Macroscopic evolution of mechanical and thermal energy in a harmonic chain

Marielle Simon

Univ. Lyon 1 and GSSI L'Aquila

Workshop on Irregular Stochastic Analysis, Cortona 2025

Heat production in mitochondria

The mitochondria: "powerhouse of the cells" (Siekevitz, 1957)

© physiologymodels.info

- > actively respiring mitochondria **heat up**
- ightharpoonup heat production occurs across the cristae membranes, which typically lie **in parallel**, potentially retaining heat \simeq **radiator**

Temperature profile

Non-equilibrium phenomenon

PLoS Biol 2017, 2018]

Recorded mitochondrial temperatures were some 10C° **above** the surrounding water bath, which was **maintained** at 38C°

Temperature profile

Non-equilibrium phenomenon

[PLoS Biol 2017, 2018]

Recorded mitochondrial temperatures were some 10C° **above** the surrounding water bath, which was **maintained** at 38C°

> Illustration of conversion of work into heat: microscopic model ?

One-dimensional chain of

oscillators

• 1d chain of N+1 unpinned coupled oscillators

• 1d chain of N+1 unpinned coupled oscillators

 $\begin{array}{lll} q_n & : \mbox{ position of atom } n & & \to q_n \in \mathbb{R} \\ p_n & : \mbox{ momentum of atom } n & & \to p_n \in \mathbb{R} \end{array}$

• 1d chain of N+1 unpinned coupled oscillators


```
\begin{array}{lll} q_n & : \text{ position of atom } n & & \to q_n \in \mathbb{R} \\ p_n & : & \text{momentum of atom } n & & \to p_n \in \mathbb{R} \\ r_n & : & \text{"distance" between } n-1 \text{ and } n & & \to r_n = q_n - q_{n-1} \in \mathbb{R} \end{array}
```

• 1d chain of N+1 unpinned coupled oscillators

$$\begin{array}{lll} q_n & : \text{ position of atom } n & & \to q_n \in \mathbb{R} \\ p_n & : \text{ momentum of atom } n & & \to p_n \in \mathbb{R} \\ r_n & : \text{ "distance" between } n-1 \text{ and } n & & \to r_n = q_n - q_{n-1} \in \mathbb{R} \end{array}$$

Dynamics on the configurations of particles

$$(\mathbf{r}, \mathbf{p}) = (r_1, \dots, r_N, p_0, \dots, p_N) \in \mathbb{R}^N \times \mathbb{R}^{N+1}$$

Total energy = Hamiltonian

$$\mathcal{H}_N := \frac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad \text{with} \qquad \mathcal{E}_n := \frac{p_n^2}{2} + \underbrace{V(r_n)}_{\text{interaction}} + \underbrace{W(q_n)}_{\text{no pinning}}$$

Total energy = Hamiltonian

$$\mathcal{H}_N := rac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad ext{with} \qquad \mathcal{E}_n := rac{p_n^2}{2} + \underbrace{V(r_n)}_{ ext{interaction}}$$

Dynamics

$$\dot{r}_n(t) = p_n(t) - p_{n-1}(t)
\dot{p}_n(t) = V'(r_{n+1})(t) - V'(r_n)(t)$$
(*)

Total energy = Hamiltonian

$$\mathcal{H}_N := rac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad ext{with} \qquad \mathcal{E}_n := rac{p_n^2}{2} + \underbrace{V(r_n)}_{ ext{interaction}}$$

Dynamics

$$\dot{r}_n(t) = p_n(t) - p_{n-1}(t)
\dot{p}_n(t) = V'(r_{n+1})(t) - V'(r_n)(t)$$
(*)

Boundary conditions? (what are r_0 and r_{N+1} ?)

1. Periodic case: $p_0 = p_N$, $r_0 = r_N$

Total energy = Hamiltonian

$$\mathcal{H}_N := rac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad ext{with} \qquad \mathcal{E}_n := rac{p_n^2}{2} + \underbrace{V(r_n)}_{ ext{interaction}}$$

Dynamics

$$\dot{r}_n(t) = p_n(t) - p_{n-1}(t)
\dot{p}_n(t) = V'(r_{n+1})(t) - V'(r_n)(t)$$
(*)

Boundary conditions? (what are r_0 and r_{N+1} ?)

- 1. Periodic case: $p_0 = p_N$, $r_0 = r_N$
- **2.** Deterministic forces: $r_0 \equiv 0$, $r_{N+1}(t) = \mathcal{F}_N(t)$

Total energy = Hamiltonian

$$\mathcal{H}_N := rac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad ext{with} \qquad \mathcal{E}_n := rac{p_n^2}{2} + \underbrace{V(r_n)}_{ ext{interaction}}$$

Dynamics

$$\dot{r}_n(t) = p_n(t) - p_{n-1}(t)
\dot{p}_n(t) = V'(r_{n+1})(t) - V'(r_n)(t)$$
(*)

Boundary conditions? (what are r_0 and r_{N+1} ?)

- 1. Periodic case: $p_0 = p_N$, $r_0 = r_N$
- **2.** Deterministic forces: $r_0 \equiv 0$, $r_{N+1}(t) = \mathcal{F}_N(t)$
- **3.** Stochastic Langevin **thermostats**: ensure $\mathbb{E}\big[p_0^2\big] = T_-$, $\mathbb{E}[p_N^2] = T_+$.

