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SV some features

Volatility in the Black-Scholes model is not constant. Indeed,
• realised volatility shows clustering
• negative correlation between variance and returns
• empirically observed implied volatility (τ, κ) −→ σ̂emp(τ, κ) has a “smiley” shape,

particularly when κ ≈ 0 (at the money)

Figure: Shape of the S&P volatility surface as of June 20, 2013 volatility surface.The plot is taken from Gatheral, Jaisson, Rosenbaum (2014) [Figure
1.1]. Note the gradual levelling of volatility smile as expiration time increases.
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SV and implied volatility surface

The model-generated Black-Scholes implied volatility surface

(τ, κ) −→ σ̂(τ, κ)

is a benchmark for evaluating price models with the empirically observed ones σ̂emp(τ, κ).

Notation. Here τ is the time to maturity and κ := log K
erτS0

is the log-moneyness with K denoting the strike, S0 the current price of an underlying

asset, and r the instantaneous interest rate.

The smile at-the-money, when κ ≈ 0, becomes progressively steeper as τ→ 0 with a
rule-of-thumb behaviour∣∣∣∣ σ̂emp(τ, κ)− σ̂emp(τ, κ′)

κ− κ′
∣∣∣∣ ∝ τ− 1

2 +H , κ, κ′ ≈ 0, H ∈
(

0,
1
2

)
.

This is known as the power law of the at-the-money implied volatility skew.

A SV model should satisfy
∣∣∣∂σ̂∂κ (τ, κ)

∣∣∣
κ=0

= O(τ− 1
2 +H), τ→ 0.

RK. Recall that σ̂(τ, κ) is given by the solution of the equation between the theoretical Black-Scholes prices of a vanilla call option with maturity T and
strike K with the observed prices on the market. This provides a volatility estimator as a function of T , K , S0, then re-parametrised in terms of τ, κ, S0.
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Smiles and roughness ...

It is not easy to reproduce this effect.

For example, classical Brownian diffusion stochastic volatility models fail in this. See, e.g.
Alòs, León and Vives (2007) or Lee (2006),

This effect can be replicated by an SV with very low Hölder regularity within the rough
volatility framework popularized by Gatheral, Jaisson and Rosenbaum (2014). The
efficiency of this approach is supported by:

• A theoretical result of Fukasawa (2021) suggests that the volatility process cannot be
high-order Hölder continuous in a continuous non-arbitrage model exhibiting the
power law property. In other words, the volatility roughness is, in some sense, a
necessary condition (at least in the fully continuous setting).

• In Alòs, León and Vives, the short-term explosion of the implied volatility skew can be
deduced from the explosion of the Malliavin derivative of volatility. This is a
characteristic exhibited by fractional Brownian motion with H < 1/2.
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... and long memory

However, for large τ, there is evidence of long memory.

In the context of fractional Brownian motion, empirical studies, as Ding et al. (1993, 1996),
Bollerslev, Ole Mikkelsen (1993), Breidt et al. (1998), Cont et al. (1997, 2005, 2006), report
that the autocorrelation of absolute log-returns

R(τ) := corr
(∣∣∣∣log

(
S(t + ∆)

S(t)

)∣∣∣∣ , ∣∣∣∣log
(

S(t + τ+ ∆)

S(t + τ)

)∣∣∣∣) ,

is positive and decays as O(τH− 1
2 ), τ→∞, with H ≥ 1/2.

See also, Willinger, Taqqu, Teverovsky (1999), Lobato et al. (2000) - who analyse volatility
in connection to trading volumes - Comte and Renault (1998), Funahashi and Kijima (2017)

RK: If we restrict to the context of one parameter fractional Brownian noise, then it seems
that there is a “fractional puzzle”. However, long memory and roughness are not
self-excluding properties1 .

1
Funahashi and Kijima (2017), Alòs, García, Lorite, Gatarek (2021), Ayache, Peng (2012), Corlay, Lebovits, Lévy Véhel (2014)
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Other issues and volatility bounds

• A desirable property is the positivity of its paths. Indeed, densities of martingale
measures normally contain expressions of the form

∫ T
0

1
σ(s) dW (s) and

∫ T
0

1
σ2(s)

ds.
See Biagini, Guasoni, Pratelli (2000). Hence, if the volatility hits zero, there is no
transparent procedure of switching between physical and pricing measures.

• A common issue is moment explosions, i.e. E[Sr (t)] may be infinite for all time points t
after some t∗. See Andersen (2006) [Section 8]: “Several actively traded fixed-income
derivatives2 require at least L2 solutions to avoid infinite model prices”.

As possible solution one can take an SV model that is bounded and bounded away from
zero.
Remark. It turns out that these two assumptions are fairly silently widespread in the literature. Among the multiple examples, we mention Karatzas and
Ocone (1991), Fouque, Papanicolaou, Sircar, Sølna (2003), Alòs and Léon (2017), Garnier and Sølna (2020), Alòs, Rolloos, Shiraya (2022) and
Rosenbaum and Zhang (2022) – where also the bounds have been used as an additional calibration parameter, called minimal instantaneous variance.

