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Construction of the model

Consider a free boundary problem describing the melting/solidification
process in a turbulent fluid (a two-phase Stefan problem on a bounded
open domain with smooth boundary O ⊂ Rd).

C1
∂θ

∂t
− div (k1∇θ) + u · ∇η (θ) = F , if θ < 0,

C2
∂θ

∂t
− div (k2∇θ) + u · ∇η (θ) = F , if θ > 0,

(k2∇θ+ − k1∇θ−) ·N−
ξ = l ·Nt , on {θ = 0},

θ+ = θ− = 0, on {θ = 0},

θ (0, ξ) = θ0 (ξ) , in O,

θ (t, ξ) = 0, on ∂O× (0,T ) ,

(1)

where θ+, resp. θ− are the right, resp. left limits of the free boundary
situated between the solid and the liquid phase, N (t, ξ) is the unit normal
to the interface and l is assumed to be the latent heat.
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Construction of the model

We denote by

k1 and k2 the thermal conductivity of the solid and liquid phases

C1 and C2 the specific heat of the two phases

the function η : R → R is assumed to be a smooth function which
vanishes in the solid phase, and such that η (0) = 0.
We assume that |η′ (r)| ≤ L, for ∀r ∈ R.

From the physical point of view, it is coherent to strengthen the
null-behavior, and further assume that

η (θ) = 0, for 0 < θ < ε.

Since the term u · ∇η (θ) is meant to model the turbulence present in
the liquid phase, the physical interpretation of η is that the solid phase is
not allowed to move and neither is a small liquid region close to the
boundary.
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Construction of the model

The convection term has the form

u · ∇η (θ) . (2)

Concerning the velocity of the fluid, it can be seen in several ways.

A deterministic approach consist in taking u as the solution of a Navier
Stockes equation

Barbu, V., Ciotir, I., Danaila, I., (2021) Existence and uniqueness of
solution to the two-phase Stefan problem with convection, Applied
Mathematics and Optimization, 84(2).
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Construction of the model

A stochastic reasonable model for the turbulent fluid has the form

u (t, ξ) =
∞

∑
k=1

αkσk(ξ)
dβk(t)

dt
,

where

{αk}k is a sequence of positive constants conveniently chosen;

{σk}k is a sequence of divergence-free smooth vector fields whose
properties will be defined later on, and

{βk}k is a sequence of independent Brownian motions.

Interpreted in the Stratonovich sense, the turbulence has the following
formulation

u (t, ξ) =
∞

∑
k=1

αkσk(ξ) ◦ dβk(t).
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Construction of the model

We obtain the following explicit formulation for the turbulence

u · ∇η (θ) =
∞

∑
k=1

αkσk · ∇η (θ) ◦ dβk . (3)

The heuristic idea is that turbulence can appear in the liquid region of
the phase change problem due to the difference in temperature between
the two phases.

This type of noise has been introduced and intensively studied during
the recent years. The reader is invited to refer to

F. Flandoli, L. Galeati, D. Luo, Scaling limit of 2D Euler equations
with transport noise to the deterministic Navier-Stokes equations,
Journal of Evolution Equations, Volume 21, pages 567-600, 2021.

F. Flandoli and E. Luongo. Stochastic Partial Differential Equa- tions
in Fluid Mechanics, volume 2328. Springer Nature, 2023.

among other references.
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The rigorous construction of the noise

We make a rigorous construction of the turbulence term.

Let {ek}k be a complete orthonormal basis in L2 (O) formed by the
eigenfunctions of the Dirichlet homogeneous Laplace operator on O,
with {λk}k being the corresponding eigenvalues, i.e.,

−∆ek = λkek , ∀k ∈ N∗.

We consider {µk}k to be a sequence of divergence-free vectors

belonging to (C∞ (O))d , and such that

div (µkek) = 0

.