Total energy = Hamiltonian

$$\mathcal{H}_N := rac{p_0^2}{2} + \sum_{n=1}^N \mathcal{E}_n \qquad ext{with} \qquad \mathcal{E}_n := rac{p_n^2}{2} + \underbrace{V(r_n)}_{ ext{interaction}}$$

Dynamics

$$\dot{r}_n(t) = p_n(t) - p_{n-1}(t)
\dot{p}_n(t) = V'(r_{n+1})(t) - V'(r_n)(t)$$
(*)

Boundary conditions? (what are r_0 and r_{N+1} ?)

1. Periodic case: $p_0 = p_N$, $r_0 = r_N \Rightarrow$ conservation of

$$\sum_{n=1}^N rac{p_n^2}{2} + V(r_n)$$
 (energy) and $\sum_{n=1}^N r_n$ (volume)

⇔ GOAL:

ho Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

♥ GOAL:

- ightharpoonup Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

$$\sum_n \mathcal{E}_n$$
 (energy) $\sum_n r_n$ (volume)

♥ GOAL:

- ightharpoonup Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

$$\sum_n \mathcal{E}_n$$
 (energy) $\sum_n r_n$ (volume)

? Is there some nontrivial macroscopic evolution as $N \to +\infty$,

♥ GOAL:

- ightharpoonup Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

$$\sum_n \mathcal{E}_n$$
 (energy) $\sum_n r_n$ (volume)

? Is there some nontrivial macroscopic evolution as $N \to +\infty$, e.g.

$$\underbrace{\frac{1}{N}\sum_{n=1}^{N}\mathcal{E}_{n}(tN^{\alpha})G\left(\frac{n}{N}\right)}_{\text{energy field}}$$

♥ GOAL:

- \triangleright Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

$$\sum_n \mathcal{E}_n$$
 (energy) $\sum_n r_n$ (volume)

? Is there some nontrivial macroscopic evolution as $N \to +\infty$, e.g.

$$\underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{n}(t N^{\alpha}) G\left(\frac{n}{N}\right)}_{\text{energy field}} \xrightarrow[N \to +\infty]{\mathbf{?}} \int_{0}^{1} \underbrace{\mathbf{e}(t, x)}_{\text{energy profile}} G(x) \mathrm{d}x$$

⇔ GOAL:

- ightharpoonup Distribute $\{r_n(0), p_n(0)\}$ randomly $\sim \mu_0^N$

$$\sum_n \mathcal{E}_n$$
 (energy) $\sum_n r_n$ (volume)

? Is there some nontrivial macroscopic evolution as $N \to +\infty$, e.g.

$$\underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_n(t N^{\alpha}) G\left(\frac{n}{N}\right)}_{\text{energy field}} \xrightarrow[N \to +\infty]{\overset{?}{\underset{N \to +\infty}{\longrightarrow}}} \int_0^1 \underbrace{\mathbf{e}(t,x)}_{\text{energy profile}} G(x) \mathrm{d}x$$

- THARD question with a long history!
 - \triangleright Quite **few results** for a generic choice of V
 - \triangleright Rigorous results with the **harmonic choice** $V(r) = \frac{r^2}{2}$

Harmonic case: $V(r)=\frac{r^2}{2}$ then... $\mathcal{E}_n=\frac{1}{2}(r_n^2+p_n^2)$ and (\star) is linear!

Harmonic case: $V(r)=\frac{r^2}{2}$ then... $\mathcal{E}_n=\frac{1}{2}(r_n^2+p_n^2)$ and (\star) is linear!

Equilibrium measures:

Harmonic case: $V(r) = \frac{r^2}{2}$ then... $\mathcal{E}_n = \frac{1}{2}(r_n^2 + p_n^2)$ and (\star) is linear!

Equilibrium measures: Here, Gibbs states $u^N_{ au,\beta} = \text{ind.}$ Gaussians

Harmonic case: $V(r) = \frac{r^2}{2}$ then... $\mathcal{E}_n = \frac{1}{2}(r_n^2 + p_n^2)$ and (\star) is linear!

Equilibrium measures: Here, Gibbs states $\nu_{\tau,\beta}^{N} = \text{ind. Gaussians}$

$$\nu_{\tau,\beta}^N \sim \bigotimes_n \underbrace{\mathcal{N}\big(\tau,\beta^{-1}\big)}_{\text{law of } r_n} \bigotimes_k \underbrace{\mathcal{N}\big(0,\beta^{-1}\big)}_{\text{law of } p_k} \qquad \begin{cases} \tau = \text{ tension} \\ \beta^{-1} = \text{ temperature} \end{cases}$$

$$\begin{cases} \tau = \text{ tension} \\ \beta^{-1} = \text{ temperature} \end{cases}$$

Harmonic case: $V(r) = \frac{r^2}{2}$ then... $\mathcal{E}_n = \frac{1}{2}(r_n^2 + p_n^2)$ and (\star) is linear!

Equilibrium measures: Here, Gibbs states $u^N_{ au,\beta} = \mathrm{ind.}$ Gaussians

$$\nu_{\tau,\beta}^N \sim \bigotimes_n \underbrace{\mathcal{N}\big(\tau,\beta^{-1}\big)}_{\text{law of } r_n} \bigotimes_k \underbrace{\mathcal{N}\big(0,\beta^{-1}\big)}_{\text{law of } p_k} \qquad \begin{cases} \tau = \text{ tension} \\ \beta^{-1} = \text{ temperature} \end{cases}$$

Objective: Let $\mu^N_t(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p})=$ probability law at time t, and $\mu^N_0\neq \nu^N_{ au,\beta}$

Harmonic case: $V(r) = \frac{r^2}{2}$ then... $\mathcal{E}_n = \frac{1}{2}(r_n^2 + p_n^2)$ and (\star) is linear!

