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Heat production in mitochondria

The mitochondria: “powerhouse of the cells” (Siekevitz, 1957)
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> actively respiring mitochondria heat up

> heat production occurs across the cristae membranes, which
typically lie in parallel, potentially retaining heat ~ radiator
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Recorded mitochondrial temperatures were some 10C° above the
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> lllustration of conversion of work into heat: microscopic model ?
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Microscopic model

e 1d chain of N + 1 unpinned coupled oscillators

—
q0 q1 dn—1 dn 4gnN
\é r, }\
qn : position of atom n —qn €ER
P, : momentum of atom n —pn €R
r, : ‘distance” between n —1 and n =T =qn—gn-1 €R

e Dynamics on the configurations of particles

(rvp): (Tlv"'7rNap03"'7pN) € lRN X |RN+1



Hamiltonian dynamics

Total energy = Hamiltonian
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n=1
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Hamiltonian dynamics

Total energy = Hamiltonian
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interaction

5 Pa
Hy = 5 + nz::lgn with &, = > + V(ryn)

Dynamics

" (t) = pn(t) — pn—1(t)
Pu(t) = V' (rag1)(8) = V' (ra)(2)

Boundary conditions? (what are o and ry417)

1. Periodic case: pg = pn, 1o =N

2. Deterministic forces: 1o =0, ry+1(t) = Fy(t)



Hamiltonian dynamics

Total energy = Hamiltonian

"% v;
Hy = +n§::15n with £, := 20+ V(rn)

interaction

Dynamics

T (t) = pn(t) - pn—l(t)
Pn(t) = V' (rng1)(t) = V' (ra)(2)

Boundary conditions? (what are o and ry417)

1. Periodic case: pg = pn, 1o =N
2. Deterministic forces: ro =0, ry41(t) = Fn(t)

3. Stochastic Langevin thermostats: ensure E[p3] = 7", E[p}] = T';.



Hamiltonian dynamics

Total energy = Hamiltonian

~——

interaction

B, - P
Hy = ?0 +;5n with &, = ?n + V(ra)

Dynamics

<.
3
—~
o~
~—
I

pn(t) - pn—l(t)
Pn(t) = V' (rns1)(t) — V() ()

Boundary conditions? (what are o and rn417)

1. Periodic case: pg = py, 7o =7Nn = conservation of

N N
p
E > + V(r,) (energy) and E T, (volume)

n=1 n=1
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Harmonic interactions

< GOAL:
> Distribute {r,(0),p,(0)} randomly ~ p{¥

> Look at the two main conserved quantities

Zé'n (energy) Zrn (volume)

? Is there some nontrivial macroscopic evolution as N — 400, e.g.

N 1
1 «a n ?
n= energy profile

energy field

'D HARD question with a long history!

> Quite few results for a generic choice of V
2
> Rigorous results with the harmonic choice V (r) = =
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Harmonic potential and periodic b.c.

Harmonic case: V(r) = é then... &, = 1(r2 4+ p2) and (*) is linear!
Equilibrium measures: Here, Gibbs states V7[_VB = ind. Gaussians

v~ QN8 QN (0.57) {

law of 7, law of py

T = tension

37! = temperature

Objective: Let 1" (dr,dp) = probability law at time ¢, and iy # v

. L. space-time rescaling . ..
Atomic description ——————— Macroscopic description
N—+oco

Remarks:

O In the harmonic case there are much more conservation laws

RN:Zrn, HN:Z‘S"’ but also PN:an,...

@ Thanks to linearity, one can use Fourier transforms



Towards diffusion of heat?

In the pure harmonic case, one can easily see
e transport of any energy phonon — no diffusion

p(t, k) = 2|sin(wk)|q(t, k)+ip(t, k), ke {0,%,..., 21} (Fourier modes)
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Towards diffusion of heat?