We take {σk}k a sequence of vectors of the type

σk = µkek , ∀k = 1,∞.
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The rigorous construction of the noise

We define the operator B : H1
0 (O) → L2

(
L2 (O) ; L2 (O)

)
where

B (θ) : L2 (O) → L2 (O)

B (θ) (φ) =
∞

∑
k=1

αkσk · ∇η (θ) (ek , φ)2

where {αk}k is a sequence of real values.
Under the assumptions below, B is well defined from H1

0 (O) to the space
of Hilbert-Schmidt operators L2

(
L2 (O) ; L2 (O)

)
∥B (θ)∥2L2(L2(O);L2(O)) =

∞

∑
k=1

|αkσk · ∇η (θ)|22

≤ L2C 2
∞

∑
k=1

|αk |2 |λk |2 |µk |2(L∞(O))d
|θ|2H1

0 (O) .
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The rigorous construction of the noise

We consider a cylindrical Wiener process in L2 (O) constructed with
respect to the aforementioned basis

dW (t) =
∞

∑
k=1

ekdβk (t)

where {βk}k is a sequence of independent standard Brownian motions on
a filtered probability space

(
Ω,F , (Ft)t≥0 ,P

)
.

The noise term of the equation is meant in the Stratonovich sense, i.e.,
(16) can be written as

B (θ) ◦ dW (t) =
∞

∑
k=1

αkσk · ∇η (θ) ◦ dβk (t) ,

which means that the noise (16) can be written as

u · ∇η (θ) = B (θ) ◦ dW (t) .
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The rigorous construction of the noise

In order to study the equation, we can transform the Stratonovich integral
into a Itô one, whichever is more convenient for differential formulations:

B (θ) ◦ dW (t) =
∞

∑
k=1

αkσk · ∇η (θ) dβk (t)

−1

2

∞

∑
k=1

α2
kdiv

[(
η′ (θ)

)2
σk ⊗ σk∇θ

]
dt.

We denote by

Q (ξ) =
∞

∑
k=1

α2
k (σk (ξ)⊗ σk (ξ)) . (4)

The elements α are now considered small enough to guarantee an absolute
convergence in the previous expression.
In order to facilitate the reading, we denote the matrix operator
Q = (qi ,j )1≤i ,j≤d where each qi ,j is a series in k which converges under
the assumptions mentioned at the end of the introduction.
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The rigorous construction of the noise

In order to study the equation, we can transform the Stratonovich integral
into a Itô one, whichever is more convenient for differential formulations:

B (θ) ◦ dW (t) =
∞

∑
k=1

αkσk · ∇η (θ) dβk (t)

−1

2

∞

∑
k=1

α2
kdiv

[(
η′ (θ)

)2
σk ⊗ σk∇θ

]
dt.

On the other hand, we introduce the real function

g (x) =
1

2

∫ x

0

(
η′ (r)

)2
dr , ∀x ∈ R,
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The rigorous construction of the noise

In order to study the equation, we can transform the Stratonovich integral
into a Itô one, whichever is more convenient for differential formulations:

B (θ) ◦ dW (t) =
∞

∑
k=1

αkσk · ∇η (θ) dβk (t)

−1

2

∞

∑
k=1

α2
kdiv

[(
η′ (θ)

)2
σk ⊗ σk∇θ

]
dt.

The corresponding Itô integral has the following form

B (θ) dW (t) =
∞

∑
k=1

αkσk · ∇η (θ) dβk (t) ,

followed by a correction term.
We rewrite the noise as

B (θ) ◦ dW (t) = B (θ) dW (t)− div [Q∇g (θ)] dt. (5)
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Assumptions

Throughout this paper we shall assume that the elements of the sequence
{αk}k are small enough such that the following series are converging

For the well-posedness of the operator B from the noise we assume
that

∞

∑
k=1

|αk |2 |λk |2 |µk |2(L∞(O))d
≤ C1 < ∞, (6)

for some constant C1.

For the well-posedness of the operator Q = (qij )1≤i ,j≤d (with each qij
a series in k) which appears in the Itô-Stratonovich correction term,
we assume that

∞

∑
k=1

α2
k (σk (ξ)⊗ σk (ξ)) are convergent for almost every ξ ∈ O. (7)
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Assumptions

Throughout this paper we shall assume that the elements of the sequence
{αk}k are small enough such that the following series are converging

For the well-posedness of the problem we further assume that

γ = max
i ,j=1,d

{
|qij |∞ +

∣∣∣∣∂qij
∂ξi

∣∣∣∣
∞

}
< ∞. (8)

and the matrix Q is positively defined, i.e.

atQa ≥ 0, ∀a ∈ Rd ,

where | · |∞ denotes the L∞(O) norm.