2
Such as CMS swaps or Eurodollar futures.
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Agenda

1 A glance into SVV models

2 Malliavin differentiability of first and of higher order

3 Implied volatility surface and power law

4 Martingale measures

5 Quadratic hedging via Markovian approximations to the volatility model.
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1. A glance into SVV models

We go further suggesting Sandwiched Volterra Volatility (SVV) models, i.e.

Si (t) = Si (0) +

∫ t

0
μi (s)Si (s)ds +

∫ t

0
Yi (s)Si (s)dBS

i (s),

Yi (t) = Yi (0) +

∫ t

0
bi (s,Yi (s))ds +

∫ t

0
Ki (t , s)dBY

i (s),

i = 1, ...,d , such that
0 < ϕi (t) < Yi (t) < ψi (t),

for some deterministic bounds.

RK: Also Merino, Pospìsil, Sobotka, Sottinen, and Vives (2021) and Abi Jaber, Illand, and Li (2022), consider an SV model driven by Gaussian Volterra
processes. SVV has the sandwich feature.
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SVV dynamics

Yi (t) = Yi (0) +

∫ t

0
bi (s,Yi (s))ds +

∫ t

0
Ki (t , s)dBY

i (s)

Proposition.3 The Zi have Hölder continuous modification up to order Hi ∈ (0,1) iff∫ t

0
(Ki (t ,u)−Ki (s,u))2du ≤ Cλ|t − s|2λ, 0 ≤ s ≤ t ≤ T ,

holds for any λ ∈ (0,Hi ). Moreover, the random variable

Λλ,i := sup
0≤s<t≤T

|Zi (t)− Zi (s)|
|t − s|λ

has moments of all orders.
Example: Multifractional Brownian motion. Let h: [0, T ]→ (0, 1) be β-Hölder continuous function. Then

Z (t) :=

∫ t

0
(t − s)

h(t)− 1
2 dB(s)

is Hölder continuous of order up to min
{

1
2 , β, mint∈[0,T ] h(t)

}
. See Peltier, Lévy Vehel (1995) and Azmoodeih et al. (2014).

3
See Azmoodeh, Sottinen, Viitasaari, and Yazigi (2014)
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The sandwich bounds are the couples ϕi , ψi : [0,T ]→ R,

• ϕi , ψi are Hölder continuous up to the order Hi

• 0 < ϕi (t) < ψi (t)

Assumption
(i) bi ∈ C(Di

0,0) 4

(ii) there exist c > 0, p > 1, some y∗ (this depend on the bounds’ strip) such that for ε > 0

|bi (t1, y1)− bi (t2, y2)| ≤ c
εp

(
|y1 − y2|+ |t1 − t2|λ

)
, (t1, y1), (t2, y2) ∈ Di

ε,ε

(iii) for some constant γi >
1
Hi
− 1, where Hi is from (Aii),

bi (t , y) ≥ c
(y − ϕi (t))γi

, (t , y) ∈ Di
0,0 \ Di

y∗,0,

bi (t , y) ≤ − c
(ψi (t)− y)γi

, (t , y) ∈ Di
0,0 \ Di

0,y∗ ;

(iv) there exists continuous ∂bi
∂y wrt the spatial variable and ∂bi

∂y (t , y) < c
4Di

a1,a2
:= {(t, y) ∈ [0, T ]× R+, y ∈ (ϕi (t) + a1,ψi (t)− a2)}, for a1, a2 > 0
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Results on the SV equation.5

• For each λ ∈
(

1
γi +1 ,Hi

)
, where γi is from (iii), one finds L1,i , L2,i > 0 and αi > 0,

depending on bi and λ, such that for all t ∈ [0,T ]:

ϕ(t) +
L1,i

(L2,i + Λλ,i )αi
≤ Yi (t) ≤ ψ(t)−

L1
i

(L2,i + Λλ,i )αi
,

where Λλ,i is given in (8). Hence the sandwich ϕi (t) < Yi (t) < ψi (t) a.s., t ∈ [0,T ].

• Since Λλ,i has moments of all orders, for any r > 0 we have

E

[
sup

t∈[0,T ]

1
(Yi (t)− ϕi (t))r

]
<∞, E

[
sup

t∈[0,T ]

1
(ψi (t)− Yi (t))r

]
<∞.

5
See Di Nunno, Mishura, Yurchenko-Tytarenko (2022)
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Example. Consider the sandwiched SDE of the form

Y (t) = Y (0) +

∫ t

0

( κ1

(Y (s)− ϕ(s))4 −
κ2

(ψ(s)− Y (s))4

)
ds + Z (t).

Figure: A sample path of (11) generated using the backward Euler approximation scheme; N = 10000, T = 1, Y (0) = 1, κ1 = κ2 = 1,
ϕ(t) = sin(10t), ψ(t) = sin(10t) + 2, Z is a multifractional Brownian motion with functional Hurst parameter H(t) = 1

5 sin(2πt) + 1
2 . Method: Drift

implicit Euler scheme by Di Nunno, Mishura, Yurchenko-Tytarenko (2022).