In the pure harmonic case, one can easily see
e transport of any energy phonon — no diffusion

o(t, k) = 2|sin(mk)|q(t, k)+ip(t, k), ke {0,%,..., 21} (Fourier modes)

e decomposition of the microscopic energy

[E[gn(t)] = / (pn +7r ) d/.Lt = EC)t(t) 4 egcch(t)

emeeh = ) + JEpa)? b = 3E[(rn — Elra])” + (o — Elpa])?]
(slow modes) (fast modes)
Too many conservation laws! We add a stochastic noise which

e keeps only two conservation laws: energy and volume
e models the effect of nonlinearity in V'
e allows us to prove convergences rigorously



Harmonic chain with stochastic
noise in the diffusive time scale
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Property of the stochastic noise: have to preserve Hy and Ry

time
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> Add independent Poisson processes = random clocks
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Stochastic perturbation

Property of the stochastic noise: have to preserve Hy and Ry

time . .

intensity v > 0 A A

flip po ¢ - - ’@ = averaged number of x | !
|

per unit of time

flip po é———% I
|

> Add independent Poisson processes = random clocks
> When the clock of atom n rings, flip p,, into —p,

~ collisions with external particles of infinite mass

Does not preserve Y p, still preserves > 7, and >_ &,
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Full microscopic description

Bulk dynamics (n=1,...,N)

drn(t) = (pn(t) _pn—l(t)) dt
dpn(t) - (Tn+l(t) —Tn (t)) dt — 2pn (ti) dNn(,Yt)a n 7é N

flip of intensity v

Boundary conditions? We add two mechanisms

dn+1




Evolution at the boundaries?

Langevin thermostat: Assume that (¢(¢),p(t)) € R x R follows
dq(t) = p(t)dt
dp(t) = =V'(q(t))dt —p(t)dt + /28! dw(t)
N—— N—_————
dissipation brownian fluctuation

then the invariant proba measure is the equilibrium Gibbs measure

2
qud}) at temperature 5~ with H = % +V(q)
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Evolution at the boundaries?

Langevin thermostat: Assume that (¢(¢),p(t)) € R x R follows
dq(t) = p(t)dt
dp(t) = =V'(q(t))dt —p(t)dt + /28! dw(t)
N—— N—_————
dissipation brownian fluctuation

then the invariant proba measure is the equilibrium Gibbs measure

_ 2
qud}) at temperature 5~ with H = % +V(q)

Finally, at the boundaries,

dpo(t) = (r1(t) —0) dt —2po(t™) dNo(vt) — po(t) dt + /2T dwo(t),

flip of intensity ~ Langevin thermostat at 7'

dpn(t) = — (TN(t) —]:N(t)) dt —2pn(t7) dNN(7t)
flip of intensity ~

— pw (1) dt + /2T dwn (2)

Langevin thermostat at 7'

10



From the microscopic description
to macroscopic equations




Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian = Flip noise # Boundary force and thermostats
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Hydrodynamic Limits

Full dynamics in the diffusive time scale:

Hamiltonian = Flip noise # Boundary force and thermostats

Then {(rn(tN?),pn(tN?))},., is a Markov process on RN x RN*+! which

has only two conserved quantities, Hy = > e,, Ry =D rn.

Initial measure 1):  Given some profiles riy;(-) and ej,i(-)

1

¥ ZG WE[ra(0)] —— i G(2)rini(z)dz
N 1
Z (#)E[£:(0)] ~o ; G(z)ejni(z)dx

+ initial second moment and entropy bounds

11



Macroscopic evolution of volume and energy profiles

? Hydrodynamic limit ~ law of large numbers — diffusion of energy?
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? Hydrodynamic limit ~ law of large numbers — diffusion of energy?

THEOREM 1: F,(t)=F and T #0 [Komorowski, Olla, S. 2020]
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Macroscopic evolution of volume and energy profiles

? Hydrodynamic limit ~ law of large numbers — diffusion of energy?

THEOREM 1: F,(t)=F and T #0 [Komorowski, Olla, S. 2020]

N 1
= Z G(&) E[ra(tN?)] —— G(z) r(t,z) dx

N—
n=0 e 0

i Z G(&) E[E.(IN?)] —— G(z) e(t,z) dz

N—
n=0 e 0

and

12



Thermal and mechanical energy

> Elongation
1
Or(t,x) = ﬂamr(t,x)
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Thermal and mechanical energy

> Elongation
1
Or(t,x) = ﬂamr(t,x)

> Total energy

e(t, $) _ eheat (t7 1,) + emech (t, x)
—_———

temperature

with

1
emeh (t,x) = §r2 (t,x)

Bpeheat (¢, z) = iamehea‘t(t, ) + 1 (9x(t, 1;))2
2’}/ N———

dissipation
of mechanical energy
into thermal energy

13



Stationary profile

Stationary solutions: r.(-) and eheat(.)