We assume that γ̃ and its inverse are smooth and 0 ≤
(
γ̃−1

)′ ≤ 1.
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The mathematical model

Under the assumptions above we can rigorously write the system (1) as
follows

C1dθ − div (k1∇θ) dt − div [Q∇g (θ)] dt + B (θ) dW (t) = F , θ < 0,

C2dθ − div (k2∇θ) dt − div [Q∇g (θ)] dt + B (θ) dW (t) = F , θ > 0,

(k2∇θ+ − k2∇θ−) ·N−
ξ = l ·Nt , θ = 0,

θ+ = θ− = 0, θ = 0,

θ (0, ξ) = θ0 (ξ) , O,

θ (t, ξ) = 0, ∂O.
(9)
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The mathematical model

We shall first write it as a nonlinear multi-valued problem of monotone
type

dγ (θ)− div (k (θ)∇θ) dt − div (Q∇g (θ)) dt
+B (θ) dW (t) = F , O× (0,T ) ,

θ (0, ξ) = θ0 (ξ) , O,

θ (t, ξ) = 0, ∂O× (0,T ) .
(10)

where γ (r) = C (r) + l ×H (r) with

C (r) =

{
C1r , r ≤ 0,
C2r , r > 0.

The function H is a Heaviside contribution. Furthermore, we consider

k (r) =

{
k1, r ≤ 0,
k2, r > 0.

I. Ciotir (INSA Rouen, France) Stefan Problem With Mushy Turbulent Noise 27/06 21 / 51



The mathematical model

At this point, by formally using the change of variable γ (θ) = X0, we can
rewrite the equation above as

dX0 − ∆Ψ0 (X0) dt − div
(
Q∇g

(
γ−1 (X0)

))
dt

+B
(
γ−1 (X0)

)
dW (t) = F ,

O× (0,T ) ,

X0 (0, ξ) = γ (θ0) (ξ)
not
= x , O,

X0 (t, ξ) = 0, ∂O× (0,T ) ,
(11)

where Ψ0 (r) =


k1C

−1
1 r , r ≤ 0,

0, r ∈ (0, l),

k2C
−1
2 (r − l), r ≥ l .

Since the interface between ice and water is not sharp, we assume the
presence of a mushy region which is mathematically take into account by
replacing the Heaviside function with a smoothed one denoted by H̃.
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The mathematical model

The new equation is

dX − ∆Ψ (X ) dt − div
(
Q∇g

(
γ̃−1 (X )

))
dt

+B
(
γ̃−1 (X )

)
dW (t) = F ,

O× (0,T ) ,

X (0, ξ) = γ̃ (θ0) (ξ)
not
= x , O,

X (t, ξ) = 0, ∂O× (0,T ) ,
(12)

where Ψ is a smoothening version (obtained, for instance, by reasonable
convolution/mollification) in such a way that the function Ψ is null at 0,
strictly monotone, which means that there exist a positive constant ψ0

such that

(Ψ (x)− Ψ (y)) (x − y) ≥ ψ0 |x − y |2 , ∀x , y ∈ R.
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Definition of the solution

Definition

Let x ∈ L2 (O) . We say that equation (12) has a weak solution if there
exist a filtered reference probability space

(
Ω,F , (Ft)t≥0 ,P

)
, a sequence

of independent Ft Brownian motions {βk}k , and an H−1 (O)−valued
continuous Ft−adapted process X such that X ∈ L2 (Ω × (0,T )×O),
and the following holds true

(X (t) , ej )2 = (x , ej )2 +
∫ t

0

∫
O
F (s)ejdξds +

∫ t

0

∫
O

Ψ (X (s))∆ejdξds∫ t

0

∫
O
g
(
γ̃−1 (X )

)
div [Q∇ej ] dξds

+
∞

∑
k=1

∫ t

0
αk

(
η
(
γ̃−1 (X )

)
, σk · ∇ej

)
2
dβk (s) ,

P-a.s., for all t ∈ [0,T ], and for all j ∈ N∗, where {ej} is the orthonormal
basis in L2 (O) as introduced before.
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The main result

We now come to the main result of the paper.

Theorem

For each x ∈ L2 (O), there exists a solution to the equation (12), in the
sense of the Definition 1, and such that

Ψ (X ) ∈ L2 (Ω × (0,T )×O) .
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Sketch of the proof

We consider the Gelfand triple V ⊂ H ⊂ V ∗ where V = H1
0 (O) ,

H = L2 (O) and V ∗ = H−1 (O) .
We let Hn = span {e1, e2, ..., en}, such that span {ei |i ∈ N|} is dense in
V .
Let Pn : V ∗ → Hn be defined by

Pny =
n

∑
i=1

(y , ei )H ei , y ∈ V ∗.