11 / 46



The price process

Si (t) = Si (0) +

∫ t

0
μi (s)Si (s)ds +

∫ t

0
Yi (s)Si (s)dBS

i (s),

• Si (0) > 0,

• μi : [0,T ]→ R, are Hi -Hölder continuous,

• Yi , i = 1, ...,d are SVV models

Theorem. For any i = 1, ...,d , equation (7) has a unique solution of the form

Si (t) = Si (0) exp

{∫ t

0

(
μi (s)−

Y 2
i (s)

2

)
ds +

∫ t

0
Yi (s)dBS

i (s)

}
.

Furthermore, for any r ∈ R: E
[
supt∈[0,T ] Sr

i (t)
]
<∞.

Proof. For the existence, we refer to Cohen and Elliott (2015) and the Itô formula. For the moments we exploit the boundedness of Yi and the Novikov
condition to check the uniform integrability of some exponential martingale providing then bounds to the moments.
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Numéraire and discounted price process

As a numéraire, we will use
e
∫ t

0 ν(s)ds, t ∈ [0,T ],

where ν: [0,T ]→ R+ denotes a Hölder continuous function of order mini=1,...,d Hi
representing an instantaneous interest rate.

The discounted price process are then

S̃i (t) := e−
∫ t

0 ν(s)dsSi (t), t ∈ [0,T ], i = 1, ...,d ,

has thus dynamics of the form

S̃i (t) = Si (0) +

∫ t

0
μ̃i (s)S̃i (s)ds +

∫ t

0
Yi (s)S̃i (s)dBS

i (s), t ∈ [0,T ],

where μ̃i := μi − ν.
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2. Malliavin differentiability in SVV

Here we proceed as follow:

1 Study the differentiability of Yi

2 Provide a new chain rule and deduce the differentiability of Si .

3 Study of higher order Malliavin differentiability of Y

We use Malliavin derivatives for:

a. studying of the power law

b. numerical pricing of options (focus on discontinuous payoffs using the
integration-by-parts method)

We adopt the notationH for the Cameron-Martin space, i.e. the space of all continuous functions F = (F1, ..., F2d ) ∈ C0([0, T ]; R2d ) such that

Fi (·) =

∫ ·
0

fi (s)ds,

where f = (f1, ..., f2d ) ∈ L2([0, T ]; R2d ).

Also, we consider the representation (
BS (t)
BY (t)

)
= LW (t) LLT = Σ L =

(
L11 L12
L21 L22
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Malliavin derivative and Dk ,p

Let C(∞)
p (Rn) be the space of infinitely differentiable functions with the derivatives of at most polynomial growth. Let W be a standard Brownian

motion. Define

W (h) :=

∫ T

0
h(t)dW (t), h ∈ L2([0, T ])

Definition. The random variables X of the form
X = f (W (h1), ..., W (hn)),

where n ≥ 1, f ∈ C(∞)
p (Rn) and h1, ..., hn ∈ L2([0, T ]) are called smooth. Definition. For any smooth X . The Malliavin derivative of X (with respect

to W ) is the L2([0, T ])-valued random variable

DX :=
n∑

k=1

∂f

∂xk
(W (h1), ..., W (hn))hk .

The operator D : Lp(Ω) =⇒ Lp(Ω× [0, T ]) is closable for any p ≥ 1. The closure D is taken with respect to the norm

‖X‖1,p :=

E
[
|X |p

]
+ E

(∫ T

0
(DsX)2ds

) p
2

 1
p
.

The domain is denoted D1,p .

This definition can be iterated to introduce the iterated derivative Dk X as a random variable with values in (L2([0, T ]))⊗k ∼ L2([0, T ]k ). One can
also define Dk,p with respect to the seminorm

‖X‖k,p :=

E
[
|X |p

]
+

k∑
j=1

E
[
‖Dj X‖p

L2([0,T ]k )

] 1
p
.
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Lemma. Let p > 1 and X ∈ D1,2 be such that

E [|X |p] <∞ and E
[( ∫ T

0
(DsX )2ds

) p
2
]
<∞.

Then X ∈ D1,p.

Theorem: Generalized Malliavin product rule.
Let X1, X2 ∈ D1,2 be such that

(i) X1X2 ∈ L2(Ω);

(ii) X2DX1, X1DX2 ∈ L2(Ω× [0,T ]).

Then X1X2 ∈ D1,2 and D[X1X2] = X2DX1 + X1DX2.

If, in addition,

E[|X1X2|p] <∞, E
[( ∫ T

0
(X2DuX1 + X1DuX2)2du

) p
2
]
<∞

for some p ≥ 2, then X1X2 ∈ D1,p.
The proof proceeds with a constructive approach via mollification and approximations.
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The Malliavin differentiability of Yi is studied by the criterion of Sugita (1985).