Equilibrium measures: Here, Gibbs states $u^N_{ au,\beta} = \mathrm{ind.}$ Gaussians

$$\nu_{\tau,\beta}^N \sim \bigotimes_n \underbrace{\mathcal{N}\big(\tau,\beta^{-1}\big)}_{\text{law of } r_n} \bigotimes_k \underbrace{\mathcal{N}\big(0,\beta^{-1}\big)}_{\text{law of } p_k} \qquad \begin{cases} \tau = \text{ tension} \\ \beta^{-1} = \text{ temperature} \end{cases}$$

Objective: Let $\mu^N_t(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p})=$ **probability law** at time t, and $\mu^N_0\neq \nu^N_{\tau,\beta}$

Remarks:

1 In the harmonic case there are much more conservation laws

$$\mathcal{R}_N = \sum r_n, \qquad \mathcal{H}_N = \sum \mathcal{E}_n, \qquad \text{but also } \mathcal{P}_N = \sum p_n, \dots$$

Harmonic case: $V(r) = \frac{r^2}{2}$ then... $\mathcal{E}_n = \frac{1}{2}(r_n^2 + p_n^2)$ and (\star) is linear!

Equilibrium measures: Here, **Gibbs states** $\nu_{ au,\beta}^N = \mathrm{ind.}$ Gaussians

$$\nu_{\tau,\beta}^N \sim \bigotimes_n \underbrace{\mathcal{N}\left(\tau,\beta^{-1}\right)}_{\text{law of } r_n} \bigotimes_k \underbrace{\mathcal{N}\left(0,\beta^{-1}\right)}_{\text{law of } p_k} \qquad \begin{cases} \tau = \text{ tension} \\ \beta^{-1} = \text{ temperature} \end{cases}$$

Objective: Let $\mu^N_t(\mathrm{d}\mathbf{r},\mathrm{d}\mathbf{p})=$ probability law at time t, and $\mu^N_0\neq \nu^N_{ au,\beta}$

Remarks:

• In the harmonic case there are much more conservation laws

$$\mathcal{R}_N = \sum r_n, \qquad \mathcal{H}_N = \sum \mathcal{E}_n, \qquad \text{but also } \mathcal{P}_N = \sum p_n, \dots$$

Thanks to linearity, one can use Fourier transforms

In the pure harmonic case, one can easily see

transport of any energy phonon → no diffusion

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{(Fourier modes)}$$

In the pure harmonic case, one can easily see

transport of any energy phonon → no diffusion

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{(Fourier modes)}$$

decomposition of the microscopic energy

$$\mathbb{E}[\mathcal{E}_n(t)] := \int rac{1}{2}(p_n^2 + r_n^2) \; \mathsf{d}\mu_t^N$$

In the pure harmonic case, one can easily see

transport of any energy phonon → no diffusion

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{(Fourier modes)}$$

decomposition of the microscopic energy

$$\mathbb{E}[\mathcal{E}_n(t)] := \int \frac{1}{2} (p_n^2 + r_n^2) \, \mathrm{d}\mu_t^N = \frac{\mathrm{e}_n^{\mathrm{heat}}}{n}(t) + e_n^{\mathrm{mech}}(t)$$

In the pure harmonic case, one can easily see

transport of any energy phonon → no diffusion

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{ (Fourier modes)}$$

decomposition of the microscopic energy

$$\mathbb{E}[\mathcal{E}_n(t)] := \int rac{1}{2}(p_n^2 + r_n^2) \, \mathsf{d}\mu_t^N = e_n^{ ext{heat}}(t) + e_n^{ ext{mech}}(t)$$

$$\begin{split} e_n^{\rm mech} &= \tfrac{1}{2}\mathbb{E}[r_n]^2 + \tfrac{1}{2}\mathbb{E}[p_n]^2 \qquad e_n^{\rm heat} = \tfrac{1}{2}\mathbb{E}\Big[\big(r_n - \mathbb{E}[r_n]\big)^2 + \big(p_n - \mathbb{E}[p_n]\big)^2\Big] \\ & \text{(slow modes)} & \text{(fast modes)} \end{split}$$

In the pure harmonic case, one can easily see

ullet transport of any **energy phonon** o **no diffusion**

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{(Fourier modes)}$$

decomposition of the microscopic energy

$$\mathbb{E}[\mathcal{E}_n(t)] := \int rac{1}{2}(p_n^2 + r_n^2) \ \mathsf{d}\mu_t^N = e_n^\mathrm{heat}(t) + e_n^\mathrm{mech}(t)$$

$$\begin{split} e_n^{\rm mech} &= \tfrac{1}{2}\mathbb{E}[r_n]^2 + \tfrac{1}{2}\mathbb{E}[p_n]^2 \qquad e_n^{\rm heat} = \tfrac{1}{2}\mathbb{E}\Big[\big(r_n - \mathbb{E}[r_n]\big)^2 + \big(p_n - \mathbb{E}[p_n]\big)^2\Big] \\ & \text{(slow modes)} & \text{(fast modes)} \end{split}$$

Too many conservation laws!