Clearly, Pn|H is just the orthogonal projection onto Hn in H.

We take as initial data X (n) (0) = Pnx . For (coherence and) notation
purposes, we will also employ x (n) = Pnx to denote the initial datum for
the approximating solutions.
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Sketch of the proof

For each finite n ∈ N we consider the following equation in Hn

dPnX = Pn∆Ψ (PnX ) dt + Pndiv
[
Pn

(
Q∇g

(
γ̃−1 (PnX )

))]
dt

−PnB
(
γ̃−1 (PnX )

)
dW (t)

which has a unique strong solution in finite dimension since the operators
are Lipschitz-continuous

dX (n) = ∆PnΨ
(
X (n)

)
dt + Pndiv

[
Pn

(
Q∇g

(
γ̃−1

(
X (n)

)))]
dt

−
n

∑
k=1

Pn

(
αkσk · ∇η

(
γ̃−1

(
X (n)

)))
dβk (t) ,

where PnX = X (n). Local existence of the solution is a classical fact due
to the regularity of the coefficients appearing in the equation.
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Sketch of the proof

We first apply the Itô formula in L2 (O) and we get∥∥∥X (n) (t)
∥∥∥2
2
+ 2

∫ t

0

∫
O

Ψ′
(
X (n)

) ∣∣∣∇X (n)
∣∣∣2 dξds

+2
∫ t

0

∫
O

(
∇

((
g ◦ γ̃−1

) (
X (n)

)))t
Q∇X (n)dξds

=
∥∥∥X (n) (0)

∥∥∥2
2
+

n

∑
k=1

∫ t

0

∫
O

∣∣∣Pn

(
αkσk · ∇

((
η ◦ γ̃−1

) (
X (n)

)))∣∣∣2 dξds

+2
n

∑
k=1

∫ t

0
αk

((
η ◦ γ̃−1

) (
X (n)

)
, σk · ∇X (n)

)
2
dβk (s) .

Keeping in mind that div σk = 0, we can see that((
η ◦ γ̃−1

) (
X (n)

)
, σk · ∇X (n)

)
2
= −

(
Υ
(
X (n)

)
, div σk

)
2
= 0

where Υ is a primitive of η ◦ γ̃−1.
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Sketch of the proof

We first apply the Itô formula in L2 (O) and we get∥∥∥X (n) (t)
∥∥∥2
2
+ 2

∫ t

0

∫
O

Ψ′
(
X (n)

) ∣∣∣∇X (n)
∣∣∣2 dξds

+2
∫ t

0

∫
O

(
∇

((
g ◦ γ̃−1

) (
X (n)

)))t
Q∇X (n)dξds

=
∥∥∥X (n) (0)

∥∥∥2
2
+

n

∑
k=1

∫ t

0

∫
O

∣∣∣Pn

(
αkσk · ∇

((
η ◦ γ̃−1

) (
X (n)

)))∣∣∣2 dξds

+2
n

∑
k=1

∫ t

0
αk

((
η ◦ γ̃−1

) (
X (n)

)
, σk · ∇X (n)

)
2
dβk (s) .

Keeping in mind that div σk = 0, we can see that((
η ◦ γ̃−1

) (
X (n)

)
, σk · ∇X (n)

)
2
= −

(
Υ
(
X (n)

)
, div σk

)
2
= 0

where Υ is a primitive of η ◦ γ̃−1.
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Sketch of the proof

We obtain

sup
t∈[0,T ]

∥∥∥X (n) (t)
∥∥∥2
2
+ 2

∫ t

0

∫
O

Ψ′
(
X (n)

) ∣∣∣∇X (n)
∣∣∣2 dξds ≤

∥∥∥X (n) (0)
∥∥∥2
2
,

(13)
uniformly for all ω ∈ Ω.
We deduce that, for every p > 1, and along some subsequence,

X (n) ⇀ X weakly in Lp
(
0,T ; L2 (O)

)
, P-a.s. (14)

X (n) ⇀ X weakly in L2
(
(0,T ) ;H1

0 (O)
)
, P-a.s..