Theorem. A random variable η ∈ L2(Ω,FT , P) belongs to D1,2 wrt W if and only if both conditions are satisfied:

(i) η is ray absolutely continuous, i.e. for any F ∈ H there exists a version of the process {η(ω + εF ), ε ≥ 0} that is absolutely continuous;

(ii) η is stochastically Gateaux differentiable, i.e. there exists a random vector

Dη ∈ L2
(

Ω; L2([0, T ]; R2d )
)

such that for any F =
∫ ·

0 f (s)ds ∈ H, f ∈ L2([0, T ]; R2d ),

1

ε
(η (ω + εF )− η(ω))

P−→ 〈Dη, f〉
L2
(

[0,T ];R2d
), ε→ 0.

In this case Dη from (ii) is the Malliavin derivative of η.

Theorem. In this model, for all i and t , Yi (t) ∈ D1,2 and

DYi (t) = (D1Yi (t), ...,D2dYi (t)) ∈ L2 (Ω; L2([0,T ];R2d )
)
,

Dj
uYi (t) := `d+i,j

(
Ki (t ,u) +

∫ t

u
Ki (s,u)

∂bi

∂y
(s,Yi (s))e

∫ t
s

∂bi
∂y (v ,Yi (v))dv ds

)
1[0,t](u),

where `d+i,j are elements of L.
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The Malliavin differentiability of the prices Si is studied by the representation

Si (t) = eXi (t), t ∈ [0,T ],

where Xi is the log-price process

Xi (t) := log Si (t) = Xi (0) +

∫ t

0

(
μi (s)−

Y 2
i (s)

2

)
ds +

∫ t

0
Yi (s)dBS

i (s).

Then, we need a new chain rule. In fact, typically chain rules require
• either all partial derivatives ∂f

∂xj
to be bounded or Lipschitz (which is not the case for such

functions as f (x) = x2 or f (x) = ex )
• or the law of η to be absolutely continuous (which we have not established yet for the
log-price Xi (t)).

Corollary.For any i = 1, ...,d and t ∈ [0,T ], Xi (t) ∈ D1,2 and its Malliavin derivative
DXi (t) = (D1Xi (t), ...,D2dXi (t)) has the form

Dj
uXi (t) =

(
−
∫ t

0
Yi (s)Dj

uYi (s)ds + `i,jYi (u) +

∫ t

0
Dj

uYi (s)dBS
i (s)

)
1[0,t](u).

Naturally, we then have Dj
uSi (t) = Si (t)Dj

uXi (t)1[0,t](u).
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Higher order Malliavin differentiability. In principle, it is intuitively clear how the second order derivative should look like:

Dr DsY (t) = Dr

∫ t

s
K(u, s)b′y (u, Y (u)) exp

{∫ t

u
b′y (v, Y (v))dv

}
du

=

∫ t

s
K(u, s)Dr

[
b′y (u, Y (u)) exp

{∫ t

u
b′y (v, Y (v))dv

}]
du

=

∫ t

s
K(u, s) exp

{∫ t

u
b′y (v, Y (v))dv

}
Dr
[
b′y (u, Y (u))

]
du

+

∫ t

s
K(u, s)b′y (u, Y (u))Dr

[
exp
{∫ t

u
b′y (v, Y (v))dv

}]
du

=

∫ t

s
K(u, s)b′′yy (u, Y (u)) exp

{∫ t

u
b′y (v, Y (v))dv

}
Dr [Y (u)] du

+

∫ t

s
K(u, s)b′y (u, Y (u)) exp

{∫ t

u
b′y (v, Y (v))dv

}∫ t

u
b′′yy (v, Y (v))Dr [Y (v)]dvdu.

However, the computations above are far from straightforward to be justified.

• the functions y 7→ b′y (t, y) and y 7→ b′′yy (t, y) demonstrate explosive behaviour as y → ϕ(t)+ and y → ψ(t)− for any t ∈ [0, T ]. This
makes it impossible to use the classical Malliavin chain rules requiring boundedness of the derivative or demanding the Lipschitz condition.

• In order to overcome this issue, we have to use some special properties of the volatility process established in earlier work and tailor a
version of the Malliavin chain rule specifically for our needs.
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Then we have to establish the Malliavin chain rule for the random variables b′y (t, Y (t)) and exp
{∫ t

u b′y (v, Y (v))dv
}

.

Proposition: chain rule applied. For any 0 ≤ u ≤ t ≤ T and p > 1,

1) b′y (t, Y (t)) ∈ D1,p with

Ds
[
b′y (t, Y (t))

]
= b′′yy (t, Y (t))DsY (t),

2) exp
{∫ t

u b′y (v, Y (v))dv
}
∈ D1,p with

Ds

[
exp
{∫ t

u
b′y (v, Y (v))dv

}]
= exp

{∫ t

u
b′y (v, Y (v))dv

}∫ t

u
b′′yy (v, Y (v))DsY (v)dv.