In the pure harmonic case, one can easily see

transport of any energy phonon → no diffusion

$$\varphi(t,k)=2|\sin(\pi k)|\widehat{q}(t,k)+i\widehat{p}(t,k), \qquad k\in\{0,\tfrac{1}{n},\ldots,\tfrac{n-1}{n}\} \ \text{(Fourier modes)}$$

decomposition of the microscopic energy

$$\mathbb{E}[\mathcal{E}_n(t)] := \int rac{1}{2}(p_n^2 + r_n^2) \; \mathsf{d}\mu_t^N = e_n^{ ext{heat}}(t) + e_n^{ ext{mech}}(t)$$

$$\begin{split} e_n^{\rm mech} &= \tfrac{1}{2}\mathbb{E}[r_n]^2 + \tfrac{1}{2}\mathbb{E}[p_n]^2 \qquad e_n^{\rm heat} = \tfrac{1}{2}\mathbb{E}\Big[\big(r_n - \mathbb{E}[r_n]\big)^2 + \big(p_n - \mathbb{E}[p_n]\big)^2\Big] \\ & \text{(slow modes)} & \text{(fast modes)} \end{split}$$

Too many conservation laws! We add a stochastic noise which

- keeps only two conservation laws: energy and volume
- ullet models the effect of **nonlinearity** in V'
- allows us to prove convergences rigorously

noise in the diffusive time scale

Harmonic chain with stochastic

Stochastic perturbation

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

 ${\,\vartriangleright\,} \mathsf{Add} \mathsf{\ independent\ } \mathbf{Poisson\ processes} = \mathsf{random\ } \mathsf{clocks}$

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

 ${\,\vartriangleright\,} \mathsf{Add} \mathsf{\ independent\ } \mathbf{Poisson\ processes} = \mathsf{random\ } \mathsf{clocks}$

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

- ightharpoonup When the clock of atom n rings, flip p_n into $-p_n$ \simeq collisions with external particles of infinite mass

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

- ightharpoonup When the clock of atom n rings, **flip** p_n **into** $-p_n$ \simeq collisions with external particles of infinite mass

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

- ▷ Add independent Poisson processes = random clocks
- ightharpoonup When the clock of atom n rings, **flip** p_n **into** $-p_n$ \simeq collisions with external particles of infinite mass

Does **not** preserve $\sum p_n$ **still** preserves $\sum r_n$ and $\sum \mathcal{E}_n$

Property of the **stochastic noise**: have to preserve \mathcal{H}_N and \mathcal{R}_N

- ▷ Add independent Poisson processes = random clocks
- ightharpoonup When the clock of atom n rings, **flip** p_n **into** $-p_n$ \simeq collisions with external particles of infinite mass

Does **not** preserve $\sum p_n$ **still** preserves $\sum r_n$ and $\sum \mathcal{E}_n$

Full microscopic description

Bulk dynamics (n = 1, ..., N)

$$\mathrm{d}r_n(t) = (p_n(t) - p_{n-1}(t))\,\mathrm{d}t$$

$$\mathrm{d}p_n(t) = \underbrace{(r_{n+1}(t) - r_n(t))\,\mathrm{d}t}_{\text{hamiltonian}} \underbrace{-2p_n(t^-)\,\mathrm{d}\mathcal{N}_n(\gamma t)}_{\text{flip of intensity }\gamma}, \qquad n \neq N$$

Full microscopic description

Bulk dynamics (n = 1, ..., N)

$$\mathrm{d}r_n(t) = (p_n(t) - p_{n-1}(t))\,\mathrm{d}t$$

$$\mathrm{d}p_n(t) = \underbrace{(r_{n+1}(t) - r_n(t))\,\mathrm{d}t}_{\text{hamiltonian}} \underbrace{-2p_n(t^-)\,\mathrm{d}\mathcal{N}_n(\gamma t)}_{\text{flip of intensity }\gamma}, \qquad n \neq N$$

Boundary conditions? We add two mechanisms

Evolution at the boundaries?

Langevin thermostat: Assume that $(q(t),p(t))\in\mathbb{R}\times\mathbb{R}$ follows

$$\begin{cases} \mathrm{d}q(t) = p(t)\mathrm{d}t \\ \mathrm{d}p(t) = -V'(q(t))\mathrm{d}t \underbrace{-p(t)\mathrm{d}t}_{\text{dissipation}} + \underbrace{\sqrt{2\beta^{-1}}}_{\text{brownian fluctuation}} \mathrm{d}w(t) \end{cases}$$

then the invariant proba measure is the equilibrium Gibbs measure

$$\frac{\exp(-\beta \mathcal{H}(p,q))}{Z} \mathrm{d}q \mathrm{d}p \quad \text{ at temperature } \beta^{-1} \quad \text{with } \mathcal{H} = \frac{p^2}{2} + V(q)$$

Evolution at the boundaries?

Langevin thermostat: Assume that $(q(t), p(t)) \in \mathbb{R} \times \mathbb{R}$ follows

$$\begin{cases} \mathrm{d}q(t) = p(t)\mathrm{d}t \\ \mathrm{d}p(t) = -V'(q(t))\mathrm{d}t \underbrace{-p(t)\mathrm{d}t}_{\text{dissipation}} + \underbrace{\sqrt{2\beta^{-1}}}_{\text{brownian fluctuation}} \mathrm{d}w(t) \end{cases}$$

then the invariant proba measure is the equilibrium Gibbs measure

$$\frac{\exp(-\beta \mathcal{H}(p,q))}{Z}\mathrm{d}q\mathrm{d}p \quad \text{ at temperature } \beta^{-1} \quad \text{with } \mathcal{H} = \frac{p^2}{2} + V(q)$$

