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Heat production in mitochondria

The mitochondria: “powerhouse of the cells” (Siekevitz, 1957)

© physiologymodels.info

▷ actively respiring mitochondria heat up
▷ heat production occurs across the cristae membranes, which

typically lie in parallel, potentially retaining heat ≃ radiator
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Tbath Tbath

Temperature profile

Non-equilibrium phenomenon  [PLoS Biol 2017, 2018]

Recorded mitochondrial temperatures were some 10Co above the
surrounding water bath, which was maintained at 38Co

▷ Illustration of conversion of work into heat: microscopic model ?
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One-dimensional chain of
oscillators



Microscopic model

• 1d chain of N + 1 unpinned coupled oscillators

nothing

nothing

0 1 Nn− 1 n

qn : position of atom n → qn ∈ R
pn : momentum of atom n → pn ∈ R
rn : “distance” between n− 1 and n → rn = qn − qn−1 ∈ R

• Dynamics on the configurations of particles

(r,p) = (r1, . . . , rN , p0, . . . , pN ) ∈ RN × RN+1
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Hamiltonian dynamics

Total energy = Hamiltonian

HN :=
p20
2

+

N∑
n=1

En with En :=
p2n
2

+ V (rn)︸ ︷︷ ︸
interaction

+ ����W (qn)︸ ︷︷ ︸
no pinning

Dynamics
ṙn(t) = pn(t)− pn−1(t)

ṗn(t) = V ′(rn+1)(t)− V ′(rn)(t)
(⋆)

Boundary conditions? (what are r0 and rN+1?)

1. Periodic case: p0 = pN , r0 = rN

2. Deterministic forces: r0 ≡ 0, rN+1(t) = FN (t)

3. Stochastic Langevin thermostats: ensure E
[
p20
]
= T−, E[p2N ] = T+.
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Harmonic interactions

 GOAL:

▷ Distribute {rn(0), pn(0)} randomly ∼ µN
0

▷ Look at the two main conserved quantities∑
n

En (energy)
∑
n

rn (volume)

? Is there some nontrivial macroscopic evolution as N → +∞, e.g.

1

N

N∑
n=1

En(tNα)G
(
n
N

)
︸ ︷︷ ︸

energy field

?−−−−−→
N→+∞

∫ 1

0

e(t, x)︸ ︷︷ ︸
energy profile

G(x)dx

 HARD question with a long history!

▷ Quite few results for a generic choice of V
▷ Rigorous results with the harmonic choice V (r) = r2
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Harmonic potential and periodic b.c.

Harmonic case: V (r) = r2

2 then... En = 1
2 (r

2
n + p2n) and (⋆) is linear!

Equilibrium measures: Here, Gibbs states νNτ,β = ind. Gaussians

νNτ,β ∼
⊗
n

N
(
τ , β−1

)︸ ︷︷ ︸
law of rn

⊗
k

N
(
0, β−1

)︸ ︷︷ ︸
law of pk

{
τ = tension
β−1 = temperature

Objective: Let µN
t (dr, dp) = probability law at time t, and µN

0 ̸= νNτ,β

Atomic description space-time rescaling−−−−−−−−−−−→
N→+∞

Macroscopic description

Remarks:

 In the harmonic case there are much more conservation laws

RN =
∑

rn, HN =
∑
En, but also PN =

∑
pn, . . .

 Thanks to linearity, one can use Fourier transforms

6
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Towards diffusion of heat?

In the pure harmonic case, one can easily see

• transport of any energy phonon → no diffusion
φ(t, k) = 2| sin(πk)|q̂(t, k)+ip̂(t, k), k ∈ {0, 1

n
, . . . , n−1

n
} (Fourier modes)

• decomposition of the microscopic energy

E[En(t)] :=
∫

1
2 (p

2
n + r2n) dµN

t = eheatn (t) + emech
n (t)

emech
n = 1

2E[rn]
2 + 1

2E[pn]
2 eheatn = 1

2E
[(
rn − E[rn]

)2
+
(
pn − E[pn]

)2]
(slow modes) (fast modes)

Too many conservation laws! We add a stochastic noise which

• keeps only two conservation laws: energy and volume
• models the effect of nonlinearity in V ′

• allows us to prove convergences rigorously

7
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Harmonic chain with stochastic
noise in the diffusive time scale



Stochastic perturbation

Property of the stochastic noise: have to preserve HN and RN

0

time

Hamilt.