Theorem. For any t ∈ [0, T ] and p ≥ 2,

1) Y (t) ∈ D2,p ,

2) with probability 1 and for a.a. r, s ∈ [0, T ],

Dr DsY (t) =

∫ t

s
K(u, s)F1(t, u)

(∫ t

u
b′′yy (v, Y (v))Dr Y (v)dv

)
du

+

∫ t

s
K(u, s)F2(t, u)Dr Y (u)du,

where

F1(t, u) := b′y (u, Y (u)) exp
{∫ t

u
b′y (v, Y (v))dv

}
,

F2(t, u) := b′′yy (u, Y (u)) exp
{∫ t

u
b′y (v, Y (v))dv

}
.
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3. On the power law

To study of the power law of the implied volatility surface σ̂(τ, κ):∣∣∣∣∂σ̂∂κ (τ, κ)

∣∣∣∣
κ=0

= O(τ− 1
2 +H), τ→ 0.

we use the criterion by Alòs, León, Vives (2007):
Theorem. Consider a risk-free log-price

X(t) = x0 + rt −
1

2

∫ t

0
σ2(s)ds +

∫ t

0
σ(s)

(
ρdB1(s) +

√
1− ρ2dB2(s)

)
,

where B1, B2 are two independent Brownian motions, x0 ∈ R is a deterministic initial value, r is an instantaneous interest rate, ρ ∈ (−1, 1) and
σ = {σ(t), t ∈ [0, T ]} is a square-integrable stochastic process with right-continuous trajectories adapted to the filtration F = {Ft , t ∈ [0, T ]}
generated by B1. Assume that

(H1) σ ∈ L2,4 with respect to B1;

(H2) there exists a constant ϕ∗ > 0 such that, with probability 1, σ(t) > ϕ∗ for all t ∈ [0, T ];

(H3) σ has a.s. right-continuous trajectories;
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(H4) there exists a constant H ∈
(

0, 1
2

)
such that, with probability 1, for any 0 < s < t < T ,

E
[

(Dsσ(t))2
]
≤

C

(t − s)1−2H
,

E
[

(Dr Dsσ(t))2
]
≤ C

( t − r

t − s

)1−2H
,

where C > 0 is some constant;

(H5) supr,s,t∈[0,τ] E
[

(σ(s)σ(t)− σ2(r))2
]
→ 0 when τ→ 0+.

Finally, assume that there exists a constant Kσ > 0 such that, with probability 1,

1

τ
3
2 +H

∫ τ

0

∫ τ

s
E [Dsσ(t)] dtds − Kσ → 0, τ→ 0 + . (H6)

Then, with probability 1,

lim
τ→0

τ
1
2−H ∂σ̂log-price

∂x
(τ, x)

∣∣∣∣
x=log K

erτ
= −

ρ
σ(0)

Kσ.

RK: Our model naturally satisfied several of the assumptions above:

• assumption (H1) by the results on the moments above.

• assumption (H2) with ϕ∗ := mint∈[0,T ] ϕ(t) > 0;

• assumption (H3) since Y is continuous a.s.;
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The verification of hypotheses (H4), (H5), and (H6) is here below.

Proposition. Under the assumptions of the model. Then with probability 1, (H5) is easy to prove,

sup
r,s,t∈[0,τ]

E
[

(Y (s)Y (t)− Y 2(r))2
]
→ 0, τ→ 0.

Also, if H ∈
(

1
6 ,

1
2

)
and the Volterra kernelK be such that for any 0 ≤ s < t ≤ T

|K(t, s)| ≤ C|t − s|−
1
2 +H

for some constant C > 0. Then the hypothesis (H4) of the criteria for the power law holds for the volatility process σ = Y . Furthermore, if the Volterra
kernelK be such that

1

τ
3
2 +H

∫ τ

0

∫ τ

s
K(t, s)dtds → KY , τ→ 0+,

where KY is some finite constant. Then, with probability 1, we have (H6):

1

τ
3
2 +H

∫ τ

0

∫ τ

s
E [DsY (t)] dtds − KY → 0, τ→ 0 + .
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Theorem: Power law in SVV models.

Under the assumption of the model with H ∈
( 1

6 ,
1
2

)
. Assume also that ρ 6= 0 and that the

Volterra kernel K is such that for any 0 ≤ s < t ≤ T

|K(t , s)| ≤ C|t − s|− 1
2 +H

for some constant C > 0 and (23) holds with ρKY < 0. Then the SVV model reproduces the
power law of the at-the-money implied volatility skew with the correct sign.

Example. Let 1
6 < H0 < H1 < ... < Hn < 1 be such that H0 < 1

2 and αk > 0, k = 0, ...,n.
Then the kernel

K(t , s) =

(
n∑

k=0

αk (t − s)Hk− 1
2

)
1s<t

satisfies the assumptions of Theorem, so the corresponding SVV model generates power
law with H = H0 provided that ρ < 0.