Finally, at the boundaries,

$$\begin{split} \mathrm{d}p_0(t) &= \left(r_1(t) - 0\right) \, \mathrm{d}t \underbrace{-2p_0(t^-) \, \mathrm{d}\mathcal{N}_0(\gamma t)}_{\text{flip of intensity } \gamma} \underbrace{-p_0(t) \, \mathrm{d}t + \sqrt{2T_-} \mathrm{d}w_0(t)}_{\text{Langevin thermostat at } T_-}, \\ \mathrm{d}p_N(t) &= -\left(r_N(t) - \mathcal{F}_N(t)\right) \, \mathrm{d}t \underbrace{-2p_N(t^-) \, \mathrm{d}\mathcal{N}_N(\gamma t)}_{\text{flip of intensity } \gamma} \\ &\underbrace{-p_N(t) \, \mathrm{d}t + \sqrt{2T_+} \mathrm{d}w_N(t)}_{\text{Langevin thermostat at } T_+} \end{split}$$

to macroscopic equations

From the microscopic description

Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian ★ Flip noise ★ Boundary force and thermostats

Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian + Flip noise + Boundary force and thermostats

Then $\left\{(r_n(tN^2),p_n(tN^2))\right\}_{t\geqslant 0}$ is a Markov process on $\mathbb{R}^N \times \mathbb{R}^{N+1}$ which

has only two conserved quantities, $\mathcal{H}_N = \sum e_n$, $\mathcal{R}_N = \sum r_n$.

Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian + Flip noise + Boundary force and thermostats

Then $\left\{(r_n(tN^2),p_n(tN^2))\right\}_{t\geqslant 0}$ is a Markov process on $\mathbb{R}^N \times \mathbb{R}^{N+1}$ which has only two conserved quantities, $\mathcal{H}_N = \sum e_n$, $\mathcal{R}_N = \sum r_n$.

Initial measure μ_0^N : Given some profiles $\mathbf{r}_{\mathrm{ini}}(\cdot)$ and $\mathbf{e}_{\mathrm{ini}}(\cdot)$

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[r_n(0)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{r}_{\text{ini}}(x) dx$$

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[\mathcal{E}_n(0)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{e}_{\text{ini}}(x) dx$$

+ initial second moment and entropy bounds

? Hydrodynamic limit \simeq law of large numbers \rightarrow diffusion of energy?

? Hydrodynamic limit \simeq law of large numbers \rightarrow diffusion of energy?

THEOREM 1: $\mathcal{F}_n(t) \equiv \overline{F}$ and $T_+ \neq 0$ [Komorowski, Olla, S. 2020]

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[r_n(tN^2)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{r}(t, x) dx$$

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[\mathcal{E}_n(tN^2)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{e}(t, x) dx$$

? Hydrodynamic limit \simeq law of large numbers \rightarrow diffusion of energy?

THEOREM 1: $\mathcal{F}_n(t) \equiv \overline{F}$ and $T_+ \neq 0$ [Komorowski, Olla, S. 2020]

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[r_n(tN^2)\right] \qquad \xrightarrow[N \to \infty]{} \qquad \int_0^1 G(x) \ \mathbf{r}(t,x) \ \mathrm{d}x$$

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[\mathcal{E}_n(tN^2)\right] \qquad \xrightarrow[N \to \infty]{} \qquad \int_0^1 G(x) \ \mathbf{e}(t,x) \ \mathrm{d}x$$

with
$$\mathbf{r}(0,\cdot) = \mathbf{r}_{\mathrm{ini}}$$
, $\mathbf{e}(0,\cdot) = \mathbf{e}_{\mathrm{ini}}$

? Hydrodynamic limit ≃ law of large numbers → diffusion of energy?

THEOREM 1:
$$\mathcal{F}_n(t) \equiv \overline{F}$$
 and $T_+ \neq 0$ [Komorowski, Olla, S. 2020]

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[r_n(tN^2)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{r}(t, x) dx$$

$$\frac{1}{N} \sum_{n=0}^{N} G\left(\frac{n}{N}\right) \mathbb{E}\left[\mathcal{E}_n(tN^2)\right] \xrightarrow[N \to \infty]{} \int_0^1 G(x) \mathbf{e}(t, x) dx$$

with $\mathbf{r}(0,\cdot) = \mathbf{r}_{\mathrm{ini}}$, $\mathbf{e}(0,\cdot) = \mathbf{e}_{\mathrm{ini}}$

$$\partial_t \mathbf{r} = \frac{1}{2\gamma} \frac{\partial_{xx} \mathbf{r}}{\partial_{xx}}, \qquad \partial_t \mathbf{e} = \frac{1}{4\gamma} \frac{\partial_{xx}}{\partial_{xx}} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right)$$

and

$$\begin{cases} \mathbf{r}(t,0) = 0 \\ \mathbf{e}(t,0) = T_{-} \end{cases} \begin{cases} \mathbf{r}(t,1) = \overline{F} \\ \mathbf{e}(t,1) = T_{+} + \frac{1}{2} \overline{F}^{2} \end{cases}$$

Thermal and mechanical energy

⊳ Elongation

$$\partial_t \mathbf{r}(t,x) = \frac{1}{2\gamma} \partial_{xx} \mathbf{r}(t,x)$$

Thermal and mechanical energy

▷ Elongation

$$\partial_t \mathbf{r}(t,x) = \frac{1}{2\gamma} \partial_{xx} \mathbf{r}(t,x)$$

> Total energy

$$\mathbf{e}(t,x) = \underbrace{e^{\mathrm{heat}}(t,x)}_{\mathrm{temperature}} + e^{\mathrm{mech}}(t,x)$$

with

Thermal and mechanical energy

> Elongation

$$\partial_t \mathbf{r}(t,x) = \frac{1}{2\gamma} \partial_{xx} \mathbf{r}(t,x)$$

$$\mathbf{e}(t,x) = \underbrace{e^{\mathrm{heat}}(t,x)}_{\mathrm{temperature}} + e^{\mathrm{mech}}(t,x)$$

with

$$e^{\rm mech}(t,x) = \frac{1}{2}{\bf r}^2(t,x)$$

$$\partial_t e^{\rm heat}(t,x) = \frac{1}{4\gamma}\partial_{xx}e^{\rm heat}(t,x) + \frac{1}{2\gamma}\underbrace{\left(\partial_x{\bf r}(t,x)\right)^2}_{\mbox{of mechanical energy into thermal energy}}$$

