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The chemical reaction
1 The problem

calcium carbonate sulfuric acid gypsum

CaCO, + H,SO, + H,0 — CaSO, - 2H,0 + CO,
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The model

2 Stochastic particles in a random continuum environment

The acid particles state: (X, H)iz1,..n X: Ry —-DCR?

H: R, — {0="dlive’, 1 ="dead"}

Calcium and Gypsum densities:  ¢(t,x),g(t,x) : R, x D — Ry
Lett € [0,T],x € D C R4
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dx; = Lo(H}) (Fpan(Xe, H)dt + Fip, (Xi, ¢, g)dt + odW]) |
H! =Hi + [} dITi(s), IT' Poisson with intensity A (X!, H, c)
atc(v:,x) = —Ac(t,x) Kx v (x), K Smooth kernel

%g(t, x) = +Ac(t,x) Kxv¥(x).

A hybrid model of sulphation reactions: stochastic particles in a random continuum environment
N. Javergard, D. Morale, G. Rui, A. Muntean, S. Ugolini, arXiv:2503.01856, 2025



The model
2 Stochastic particles in a random continuum environment

Reaction rate: AT (XL HE €) i= Ae(t,X]) 1o(H)

Particle interaction:  Fp(Xe, Hy) = — >, V® (\X@ - X’t|) 1o(H)

o\ 4d c\2d
®(r)=4n [(r) — (;) } Lennard-Jones type potential

Environment interaction:

. . y—Xi .
Feny(Xi5€,9) =7 o —x§| f(ly =X, e(t,y), g(t.y)) dy dt
t

F. Flandoli, M. Leocata (2019)

f(ra Cag) =

—rq )
c+g € (0,00)(9) Lo.r)(T)

3/13



The main result

3 Well posedness for strongly repulsive singular interactions

Well Posedness of Lennard-Jones stochastic interacting particles

The system
Xt =", VOX! — X)dt + odW! te[0,T] )
(Xi)lrzo =Xy i=1,..,N
A B
q)(r)::rfafrfﬁ, Oé>620

admits a unique, global, strong solution provided that the initial data satisfies:

E [1X5]2] < oo, E[Z‘V@(xg—x{))‘] < o0.
7

The hypotheses ensuring the second condition depend on the singularity exponent c.
When a < d, it holds under i.i.d. initial data with p € L?, where p = 24, by the

Hardy-Littlewood-Sobolev inequality. For o« > d, structured initial laws (e.g., Gibbs or hard-core)
are required.
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The aim of the proof: Non collision among particles

3 Well posedness for strongly repulsive singular interactions

J.G. Liu and R. Yang. (2016)
Repulsive potential of order « = d — 2.

Idea of the proof:
e construct a regularized problem, modifying the potential in a small interval [0, €]

o define collision times
Te := inf {t € [0,2T] : m;”in|Xtie - x| < e}
i#j
e prove that given any finite time horizon T the probability of collision in finite times

vanishes in the limit
limP(r <T)=0

e—0
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The main step
3 Well posedness for strongly repulsive singular interactions

We apply 1t6 formula to the total interaction among particles
2

N . 0.2 tATe N .
1 1
?_1 FI | ds+ ) /0 > ADJ, ds

— ij=1
J#i i#j

tATe N
<1>;:<I>O+Mm—2/ Z
0 _

i=1

and obtain estimates on the sup, inf of the martingale M, :

sup Mipar, > sup @ — g — 2TCy;,
te[0,T] te[0,T]

inf My, > —N%p— ®g—2TCy.
Mins
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Step 2: some estimates

3 Well posedness for strongly repulsive singular interactions

Given the Lennard Jones force F defined above, for any triplets of particles i, j, k we have

Fii. (F‘i,k _ﬁjk) > —G(i,j,k)

where
G(i.j, k) = H2+<F (%0)+2H> max{]ﬁiﬂ,]f"vkuﬁjyk‘}7
F(ro) = 0,
—-H = rrn>iélF(r).
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Step 2: some estimates

3 Well posedness for strongly repulsive singular interactions

Given the Lennard Jones force F defined above, for any N > 2

2

EN: ZFiJ = EN: (Fij)z -2 Z G(iajv k)

i=1 | j=1 i=1 j=i+1 1<i<j<k<N

with G(i,j, k) obtained in Lemma 2.
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Non collision in finite times