RK. The condition H > 1
6 is coherent with the recent empirical estimate H ≈ 0.19 for the SPX implied volatility obtained in Delemotte, deMarco,

Segonne (2023).
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Simulation implied volatility surfaces

For simulations, we take the SVV model of the form

S(t) = 1 +

∫ t

0
Y (s)S(s)

(√
0.75dB1(s)− 0.5dB2(s)

)
,

Y (t) = 0.5 +

∫ t

0

(
0.005

(Y (s)− 0.005)5 −
0.005

(1− Y (s))5 + 0.05(0.5− Y (s))

)
ds

+ 0.3
∫ t

0
K(t , s)dB2(s),

where the choice of K is varied.
In order to plot the implied volatility surface, we

• estimate the call option prices E [(S(T )− K )+] under the model for T = n
200 , n = 1, ..., 200, and K = 0.5 + m/100, m = 0, ..., 150,

using the standard Monte Carlo method, i.e. average over 1500000 realisations of the payoff (S(T )− K )+

• calculate the corresponding Black-Scholes implied volatility (T , κ) 7→ σ̂(T , κ), where κ denotes the log-moneyness, using a standard
procedure. See, e.g., DiNunno, Kubilius, Mishura, Yurchenko-Tytarenko (2023).
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Example.
K(t , s) :=

1
Γ(0.7)

(t − s)−0.31s<t

(a) Implied volatility surface (b) Implied volatility smiles for different maturities

Figure: Implied volatility surface (a) and implied volatility smiles (b) generated by the SVV model with the rough kernel (26). Note that the smile
becomes steeper as the time to maturity T → 0, which reproduces a similar effect happening on real markets (for more details, see e.g. Delemotte, de
Marco, Segonne (2023), Fouque, Papanicolaou, Sircar, Sølna (2004) or DiNunno, Kubilius, Mishura, Yurchenko-Tytarenko (2023)).
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Figure: At-the-money implied volatility skew generated by the SVV model with the rough kernel on a logarithmic scale. The lines depict two linear fits:
over the short maturities (red line, the slope is -0.3006433 which is consistent with Theorem 4.8 in DiNunno, Yurchenko-Tytarenko (2023)) and over the
long maturities (green line, the slope is -0.9920939). Such a behaviour is consistent with Delemotte, de Marco, Segonne (2023)
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Example.
K(t , s) =

( √
0.4

Γ(0.7)
(t − s)−0.3 +

√
1.8

Γ(1.4)
(t − s)0.4

)
1s<t

(a) Implied volatility surface (b) Absolute skews, standard scale

Figure: Implied volatility surface (a) and implied volatility smiles (b) generated by the SVV model with the mixed fractional kernel. Just as in the purely
rough case, the absolute at-the-money skew increases for small maturities, which is consistent with the real-life market behaviour. Note that the
presence of the term (t − s)0.4 in the kernel ensures that the smile “flattens out” for larger maturities much slower than in the purely rough case, which
agrees with the results of Funahashi, Kijima (2017)
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4. Martingale measures

Theorem The SVV market model is arbitrage-free and incomplete with the set of martingale
measure given by dQ := M(T )dP, where

M(t) = Et

{
−

d∑
j=1

∫ ·
0

( d∑
k=1

`
(−1)
j,k

μ̃k (s)

Yk (s)

)
dWj (s) +

2d∑
l=d+1

∫ ·
0
ξl (s)dWl (s)

}
,

(μ̃i := μi − ν) is a uniformly integrable martingale for any predictable processes ξl satisfying
the Novikov condition

E
[

exp
{1

2

2d∑
l=d+1

∫ T

0
ξ2

l (t)dt
}]

<∞.

Here above
(
`

(−1)
j,k

)d
j,k=1 are the elements of L−1

11 :(BS(t)
BY (t)

)
= LW (t) LLT = Σ L =

(L11 L12
L21 L22

)
Proof. We show that M(T ) is a positive density associated with the local P-martingales M such that all MS̃i become local martingales by direct

computations. Then we prove that Q is a probability measure, or equivalently, that M is a uniformly integrable martingale. For this the boundedness of
Y is crucial.
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5. Quadratic hedging

The quadratic hedging problem is to find the optimal û such that :

J(û) = inf
u

J(u) := inf
u
E
[(

F − EF −
∫ T

0
u(s)dX (s)

)2]
,

where the financial claim F = F (X (T )) ∈ L2(P) and the infimum is taken over all F-adapted
stochastic processes u ∈ L2(P× [X ]). Here X is the discounted dynamics and we consider
P = Q.

The solution û is stated in terms of the non-anticipating (NA) derivative6, which is the
L2(P× [X ])-limit

û = Dξ := lim
|πM |→0

uπM

for monotone partitions {πM , M ≥ 1}, such that |πM | → 0 as M →∞, where

uπ :=
n−1∑
k=0

uπ,k 1(tk ,tk+1], uπ,k := E
[
ξ X (tk+1)− X (tk )

E
[
(X (tk+1)− X (tk ))2 | Gtk

] ∣∣∣Gtk

]
6

Di Nunno (2002)
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About NA-derivatives

Definition. The NA-derivative of ξ wrt X is the L2(P× [X ])-limit

Dξ := lim
|πM |→0

uπM

for a monotone partitions {πM , M ≥ 1}, such that |πM | → 0 as M →∞.