Stationary solutions: $\mathbf{r}_{\infty}(\cdot)$ and $e_{\infty}^{\mathrm{heat}}(\cdot)$

$$\mathbf{r}_{\infty}(x) = \overline{F} x$$

$$e_{\infty}^{\text{heat}}(x) = \overline{F}^2 x(1-x) + (T_+ - T_-) x + T_-$$

Stationary solutions: $\mathbf{r}_{\infty}(\cdot)$ and $e_{\infty}^{\mathrm{heat}}(\cdot)$

$$\mathbf{r}_{\infty}(x) = \overline{F} x$$

$$e_{\infty}^{\text{heat}}(x) = \overline{F}^2 x(1-x) + (T_{+} - T_{-}) x + T_{-}$$

which achieves its maximum in

$$x_{\text{max}} = \frac{1}{2} + \frac{T_{+} - T_{-}}{2\overline{F}^{2}}$$

Stationary solutions: $\mathbf{r}_{\infty}(\cdot)$ and $e_{\infty}^{\mathrm{heat}}(\cdot)$

$$\mathbf{r}_{\infty}(x) = \overline{F} x$$

$$e_{\infty}^{\text{heat}}(x) = \overline{F}^2 x(1-x) + (T_+ - T_-) x + T_-$$

• which achieves its maximum in

$$x_{\text{max}} = \frac{1}{2} + \frac{T_{+} - T_{-}}{2\overline{F}^{2}} \in [0, 1] \quad \Leftrightarrow \quad |T_{+} - T_{-}| < \overline{F}^{2}$$

heating inside the system

Stationary solutions: $\mathbf{r}_{\infty}(\cdot)$ and $e_{\infty}^{\mathrm{heat}}(\cdot)$

$$\mathbf{r}_{\infty}(x) = \overline{F} x$$

$$e_{\infty}^{\text{heat}}(x) = \overline{F}^2 x(1-x) + (T_+ - T_-) x + T_-$$

• which achieves its maximum in

$$x_{\text{max}} = \frac{1}{2} + \frac{T_{+} - T_{-}}{2\overline{F}^{2}} \in [0, 1] \quad \Leftrightarrow \quad |T_{+} - T_{-}| < \overline{F}^{2}$$

heating inside the system

and with stationary current

$$J_{\infty} = -\frac{1}{4\gamma}(T_+ - T_- + \overline{F}^2)$$

Stationary solutions: $\mathbf{r}_{\infty}(\cdot)$ and $e_{\infty}^{\mathrm{heat}}(\cdot)$

$$\mathbf{r}_{\infty}(x) = \overline{F} x$$

$$e_{\infty}^{\text{heat}}(x) = \overline{F}^2 x(1-x) + (T_+ - T_-) x + T_-$$

which achieves its maximum in

$$x_{\text{max}} = \frac{1}{2} + \frac{T_{+} - T_{-}}{2\overline{F}^{2}} \in [0, 1] \quad \Leftrightarrow \quad |T_{+} - T_{-}| < \overline{F}^{2}$$

heating inside the system

and with stationary current

$$J_{\infty}=-rac{1}{4N}(T_{+}-T_{-}+\overline{F}^{2})<0$$
 if $T_{-}>T_{+}$ and \overline{F} is large

$$T_{-} > T_{+}$$
 $\stackrel{J_{\infty}}{\longleftarrow}$ T_{+} uphill diffusion

A new boundary condition when $T_+ \equiv 0$

The **boundary force** writes

$$\mathcal{F}_N(t) = \underbrace{\overline{F}}_{\text{average}} + \underbrace{\widetilde{F}_N(t)}_{\text{periodic}} \qquad \text{with } \widetilde{F}_N(t) = \frac{1}{\sqrt{N}} \sum_{\ell \neq 0} \widehat{F}(\ell) e^{i\ell\omega t}$$

A new boundary condition when $T_+ \equiv 0$

The **boundary force** writes

$$\mathcal{F}_N(t) = \underbrace{\overline{F}}_{\text{average}} + \underbrace{\widetilde{\mathcal{F}}_N(t)}_{\text{periodic}} \qquad \text{with } \widetilde{\mathcal{F}}_N(t) = \frac{1}{\sqrt{N}} \sum_{\ell
eq 0} \widehat{\mathcal{F}}(\ell) e^{i\ell\omega t}$$

THEOREM 2

[Komorowski, Olla, S. 2024]

The macroscopic equations become:

$$\partial_t \mathbf{r} = \frac{1}{2\gamma} \frac{\partial_{xx} \mathbf{r}}{\partial_{xx}}, \qquad \partial_t \mathbf{e} = \frac{1}{4\gamma} \frac{\partial_{xx}}{\partial_{xx}} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right)$$

and

$$\begin{cases} \mathbf{r}(t,0) = 0 \\ \mathbf{e}(t,0) = T_{-} \end{cases} \begin{cases} \mathbf{r}(t,1) = \overline{F} \\ \frac{\partial_x \mathbf{e}(t,1)}{\partial_x \mathbf{e}(t,1)} = \overline{F} \partial_x r(t,1) + 4 \gamma \mathbb{W}^{\mathsf{heat}} \end{cases}$$

