2 ≤ 2

∥∥∥ru(2)
∥∥∥
Lp
kuk

2q−2
q

• kuk
2(1− 1

p )
L2

∥∥∥ru(2)
∥∥∥
Lp
≤ C1p C1 depending only on kw0k•

kuk
2q−2
q

• ≤ C2 depending only on kw0k•

d
dt
kuk2L2 ≤ Cp kuk

2(1− 1
p )

L2 .

By comparison with the ODE

z 0 = Cpz1−
1
p

z
1
p = Ct

we get

ku (t)k2L2 ≤
(
ku0k2/p

L2 + Ct
)p
.
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From
ku (t)k2L2 ≤

(
ku0k2/p

L2 + Ct
)p

if ku0k2/p
L2 is small

t is small

p is large

we deduce ku (t)k2L2 small.
Yudovich uniqueness theorem: ku0kL2 = 0.
Stability estimate: a bit more di¢cult, but possibile.
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Summary

We have seen Kato weak-strong computation, and Yudovich
uniqueness computation
Very strong PDE arguments to estimate (quantitatively) the
di§erence of solutions
But we cannot apply them directly to compare point vortices and
limit smooth solutions
since the velocity u of point vortices is not of class L2.
Serfaty Duke ’20, and Rosenzweig ARMA ’22 bypass this di¢culty
replacing ku (t)k2L2 by a quantity based only on particles (a sort of
renormalized energy, without the infinities)
With my student Fabio Bordigoni we are performing the classical
PDE arguments on the di§erence

u = uN ,e − u•

between the limit solution u• and the e-vortex-patches approximation
of point vortices.
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W
(

µNt ,wt

)
≤ W

(
µNt ,w

N ,#
t

)
+W

(
wN ,#
t ,wt

)

µNt =
1
N

N

Â
i=1

dX it (dx)

wN ,#
t =

1
N

N

Â
i=1

1
pe2

1S ie(t) (x)

wt limit L• solution

Smallness of W
(

µNt ,w
N ,#
t

)
(for e = eN ! 0 with suitable power law) is

provided by the quantitative version of Marchioro and Pulvirenti CMP ’93
(Flandoli, CPDE ’18).

Smallness of W
(

wN ,#
t ,wt

)
is a consequence of smallness of

∥∥∥uN ,#t − ut
∥∥∥
2

L2

and the Yudovich method. Key lemma: smallness of
∥∥∥uN ,#0 − u0

∥∥∥
2

L2
.
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The final results are comparable to Serfaty. We also cover Rosenzweig but
with some restrictions that are under investigation. The proofs are perhaps
more intuitive, from the PDE viewpoint.
Let us see more precisely the comparison with the Serfaty result.

Theorem (Serfaty Duke ’20)
If w belongs to the Kato class and
Z Z

x 6=y
G (x , y)

(
µN0 (dx)−w0 (x) dx

) (
µN0 (dy)−w0 (y) dy

)
! 0

then µNt =
1
N ÂN

i=1 dX it (dx) weakly converges to wt .

We have a complete proof of this result by the method outlined above,
where the only di¢culty is proving that

∥∥∥uN ,#0 − u0
∥∥∥
2

L2
! 0

as a consequence of the assumption.
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The scheme is:

0 Assume 1
N ÂN

i=1 dx 0i * w0

1 Choose eN ! 0 such that

wN ,eN (0) =
N

Â
i=1

wi
eN (0)

H−1! w0, wi
eN (0) =

1
N

1
pe2N

1B(x 0i ,eN )

2 get uN ,eN (t)
L2! u (t) from the weak-strong uniqueness computation

3 deduce wN ,eN (t)* w (t)

4 deduce 1
N ÂN

i=1 dxi (t) * w (t) .

Steps 2, 3, 4 are really easy (Step 4 requires Marchioro-Pulvirenti
theorem). The only di¢culty is Step 1.
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We have
Z

D
|uN ,eN (x)− u0 (x)|

2 dx

=
Z

D

Z

D
G (x , y) (wN ,eN (x)−w0 (x)) (wN ,eN (y)−w0 (y)) dxdy

=
Z

D

Z

D
G (x , y)wN ,eN (x)wN ,eN (y) dxdy

− 2
Z

D

Z

D
G (x , y)wN ,eN (x)w0 (y) dxdy

+
Z

D

Z

D
G (x , y)w0 (x)w0 (y) dxdy .

The only di¢culty is proving that
Z

D

Z

D
G (x , y)wN ,eN (x)wN ,eN (y) dxdy !

Z

D

Z

D
G (x , y)w0 (x)w0 (y) dxdy .
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The term
Z

D

Z

D
G (x , y)wN ,eN (x)wN ,eN (y) dxdy

is made of a mutual interaction term (particles i 6= j) which is controlled
by Serfaty assumption
Z Z

x 6=y
G (x , y)

(
µN0 (dx)−w0 (x) dx

) (
µN0 (dy)−w0 (y) dy

)
! 0.

And a self-interaction term, the one discarded in the method of Duerinckx
SIMA ’16 and Serfaty Duke ’20.
The self-interaction term is infinite for true point vortices.
It is finite and goes to zero for vortex patches:

lim
N!•

Z

D

Z

D
G (x , y)

N

Â
n=1

(
1

Npe2N

)2
1B (X n0 ,eN ) (x) 1B (X n0 ,eN ) (y) dxdy = 0.
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Given x ,
Z

D
|G (x , y)| 1B (X n0 ,eN ) (y) dy ≤

Z

B (x ,eN )
|G (x , y)| dy

= 2p
Z eN

0
|log r | rdr

≤ Ce2N (|log eN |+ 1)

hence
∣∣∣∣∣

Z

D

Z

D
G (x , y)

N

Â
n=1

(
1

Npe2N

)2
1B (X n0 ,eN ) (x) 1B (X n0 ,eN ) (y) dxdy

∣∣∣∣∣

≤ Ce2N (|log eN |+ 1)
Z

D

N

Â
n=1

(
1

Npe2N

)2
1B (X n0 ,eN ) (x) dx

≤ C
|log eN |+ 1

pN
.
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Concerning Rosenzweig result in the Yudovich class, we adapted the PDE
proof and solved all steps except that the estimate

∥∥∥uN ,eNt − ut
∥∥∥
2

L2
≤
(∥∥∥uN ,eN0 − u0

∥∥∥
2/p

L2
+ CN ,pt

)p

gives us only local-in-time results and we have not yet discovered the trick
to replicate on intervals with divergent sums.
Remark: Rosenzweig controls

∥∥∥µNt − ut
∥∥∥
2

H−d

in terms of
∥∥µN0 − u0

∥∥2
H−d . He does not use the Yudovich approach but an

alternative method based on the log-Lipschitz flow. So, it is possible that
the log-Lipschitz flow approach is stronger than the PDE trick of Yudovich.
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Thank you!
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