Theorem. The NA-derivative Dξ is well-defined. Moreover, any ξ ∈ L2(P) admits a unique
representation of the form

ξ = ξ0 +

∫ T

0
Dξ(s)dX (s),

where ξ0 ∈ L2(P) is such that Dξ0 = 0 and E
[
ξ0
∫ T

0 Dξ(s)dX (s)
]

= 0.

Remark:
• The NA-derivative is the dual of the Itô integral.
• For a payoff function F ∈ L2(P) the NA-derivative u = DF of F wrt X is indeed provides an explicit representation of the optimal mean-square
hedge.
• The corresponding pre-limit sum uπ :=

∑n−1
k=0 uπ,k 1(tk ,tk+1 ], is the L2(P× [X ])-orthogonal projection of F onto the subspace generated by

stochastic integrals of simple processes.
• Note that admissible portfolios in real markets are exactly of this type since there is no technical possibility of real “continuous” trading.
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About the payoffs

We deal with European options with payoffs F := F (X (T )) covering both classical contracts
and exotic ones with discontinuities (eg, digital, supershare, binary, truncated payoff options)
F : R+ → R:

F = F1 + F2,

where

(i) F1 is globally Lipschitz, i.e. there exists C > 0 such that
|F1(t)− F1(s)| ≤ C|t − s|, s, t ≥ 0;

(ii) F2: R+ → R is of bounded variation over R+, i.e.

V (F2) := lim
x→∞

V[0,x ](F2) <∞,

where V[0,x ](F2) := sup
∑N

j=1 |F2(xj )− F2(xj−1)| and the supremum above is taken
over all N ≥ 0 and all partitions 0 = x0 < x1 < ... < xN = x .
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Computational challenge in hedging

The NA-derivative gives the explicit formula for computation of hedging.
However, the computation of the conditional expectations in the NA-derivative pre-limit is a
challenging task, that becomes even more complicated in view of the Volterra noise Z , since
it is not Markovian.

Natural idea: Find Markovian approximations.

OK, BUT control the approximating error as well as much as the theoretical stability, eg the
approximants need to be well defined dynamics.

• approximate kernel
• approximate volatility model
• approximate prices
• approximate payoff
• approximate minimizer in the approximated hedging problem
• ? Do we obtain an approximation to our target original hedging strategy?
• ? Is it a decent approximation ? 33 / 46



Approx: Quadratic hedging strategy

The NA-derivatives of interest are:

DF := lim
|π|→0

uπ, DFm := lim
|π|→0

um
π ,

with limits in L2(P× [X ]) and

uπ :=
n−1∑
k=0

uπ,k 1(tk ,tk+1], um
π :=

n−1∑
k=0

um
π,k 1(tk ,tk+1],

with
uπ,k :=

E [F ∆X (tk ) | Ftk ]

E [(∆X (tk ))2 | Ftk ]
, um

π,k :=
E [Fm ∆Xm(tk ) | Ftk ]

E [(∆Xm(tk ))2 | Ftk ]

where ∆X (tk ) := X (tk+1)−X (tk ) and ∆Xm(tk ) := Xm(tk+1)−Xm(tk ) and also F := F (X (T ))
and Fm := F (Xm(T )).
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The study of these approximations we consider

K(t , s) = K(t − s)1s<t , Km(t , s) = Km(t − s)1s<t , t , s ∈ [0,T ].

and ‖K − Km‖L2([0,T ]) → 0, m→∞.

Then the following statements hold:

1) There exists a constant C > 0 that does not depend on m such that,

E
[ ∫ T

0
|uπ(s)− um

π (s)|ds
]
≤ Cn

√
|π|‖K − Km‖

1
5
L2([0,T ])

.

2) If the partitions are such that n
√
|π|‖K − Kmn‖

1
5
L2([0,T ])

→ 0, n→∞, then

E
[ ∫ T

0
|DF (s)− umn

π (s)|ds
]
→ 0, n→∞.

Remark: The exponent 1
5 appears because of the estimate corresponding to the

discontinuous component F2.
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Remark: If F2 ≡ 0, then the results read differently:

1) There exists a constant C > 0 that does not depend on m such that

E
[ ∫ T

0
|uπ(s)− um

π (s)|ds
]
≤ Cn

√
|π|‖K − Km‖L2([0,T ]),

2) Also for n
√
|π|‖K − Kmn‖L2([0,T ]) → 0, n→∞, we have

E
[ ∫ T

0
|DF (s)− umn

π (s)|ds
]
→ 0, n→∞.
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In practice... we consider the kernel approximants:

Km(t , s) =
m∑

i=1

em,i (t)fm,i (s), 0 ≤ s ≤ t ≤ T ,

where em,i and fm,i are L2 functions, so that the (m + 2)-dimensional process
(Xm,Ym,Um,1, ...,Um,m) given by

Xm(t) = X (0) +

∫ t

0
Ym(s)Xm(s)

(
ρdB1(s) +

√
1− ρ2dB2(s)