By recalling that the functions Ψ, g , η and γ̃−1 are Lipschitz-continuous,
we also have that

Ψ
(
X (n)

)
⇀ κ weakly in L2

(
(0,T ) ; L2 (O)

)
, P-a.s.

g
(

γ̃−1
(
X (n)

))
⇀ ρ weakly in L2

(
(0,T ) ; L2 (O)

)
, P-a.s.

η
(

γ̃−1
(
X (n)

))
⇀ ζ weakly in L2

(
(0,T ) ; L2 (O)

)
, P-a.s.
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Sketch of the proof

In order to identify the limits of the nonlinear terms, we need to show the
strong convergence of the approximating solutions in H−1 (O) . To this
purpose we introduce the inclusions

L2 (O) ⊂ H−1 (O) ⊂ H−β (O) ,

where β is assumed to be large enough.
We intend to use the compactness result in Corollary 5 from

J. Simon, Compact sets in the space Lp (0,T ;B). Ann. Mat. Pura
Appl. 146, 65-96, 1987.

According to this result, one has

L∞ (
0,T ; L2 (O)

)
∩W α,r

(
0,T ;H−β (O)

)
⊂ C

(
[0,T ] ;H−1 (O)

)
,

with compact inclusion, provided that α < 1
2 , β > 4, r ≥ 4 and αr > 1.
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Sketch of the proof

To this purpose, we rely on the following lemmas.

Lemma

There exists a constant C independent of n such that for r ≥ 4 and all
0 ≤ s ≤ t ≤ T it holds

E
[∣∣∣(X (n)

t − X
(n)
s , ej

)
2

∣∣∣r] ≤ C |t − s |
r
2

(
λr
j + ∥div [Q (ξ)∇ej ]∥r2 + λ

r
2
j

)
.

The result is proven by estimating each of the terms appearing in the
definition of the solution.

Lemma

For β > 4 and r ≥ 4 , there is a constant C independent of n such that

E
[∥∥∥X (n)

t − X
(n)
s

∥∥∥r
H−β

]
≤ C |t − s |

r
2 .
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Sketch of the proof

We can now use the previous Lemmas in order to get

∫ T

0

∫ T

0

E

∥∥∥X (n) (t)− X (n) (s)
∥∥∥r
H−β

|t − s |1+αr
dtds ≤

∫ T

0

∫ T

0

C |t − s |
r
2

|t − s |1+αr
dtds ≤ C ,

since 1+ αr − r
2 < 1 for α ∈

(
0, 12

)
and r ≥ 4.

We get that the set

KR =
{
f ∈ C

(
0,T ;H−1 (O)

)
; ∥f ∥L∞(0,T ;L2(O)) + ∥f ∥W α,r(0,T ;H−β(O)) ≤ R

}
is a compact set in the space C

(
[0,T ] ;H−1 (O)

)
.
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Sketch of the proof

By using Markov’s inequality, we have

νn (K
c
R) = P

(
X (n) ∈ K c

R

)
= P

(∥∥∥X (n)
∥∥∥
L∞(0,T ;L2(O))

+
∥∥∥X (n)

∥∥∥
W α,r(0,T ;H−β(O))

> R

)
≤ 1

R
E

[∥∥∥X (n)
∥∥∥
L∞(0,T ;L2(O))

+
∥∥∥X (n)

∥∥∥
W α,r(0,T ;H−β(O))

]
≤ C

R
≤ ε,

for R sufficiently large and we obtain that the family of laws {νn}n is tight
in the space C

(
[0,T ] ;H−1 (O)

)
.
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Sketch of the proof

As a consequence, by Skorohod’s theorem, there exists a probability space(
Ω̃, F̃ , P̃

)
endowed with a filtration

(
F̃t

)
t∈[0,T ]

, a sequence of filtrations(
F̃ (n)

t

)
t∈[0,T ]

, and the stochastic processes X̃ (n) with the
(
F̃ (n)

t

)
t∈[0,T ]

cylindrical Wiener process W̃ (n) =
∞
∑
k=1

ek β̃k,n
t and also X̃ with the(

F̃t

)
t∈[0,T ]

cylindrical Wiener process W̃ =
∞
∑
k=1

ek β̃k
t on

(
Ω̃, F̃ , P̃

)
.