3 Well posedness for strongly repulsive singular interactions

sup &f > O,
te[0,T]

C sup Minr, > ®(e) — ®g — Cy, inf Mirr, > —Po—Cy o .
t€[0,T] t€[0,T]

{1e < T}

N

As a consequence, given R > 0 arbitrary,

Markov,Doob ( R+C
P(r. <T) < 2o 4 oy — 0, choosing R = /®(e)
R @(6) e—0+t

—deg >0: Ve<e 7>T as.
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Convergence to a solution of the original system

3 Well posedness for strongly repulsive singular interactions

Let us introduce the solution to the regularized problem:

X (w) = Xb(w +2/ xw xJ;) ds+oW.  Veelo,T].
J#i

10/13



Convergence to a solution of the original system

3 Well posedness for strongly repulsive singular interactions

Let us introduce the solution to the regularized problem:

X (w) = Xb(w +E/ xw xJ;) ds+oW.  Veelo,T].
J#i

The solution is unique, thus:
X (w) = XP9(w) Ve < e

and the limit is well defined:
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. A relative entropy approach

4 The propagation of chaos

Let pn(t) be the joint law of N particles, and p(t) the one-particle law. We say that propagation of

chaos holds if: )

(k) T h,
VkeN, py (t,xl,hl,...,xk,hk)mil__[lp(t,xl,hl)

The relative entropy

Ha(t) = o /H et} log (;@%)

quantifies the deviation of py from the product law p®V.

Goal: Show that for suitable initial data and under regularity conditions on py(t), p(t),
lim Hy(t) =0 VYte[0,T],
N—oo
which implies propagation of chaos in the strong sense.
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. Strengths and limitations

4 The propagation of chaos

Why use relative entropy?

e Robust to random type changes,

T.S. Lim, Y. Lu and J.H. Nolen (2020)
"Quantitative Propagation of Chaos in the bimolecular chemical reaction-diffusion model.”

e Compatible with the nonlinear Fokker-Planck structure of the limit equation,

e Provides strong convergence in law (e.g., via Csiszar-Kullback-Pinsker inequality).

Limitations of the method:

e Requires regularity and positivity of both py and p, meaning we must work on
compact domains (e.g., T9) or add confining potentials.

e The interaction potential & must be sufficiently smooth.
e Not robust to history-dependent dynamics or delay terms.

In this analysis, we treat c(t, x) and g(t, x) as given to avoid feedback complications.
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Context and related work
4 The propagation of chaos

This work contributes to an active research direction aiming to introduce stochasticity into the modeling of
sulphation reactions, extending classical PDE models.

Previous work:

e Deterministic PDE model for marble sulphation via porous media diffusion
Natalini et al. (2001-2023)
e Introduction of stochastic boundary conditions for random pollutant input
M. Maurelli, D. Morale and S. Ugolini, SPA (2025)
"Well-posedness of a reaction-diffusion model with stochastic dynamical boundary conditions”
F. Arceci, D. Morale, and S. Ugolini, (2024)
"A numerical study of a PDE-ODE system with a stochastic dynamical boundary condition:
a nonlinear model for sulphation phenomenon”
e A fully stochastic microscopic model
D. Morale, G. Rui, and S. Ugolini (2025)
“A stochastic interacting particle model for the marble sulphation process”
e Probabilistic interpretation of the deterministic PDEs
Morale, D. and Tarquini, L. and Ugolini, S. (2024)
"A probabilistic interpretation of a non-conservative and path-dependent
13/13 nonlinear reaction-diffusion system for the marble sulphation in Cultural Heritage”



Thank you!
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. Strategy and Main Result
6

Step 1: Derive entropy production estimate

ct)

OHN(t) < C(t) Hn(t) + N

where C(t) depends on norms of p(t), V log p, and coefficients.

Step 2: Gronwall inequality yields

(o) < (100 + oo | cts)as)

Conclusion:

Hn(0) -0 = Hy(t) -0 = Propagation of Chaos holds.

This provides a quantitative, non-asymptotic route to chaos.
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