▷ Add independent Poisson processes = random clocks
▷ When the clock of atom n rings, flip pn into −pn
≃ collisions with external particles of infinite mass

Does not preserve
∑

pn still preserves
∑

rn and
∑
En

8
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▷ Add independent Poisson processes = random clocks

▷ When the clock of atom n rings, flip pn into −pn
≃ collisions with external particles of infinite mass
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Full microscopic description

Bulk dynamics (n = 1, . . . , N)

drn(t) = (pn(t)− pn−1(t)) dt

dpn(t) = (rn+1(t)− rn(t)) dt︸ ︷︷ ︸
hamiltonian

− 2pn(t
−) dNn(γt)︸ ︷︷ ︸

flip of intensity γ

, n ̸= N

Boundary conditions? We add two mechanisms

q0 q1 qNqn−1 qn qn+1

rn

pn
T− T+

FN (t)

9
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Evolution at the boundaries?

Langevin thermostat: Assume that (q(t), p(t)) ∈ R × R follows
dq(t) = p(t)dt

dp(t) = −V ′(q(t))dt −p(t)dt︸ ︷︷ ︸
dissipation

+
√

2β−1 dw(t)︸ ︷︷ ︸
brownian fluctuation

then the invariant proba measure is the equilibrium Gibbs measure
exp(−βH(p, q))

Z
dqdp at temperature β−1 with H =

p2

2
+ V (q)

Finally, at the boundaries,

dp0(t) =
(
r1(t) −0

)
dt −2p0(t

−) dN0(γt)︸ ︷︷ ︸
flip of intensity γ

− p0(t) dt+
√

2T−dw0(t)︸ ︷︷ ︸
Langevin thermostat at T−

,

dpN (t) = −
(
rN (t) −FN (t)

)
dt −2pN (t−) dNN (γt)︸ ︷︷ ︸

flip of intensity γ

− pN (t) dt+
√

2T+dwN (t)︸ ︷︷ ︸
Langevin thermostat at T+

10
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From the microscopic description
to macroscopic equations



Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian + Flip noise + Boundary force and thermostats

Then
{
(rn(tN

2), pn(tN
2))

}
t⩾0

is a Markov process on RN×RN+1 which

has only two conserved quantities, HN =
∑

en, RN =
∑

rn.

Initial measure µN
0 : Given some profiles rini(·) and eini(·)

1

N

N∑
n=0

G
(
n
N

)
E
[
rn(0)

]
−−−−→
N→∞

∫ 1

0

G(x)rini(x)dx

1

N

N∑
n=0

G
(
n
N

)
E
[
En(0)

]
−−−−→
N→∞

∫ 1

0

G(x)eini(x)dx

+ initial second moment and entropy bounds
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Macroscopic evolution of volume and energy profiles

? Hydrodynamic limit ≃ law of large numbers → diffusion of energy?

THEOREM 1: Fn(t) ≡ F and T+ ̸= 0 [Komorowski, Olla, S. 2020]

1
N

N∑
n=0

G
(
n
N

)
E
[
rn(tN

2)
]
−−−−→
N→∞

∫ 1

0

G(x) r(t, x) dx

1
N

N∑
n=0

G
(
n
N

)
E
[
En(tN2)

]
−−−−→
N→∞

∫ 1

0

G(x) e(t, x) dx

with r(0, ·) = rini, e(0, ·) = eini

∂tr =
1

2γ
∂xxr, ∂te =

1

4γ
∂xx

(
e+

r2

2

)
and {

r(t, 0) = 0

e(t, 0) = T−

{
r(t, 1) = F

e(t, 1) = T++
1
2F

2

12
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Thermal and mechanical energy

▷ Elongation
∂tr(t, x) =

1

2γ
∂xxr(t, x)

▷ Total energy

e(t, x) = eheat(t, x)︸ ︷︷ ︸
temperature

+ emech(t, x)

with

emech(t, x) =
1

2
r2(t, x)

∂te
heat(t, x) =

1

4γ
∂xxe

heat(t, x) +
1

2γ

(
∂xr(t, x)

)2︸ ︷︷ ︸
dissipation

of mechanical energy
into thermal energy

13
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Stationary profile

Stationary solutions: r∞(·) and eheat∞ (·)

r∞(x) = F x

eheat∞ (x) = F
2
x(1− x) + (T+ − T−) x+ T−

• which achieves its maximum in

xmax =
1

2
+

T+ − T−

2F
2 ∈ [0, 1] ⇔ |T+ − T−| < F

2

heating inside the system

• and with stationary current

J∞ = − 1

4γ
(T+ − T− + F

2
) < 0 if T− > T+ and F is large

←−J∞T− > T+ T+

uphill diffusion

14
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A new boundary condition when T+ ≡ 0