Furthermore, the law of X̃ (n) is the same as the law of X (n), the law of
W̃ (n)is the same as the law of W (n)and

X̃ (n) −→ X̃ strongly in C
(
[0,T ] ;H−1 (O)

)
, P̃ − a.s. (15)

β̃k,n
t −→ β̃k

t strongly in C ([0,T ] ;R) , P̃ − a.s., ∀k ≥ 0,

as n → ∞.
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Sketch of the proof

We consider the limit in the (PDE) weak formulation of approximating
solutions, i.e.,(

X̃ (n) (t) , ej
)
2

=
(
x (n), ej

)
2
+

∫ t

0

∫
O

Ψ
(
X̃ (n) (s)

)
∆ejdξds

+
∫ t

0

∫
O
g
(

γ̃−1
(
X̃ (n)

))
div [Q∇ej ] dξds

+
n

∑
k=1

∫ t

0
αk

(
η
(

γ̃−1
(
X̃ (n)

))
, σk · ∇ej

)
2
d β̃k,n

s ,

P̃ − a.s. and we obtain that(
X̃ (t) , ej

)
2

= (x , ej )2 +
∫ t

0

∫
O

Ψ
(
X̃ (s)

)
∆ejdξds

+
∫ t

0

∫
O
g
(

γ̃−1
(
X̃
))

div [Q (ξ)∇ej ] dξds

+
∞

∑
k=1

∫ t

0
αk

(
η
(

γ̃−1
(
X̃
))

, σk · ∇ej

)
2
d β̃k

s , P − a.s.
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The organization of the talk

The organization of the talk is the following.

Construction of the model

The rigorous construction of the noise

Assumptions

The mathematical model

Definition of the solution and result

Sketch of the proof

Scaling limit of stochastic PDE with turbulent transport
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Scaling limit of stochastic PDE

We consider again the equation{
dX − ∆K

(
γ−1 (X )

)
dt + u · ∇η

(
γ−1 (X )

)
= F

X (0, ξ) = x0 (ξ) .

For more clearness we shall denote by Ψ = K ◦ γ−1 and Γ = η ◦ γ−1 and
rewrite the equation as follows{

dX − ∆Ψ (X ) dt + u · ∇Γ (X ) = F
X (0, ξ) = x0 (ξ) .

In this setting we assume that

Ψ and Γ are assumed to be strictly monotone such that Ψ′ ≥ ψ0 > 0
and Γ′ ≥ γ0 > 0 and Lipschitz continuos, and to be null in zero.

γ̃−1 is assumed to satisfy that
(
γ̃−1

)′
< 1. (This assumption is not

restrictive and is necessary in order to apply the existence result for
the stochastic equation.)
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Scaling limit of stochastic PDE

We study this equation in the two dimensional torus Π2 = R2/Z2 and we
consider

(
Hs,p

(
Π2

)
, ∥·∥Hs,p

)
, s ∈ R, p ∈ (1,∞) a Bessel space of zero

mean periodic functions.
The turbulence term u · ∇Γ (X ) we take the Stratonovich interpretation

u (t, ξ) = ∑
k∈Z2

0

αkσk ◦ dβk

and we get
u · ∇Γ (X ) = ∑

k∈Z2
0

αkσk∇Γ (X ) ◦ dβk . (16)

where Γ is assumed to be Lipschitz and smooth and such that Γ (r) = 0
on (−∞, ε) for some ε > 0 very mall and

∣∣Γ (r)′
∣∣ ≤ const.
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Scaling limit of stochastic PDE

The Stratonovich noise that we introduced previously can be formulated in
Itô form by the following transformation

∑
k∈Z2

0

αkσk∇Γ (X ) ◦ dβk = ∑
k∈Z2

0

αkσk∇Γ (X ) dβk (17)

−1

2 ∑
k∈Z2

0

α2
kdiv

[(
Γ′ (X )

)2
σk ⊗ σk∇X

]
dt.

By applying Lemma 2.6 from

F. Flandoli, D. Luo, Convergence of transport noise to
Ornstein–Uhlenbeck for 2D Euler equations under the enstrophy
measure. Ann. Probab. 48, no. 1, 264–295, 2020.

we have that

∑
k∈Z2

0

α2
k (σk ⊗ σk) =

1

2
I2,

where I2 is a two-dimensional identity matrix.
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Scaling limit of stochastic PDE

The Stratonovich noise that we introduced previously can be formulated in
Itô form by the following transformation

∑
k∈Z2

0

αkσk∇Γ (X ) ◦ dβk = ∑
k∈Z2

0

αkσk∇Γ (X ) dβk (18)

−1

2 ∑
k∈Z2

0

α2
kdiv

[(
Γ′ (X )

)2
σk ⊗ σk∇X

]
dt.