)
,

Ym(t) = Y (0) +

∫ t

0
b(s,Ym(s))ds +

m∑
i=1

em,i (t)Um,i (t),

Um,1(t) =

∫ t

0
fm,1(s)dB1(s), ..., Um,m(t) =

∫ t

0
fm,m(s)dB1(s),

is Markovian wrt the filtration F = {Ft , t ∈ [0,T ]}.
Remark: Similar idea was already used in Carmona, Coutin (1998), for the RL-fBm, in Abi Jaber, El Euch (2019) for the rough Heston, and in Baurle,
Desmettre (2020) for the fractionally integrated standard Heston models, as well as in Abi Jaber, Miller, Pham (2021) in the context of optimal control in
general stochastic Volterra systems.
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Rough fractional kernels. Let H ∈
(
0, 1

2

)
and

K(t , s) = K(t − s)1s<t =
(t − s)H− 1

2

Γ
(
H + 1

2

) 1s<t ,

i.e. Z (t) =
∫ t

0 K(t , s)dB1(s) is a RL-fBm. Then the approximants are:

Km(t − s) =
m∑

i=1

σm,ie−αm,i (t−s), 0 ≤ s < t ≤ T , m ≥ 1.

Defined as follows: Let μ be a measure on R+ defined as (i = 1, ...,m)

σm,i :=

∫ τm,i

τm,i−1

μ(dα), αm,i :=
1
σm,i

∫ τm,i

τm,i−1

αμ(dα), μ(dα) :=
α−H− 1

2

Γ
(
H + 1

2

)
Γ
( 1

2 − H
)dα,

where 0 = τm,0 < τm,1 < ... < τm,m is such that

τm,m →∞,

m∑
i=1

∫ τm,i

τm,i−1

(αm,i − α)2μ(dα)→ 0, m→∞.
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In this case, for uniform partitions, the approx hedging strategies are such that:

1) If F = F1 + F2 and mn := nα for α > 25
8H , then

E

[∫ T

0
|uπ(s)− umn

π (s)|ds

]
≤ Cn−

4αH
25 + 1

2 → 0, n→∞.

2) If F = F1 is globally Lipschitz and mn := nα for α > 5
8H , then

E

[∫ T

0
|uπ(s)− umn

π (s)|ds

]
≤ Cn−

4αH
5 + 1

2 → 0, n→∞.
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(a) KernelsK andKm (b) Volterra noises Z and Zm (c) Volatility processes Y and Ym

(d) Price processes X and Xm

Figure: Approximation of the SVV model with rough fractional kernel 40 / 46



Figure: Hedging strategy for European call with strike 4, estimated for the path above for m = 10 (red), m = 100 (green), m = 1000 (blue) and
m = 2000 (black). The corresponding partition is k/10, k = 0, 1, ..., 10. The figure also illustrates slower rate of convergence in comparison to the
Hölder kernel case: the black and blue lines are close to each other but the red and green lines (corresponding to relatively low values of m) differ
substantially. Computation time: 24162 seconds for m = 10, 25348 seconds for m = 100, 38530 seconds for m = 1000 and 42431 seconds for
m = 2000.

The paths of the sandwiched process are simulated via the drift-implicit Euler approximation detailed in diNunno, Mishura, Yurchenko-Tytarenko (2022).
Else, we have used Nested Monte Carlo (slow), better results with Least squares Monte Carlo/NN (howevder long to simulate the data set, and a little
to train the network. Then instantaneous outcome)
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Hölder continuous kernels. The fractional kernel

K(t − s) =
(t − s)H− 1

2

Γ
(
H + 1

2

) , 0 ≤ s ≤ t ≤ T ,

with H ∈
( 1

2 ,1
)

is Hölder continuous of order H − 1
2 . The corresponding RL-fBm is λ-Hölder

continuous for all λ ∈ (0,H). The approximants are given by the Bernstein polynomial of
order m defined as

Km(t) =
1

T m

m∑
i=0

K
(

Ti
m

)(
m
i

)
t i (T − t)m−i

=
m∑

i=0

 1
T i

i∑
j=0

(−1)i−jK
(

Tj
m

)(
m
j

)(
m − j
i − j

) t i

=
m∑

i=0

κm,i t i .
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In this case, for uniform partitions, we have

1) If F = F1 + F2 and mn := nα for α > 5
H , then

E

[∫ T

0
|uπ(s)− umn

π (s)|ds

]
≤ Cn−

αH
10 + 1

2 → 0, n→∞.

2) If F = F1 is globally Lipschitz and mn := nα for α > 1
H , then

E

[∫ T

0
|uπ(s)− umn

π (s)|ds

]
≤ Cn−

αH
2 + 1

2 → 0, n→∞.
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(a) KernelsK andKm (b) Volterra noises Z and Zm (c) Volatility processes Y and Ym

(d) Price processes X and Xm

Figure: Approximation of the SVV model with Hölder continuous kernel 44 / 46



Figure: Hedging strategy for European call option with strike 4, estimated for the path above for m = 10 (red) and m = 30 (blue). The corresponding
partition is k/10, k = 0, 1, ..., 10. Simulating the red line took 63231 seconds whereas the blue line – 73410 seconds.
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