The boundary force writes

FN (t) = F︸︷︷︸
average

+ F̃N (t)︸ ︷︷ ︸
periodic

with F̃N (t) =
1√
N

∑
ℓ ̸=0

F̂(ℓ)eiℓωt

THEOREM 2 [Komorowski, Olla, S. 2024]
The macroscopic equations become:

∂tr =
1

2γ
∂xxr, ∂te =

1

4γ
∂xx

(
e+

r2

2

)
and {

r(t, 0) = 0

e(t, 0) = T−

{
r(t, 1) = F

∂xe(t, 1) = F∂xr(t, 1) + 4γWheat

NB  (F∂xr(t, 1) + 4γWheat) comes from the total work by the force

and Wheat comes from the fluctuating part F̃N .

15
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Total work done by the force

We define the average work done in the diffusive time scale:

WN (t) =
1

N

∫ tN2

0

FN (s) E[pN ](s)ds

=
1

N

∫ tN2

0

E[jN,N+1]︸ ︷︷ ︸
microscopic current

(s)ds

Then [KOS ’24]

lim
N→+∞

WN (t) =
F

2γ

∫ t

0

(∂xr)(s, 1)ds︸ ︷︷ ︸
contribution to the mechanical energy

+ Wheat t︸ ︷︷ ︸
contribution to the thermal energy

• In the bulk, the mechanical energy is transformed into the
thermal one at the rate 1

2γ (∂xr(t, x))
2

• Stationary profile: still a parabola with

eheat∞ (0) = T−, eheat∞ (1) = F
2
+ 4γWheat + T−

16
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Total work done by the force

We define the average work done in the diffusive time scale:

WN (t) =
1

N

∫ tN2

0

FN (s) E[pN ](s)ds =
1

N

∫ tN2

0

E[jN,N+1]︸ ︷︷ ︸
microscopic current

(s)ds

Then [KOS ’24]
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A little flavour of the proof



A few elements of proof

1. Estimate boundary terms: for instance∣∣∣∣ ∫ t

0

E
[
p0(sN

2)
]
ds

∣∣∣∣ ⩽ C(t+ 1)

N

∣∣∣∣ ∫ t

0

E
[
pN (sN2)

]
ds

∣∣∣∣ ⩽ C(t+ 1)

N

2. L2 bound on averages:

1

N

N∑
n=0

[(
E
[
rn(s)

])2
+

(
E
[
pn(s)

])2] ⩽ C

3. Energy bound (via control of entropy production):

1

N

N∑
n=0

E
[
En(tN2)

]
⩽ C(t+ 1)
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Time evolution of averages

We have a closed system of evolution for the averages:

pn(t) := E[pn(t)], rn(t) := E[rn(t)]

In the bulk:
d

dt
rn(t) = N2

(
pn(t)− pn−1(t)

)
d

dt
pn(t) = N2

(
rn+1(t)− rn

)
−2γN2 pn(t)

and at the boundaries:
d

dt
p0(t) = N2r1(t)−N2(2γ + 1)p0(t)

d

dt
pN (t) = −N2rN (t) +N2 FN (t)−N2(2γ + 1)pN (t)
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Control of covariances

An interesting result is the following equipartition between fluctuations
of distances and momenta∫ t

0

1

N

N∑
n=0

G
(
n
N , s

)
E
[(
rn − rn

)2 − (
pn − pn

)2︸ ︷︷ ︸
∼ thermal

]
(sN2) ds −−−−→

N→∞
0.

▷ Thanks to a good control of covariances. Let

CN (t) :=
1

N

N∑
n,k=0

(
Cov(pn, rk)

2 +Cov(pn, pk)
2 +Cov(rn, rk)

2
)
(tN2)

Then
CN (t) ≲ CN (0) + Ct log2(N)
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Conclusion

nothing

nothing

pn

q0 q1 qNqn−1 qn

rn

1) Purely harmonic chain → transport of energy phonons

2) Add stochastic FLIP noise → diffusion of total energy

∂te(t, x) =
1

4γ
∂xx

(
e+ 1

2r
2
)
, e = 1

2r
2 + eheat

3) Conversion of work into heat via a simple microscopic model
→ derivation of different boundary conditions
→ in particular, the uphill phenomenon
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Thank you for your attention!
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