A new boundary condition when $T_+ \equiv 0$

The **boundary force** writes

$$\mathcal{F}_N(t) = \underbrace{\overline{F}}_{\text{average}} + \underbrace{\widetilde{\mathcal{F}}_N(t)}_{\text{periodic}} \qquad \text{with } \widetilde{\mathcal{F}}_N(t) = \frac{1}{\sqrt{N}} \sum_{\ell \neq 0} \widehat{\mathcal{F}}(\ell) e^{i\ell\omega t}$$

THEOREM 2

[Komorowski, Olla, S. 2024]

The macroscopic equations become:

$$\partial_t \mathbf{r} = \frac{1}{2\gamma} \frac{\partial_{xx} \mathbf{r}}{\partial_{xx}}, \qquad \partial_t \mathbf{e} = \frac{1}{4\gamma} \frac{\partial_{xx}}{\partial_{xx}} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right)$$

and

$$\begin{cases} \mathbf{r}(t,0) = 0 \\ \mathbf{e}(t,0) = T_{-} \end{cases} \begin{cases} \mathbf{r}(t,1) = \overline{F} \\ \frac{\partial_{x} \mathbf{e}(t,1)}{\partial_{x} \mathbf{e}(t,1)} = \overline{F} \partial_{x} r(t,1) + 4 \gamma \mathbb{W}^{\mathsf{heat}} \end{cases}$$

 $\begin{tabular}{ll} \textbf{NB} & \begin{tabular}{ll} \hline & (\overline{F}\partial_x r(t,1) + 4\gamma \mathbb{W}^{\mathsf{heat}}) \end{tabular} \begin{tabular}{ll} \textbf{comes} & \textbf{from the fluctuating part } \hline & \begin{tabular}{ll} \hline & \begin{tabular}{ll} F_N \end{tabular}. \end{tabular}$

We define the **average work** done in the **diffusive time** scale:

$$W_N(t) = \frac{1}{N} \int_0^{tN^2} \mathcal{F}_N(s) \, \mathbb{E}[p_N](s) ds$$

We define the average work done in the diffusive time scale:

$$W_N(t) = \frac{1}{N} \int_0^{tN^2} \mathcal{F}_N(s) \, \mathbb{E}[p_N](s) \mathrm{d}s = \frac{1}{N} \int_0^{tN^2} \underbrace{\mathbb{E}[j_{N,N+1}]}_{\text{microscopic current}} (s) \mathrm{d}s$$

We define the **average work** done in the **diffusive time** scale:

$$W_N(t) = \frac{1}{N} \int_0^{tN^2} \mathcal{F}_N(s) \; \mathbb{E}[p_N](s) \mathrm{d}s = \frac{1}{N} \int_0^{tN^2} \underbrace{\mathbb{E}[j_{N,N+1}]}_{\text{microscopic current}} (s) \mathrm{d}s$$

Then [KOS '24]

$$\lim_{N\to +\infty} \frac{W_N(t)}{W_N(t)} = \underbrace{\frac{\overline{F}}{2\gamma} \int_0^t (\partial_x r)(s,1) \mathrm{d}s}_{\text{contribution to the } \frac{t}{\text{mechanical energy}}} + \underbrace{\mathbb{W}_N(t)}_{\text{contribution to the } \frac{t}{\text{to the } t}}_{\text{contribution to the } \frac{t}{\text{to the } t}}$$

We define the average work done in the diffusive time scale:

$$W_N(t) = \frac{1}{N} \int_0^{tN^2} \mathcal{F}_N(s) \ \mathbb{E}[p_N](s) \mathrm{d}s = \frac{1}{N} \int_0^{tN^2} \underbrace{\mathbb{E}[j_{N,N+1}]}_{\text{microscopic current}} (s) \mathrm{d}s$$

Then [KOS '24]

$$\lim_{N\to +\infty} \frac{W_N(t)}{W_N(t)} = \underbrace{\frac{\overline{F}}{2\gamma} \int_0^t (\partial_x r)(s,1) \mathrm{d}s}_{\text{contribution to the } \frac{t}{\text{mechanical energy}}} + \underbrace{\mathbb{W}_N(t)}_{\text{contribution to the } \frac{t}{\text{to the } t}}_{\text{contribution to the } \frac{t}{\text{to the } t}}$$

• In the **bulk**, the **mechanical energy** is transformed into the **thermal one** at the rate $\frac{1}{2\gamma}(\partial_x r(t,x))^2$

We define the average work done in the diffusive time scale:

$$W_N(t) = \frac{1}{N} \int_0^{tN^2} \mathcal{F}_N(s) \, \mathbb{E}[p_N](s) \mathrm{d}s = \frac{1}{N} \int_0^{tN^2} \underbrace{\mathbb{E}[j_{N,N+1}]}_{\text{microscopic current}} (s) \mathrm{d}s$$

Then [KOS '24]

$$\lim_{N\to +\infty} W_N(t) = \underbrace{\frac{\overline{F}}{2\gamma} \int_0^t (\partial_x r)(s,1) \mathrm{d}s}_{\text{contribution to the } \text{mechanical energy}} + \underbrace{\mathbb{W}^{\text{heat}} \, t}_{\text{contribution to the } \text{thermal energy}}$$