We denote by

g (r) =
1

4

∫ r

0

(
Γ′ (x)

)2
dx , r ∈ R

which satisfies g (0) = 0 and is Lipschitz from the properties of Γ.
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Scaling limit of stochastic PDE

The Stratonovich noise that we introduced previously can be formulated in
Itô form by the following transformation

∑
k∈Z2

0

αkσk∇Γ (X ) ◦ dβk = ∑
k∈Z2

0

αkσk∇Γ (X ) dβk (19)

−1

2 ∑
k∈Z2

0

α2
kdiv

[(
Γ′ (X )

)2
σk ⊗ σk∇X

]
dt.

Going back to (19) we get that

∑
k∈Z2

0

αkσk∇Γ (X ) ◦ dβk (20)

= ∑
k∈Z2

0

αkσk∇Γ (X ) dβk −
1

4
div

[(
Γ′ (X )

)2 ∇X
]
dt

= ∑
k∈Z2

0

αkσk∇Γ (X ) dβk − ∆g (X ) .
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Scaling limit of stochastic PDE

We can rigorously write equation as{
dX − ∆Ψ (X ) dt − ∆g (X ) dt + ∑k∈Z2

0
αkσk∇Γ (X ) dβk = F

X (0, ξ) = x0
(21)

Note that this is possible only when we work on a torus.
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Scaling limit of stochastic PDE

Definition

Let x ∈ L2
(
Π2

)
. We say that equation (21) has a weak solution if there

exist

a filtered reference probability space
(
Ω,F , (Ft)t≥0 ,P

)
,

a sequence of independent Ft Brownian motions,

an H−1
(
Π2

)
−valued continuous Ft−adapted process

X ∈ L2
(
0,T ; L2

(
Π2

))
and the following holds true

(X (t) , ej )2 = (x , ej )2 +
∫ t

0
(F (s) , ej )2 ds

+
∫ t

0
(Ψ (X (s)) ,∆ej )2 ds +

∫ t

0
(g (X (s)) ,∆ej )2 ds

+ ∑
k∈Z2

0

∫ t

0
αk (σkΓ (X (s)) ,∇ej ) dβk (s) .

I. Ciotir (INSA Rouen, France) Stefan Problem With Mushy Turbulent Noise 27/06 46 / 51



Scaling limit of stochastic PDE

We consider a sequence
{

αN
}
N∈N

⊆ l2
(
Z2

0

)
constructed as before and

satisfying

lim
N→∞

∥∥∥αN
∥∥∥
l∞

= 0, (22)

and we denote XN the corresponding solutions of equation (21) with{
αN
k

}
instead of {αk} in the construction of the noise.
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Scaling limit of stochastic PDE

In the present work we prove that the law of XN converges in the usual
weak (or, more precisely weak-*) sense to a Dirac mass concentrated on
the unique solution to the following deterministic porous media equation{

dX − ∆Ψ (X ) dt − ∆g (X ) dt = F
X (0, ξ) = x .

(23)

We can write the solution to equation (23) as a PDE weak one

X ∈ L2
(
(0,T )× Π2

)
∩ C

(
[0,T ]×H−1

(
Π2

))
in the following form

(X (t) , ej )2 = (x , ej )2 +
∫ t

0
(F (s) , ej )2 ds

+
∫ t

0
(Ψ (X (s)) ,∆ej )2 ds +

∫ t

0
(g (X (s)) ,∆ej )2 ds,

for all test functions ej provided above.
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Scaling limit of stochastic PDE

Theorem

Let
{

αN
}
N∈N

⊆ l2
(
Z2

0

)
be a sequence satisfying the assumptions above.

We denote

by XN the corresponding solutions to the equations (21), where α is
replaced with (αN), and

by νN := PXN the law of these solutions supported by
L2

(
(0,T )× Π2

)
∩ C

(
[0,T ] ;H−1

(
Π2

))
.

Then, the family
{

νN
}
is tight on C

(
[0,T ] ;H−1

(
Π2

))
, and it converges

weakly to the Dirac measure δX where X is the unique solution of the
equation (23).
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Thank you very much !
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