- In the **bulk**, the **mechanical energy** is transformed into the **thermal one** at the rate $\frac{1}{2\gamma}(\partial_x r(t,x))^2$
- Stationary profile: still a parabola with

$$e_{\infty}^{\text{heat}}(0) = T_{-}, \qquad e_{\infty}^{\text{heat}}(1) = \overline{F}^{2} + 4\gamma \mathbb{W}^{\text{heat}} + T_{-}$$

A little flavour of the proof

A few elements of proof

1. Estimate boundary terms: for instance

$$\left| \int_0^t \mathbb{E} \left[p_0(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N} \qquad \left| \int_0^t \mathbb{E} \left[p_N(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N}$$

A few elements of proof

1. Estimate boundary terms: for instance

$$\left| \int_0^t \mathbb{E} \left[p_0(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N} \qquad \left| \int_0^t \mathbb{E} \left[p_N(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N}$$

2. L^2 bound on averages:

$$\frac{1}{N} \sum_{n=0}^{N} \left[\left(\mathbb{E} [r_n(s)] \right)^2 + \left(\mathbb{E} [p_n(s)] \right)^2 \right] \leqslant C$$

A few elements of proof

1. Estimate boundary terms: for instance

$$\left| \int_0^t \mathbb{E} \left[p_0(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N} \qquad \left| \int_0^t \mathbb{E} \left[p_N(sN^2) \right] \, \mathrm{d}s \right| \leqslant \frac{C(t+1)}{N}$$

2. L^2 bound on averages:

$$\frac{1}{N} \sum_{n=0}^{N} \left[\left(\mathbb{E} [r_n(s)] \right)^2 + \left(\mathbb{E} [p_n(s)] \right)^2 \right] \leqslant C$$

3. Energy bound (via control of entropy production):

$$\frac{1}{N} \sum_{n=0}^{N} \mathbb{E} \left[\mathcal{E}_n(tN^2) \right] \leqslant C(t+1)$$

Time evolution of averages

We have a closed system of evolution for the averages:

$$\overline{p}_n(t) := \mathbb{E}[p_n(t)], \qquad \overline{r}_n(t) := \mathbb{E}[r_n(t)]$$

Time evolution of averages

We have a closed system of evolution for the **averages**:

$$\overline{p}_n(t) := \mathbb{E}[p_n(t)], \qquad \overline{r}_n(t) := \mathbb{E}[r_n(t)]$$

In the bulk:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\overline{r}_n(t) &= N^2 \big(\overline{p}_n(t) - \overline{p}_{n-1}(t)\big) \\ \frac{\mathrm{d}}{\mathrm{d}t}\overline{p}_n(t) &= N^2 \big(\overline{r}_{n+1}(t) - \overline{r}_n\big) - 2\gamma N^2 \ \overline{p}_n(t) \end{split}$$

and at the boundaries:

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{p}_0(t) = N^2\overline{r}_1(t) - N^2(2\gamma + 1)\overline{p}_0(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{p}_N(t) = -N^2\overline{r}_N(t) + N^2 \mathcal{F}_N(t) - N^2(2\gamma + 1)\overline{p}_N(t)$$

Control of covariances

An interesting result is the following **equipartition** between **fluctuations** of distances and momenta

$$\int_0^t \frac{1}{N} \sum_{n=0}^N G\left(\frac{n}{N}, s\right) \mathbb{E}\left[\left(r_n - \overline{r}_n\right)^2 - \underbrace{\left(p_n - \overline{p}_n\right)^2}_{\sim \text{ thermal}}\right] (sN^2) \ ds \xrightarrow[N \to \infty]{} 0.$$

Thanks to a good control of covariances. Let

$$C_N(t) := \frac{1}{N} \sum_{n,k=0}^{N} \left(\text{Cov}(p_n, r_k)^2 + \text{Cov}(p_n, p_k)^2 + \text{Cov}(r_n, r_k)^2 \right) (tN^2)$$

Then

$$C_N(t) \lesssim C_N(0) + Ct \log^2(N)$$

1) Purely harmonic chain → transport of energy phonons

- 1) Purely harmonic chain → transport of energy phonons
- 2) Add stochastic FLIP noise → diffusion of total energy

$$\partial_t \mathbf{e}(t,x) = \frac{1}{4\gamma} \partial_{xx} \left(\mathbf{e} + \frac{1}{2} \mathbf{r}^2 \right), \qquad \mathbf{e} = \frac{1}{2} \mathbf{r}^2 + e^{\text{heat}}$$

- 1) Purely harmonic chain → transport of energy phonons
- 2) Add stochastic FLIP noise → diffusion of total energy

$$\partial_t \mathbf{e}(t,x) = \frac{1}{4\gamma} \partial_{xx} \left(\mathbf{e} + \frac{1}{2} \mathbf{r}^2 \right), \qquad \mathbf{e} = \frac{1}{2} \mathbf{r}^2 + e^{\text{heat}}$$

- 3) Conversion of work into heat via a simple microscopic model
 - → derivation of different boundary conditions
 - → in particular, the **uphill phenomenon**

Thank you for your attention!

Komorowski T., Olla S. and Simon M.

▶ Heat flow in a periodically forced, unpinned thermostatted chain, *Electron. J. Probab.* 30 (2025), 1–48 Hal: 04614909

▶ Hydrodynamic limit for a chain with thermal and mechanical boundary forces, *Electron. J. Probab.* 26 (2021), 1–49 Hal: 02538469

➤ An open microscopic model of heat conduction: evolution and non-equilibrium stationary states, Communications in Mathematical Sciences 3 (2020), 18, 751–780