I'eo

heat

Coo

(x)=Fz
(z)=F a(l—2)+ (T —T )z +T_
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1 T, -T_ _
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Stationary profile

Stationary solutions: r.(-) and eheat(.)

roo(r)=Fx
eheat(x) = F° o(l—a) + (Tp —T_) 2+ T

e which achieves its maximum in

1 T, -T_ _
xmaX:*‘F%E[O’l] = |T+—T,‘<F2
2 2F

‘heating inside the system ‘

e and with stationary current

1 — _
Joo=—4—(T+—T_+F2)<O if T_>T, and F'is large
Y

Jo
T > T+ % T+

\ uphill diffusion 14




A new boundary condition when 7, =0

The boundary force writes

Fnt)= F +Fn(b) with F (¢

average periodic

\/» Z ]_- zlwt

££0
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A new boundary condition when 7, =0

The boundary force writes

T T zlwt
Fn(t)= F +Fn(t) with F (¢ \F ;f

average periodic

The macroscopic equations become:
1 1 2
Ot = — Oy, 0re = —0py (e + r—)
2y 4y

and

r(t,0) =0 r(t,1)=F
e(t,0) =T_ Ove(t, 1) = Fopr(t,1) + 4yWhet

THEOREM 2 [Komorowski, Olla, S. 2024]
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A new boundary condition when 7, =0

The boundary force writes

. - 5 T zlwt
Fy(t)= F +Fn(t) with F (¢ \F ;f

average periodic

THEOREM 2 [Komorowski, Olla, S. 2024]
The macroscopic equations become:

1 1 2
Oir = — 0T, 0e = —Opy (e + L )
2y 4y

and

r(t,0) =0 r(t,1)=F
e(t,0) =T_ Ove(t, 1) = Fopr(t,1) + 4yWhet

NB (& (FO,r(t,1) + 4yWhat) comes from the total work by the force

and W"e2t comes from the fluctuating part Fn. 5



Total work done by the force

We define the average work done in the diffusive time scale:

2
1 tN

W)= [ Fa(s) Elpwl(s)ds
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Total work done by the force

We define the average work done in the diffusive time scale:

2
1 tN

1 tN? ’
Wy(t) = i Fn(s) Elpn](s)ds = N/ Eljn.ns1] (s)ds
0 0 N—
microscopic current
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Total work done by the force

We define the average work done in the diffusive time scale:

2
1 tN

1 tN? ’
Wyl =5 [ Fx() Epviods= 5 [ Elivas] (s
0 0 N—
microscopic current

Then [KOS '24]

: F ! heat
N1—1>r-rs-1<>o W (t) = 2/, (0x7)(s,1)ds + Wheet ¢

contribution to the mechanical energy

contribution to the thermal energy
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Total work done by the force

We define the average work done in the diffusive time scale:

2
1 tN

Wi(t) = %
0

Then [KOS '24]

1 tN? ’
Fu(s) Elpmedds =57 [ Elivxa] (s)ds

microscopic current

lim Wy(t) =
N——+oco

7ot
— 0,1)(s,1)ds
5= | @)

contribution to the mechanical energy

+

Wheat t
——

contribution to the thermal energy

e In the bulk, the mechanical energy is transformed into the
1 2
thermal one at the rate 5- (0,7 (t, 7))

16



Total work done by the force

We define the average work done in the diffusive time scale:

2
1 tN

1 tN? ’
Wyl =5 [ Fx() Epviods= 5 [ Elivas] (s
0 0 N—
microscopic current

Then [KOS '24]

F [t
lim Wy(t)=  — 1)d wheat ¢
yim Wi (t) 5y J, (Qar)ls: L)ds Wt
contribution to the thermal energy

contribution to the mechanical energy

e In the bulk, the mechanical energy is transformed into the
1 2
thermal one at the rate 5- (0,7 (t, 7))

e Stationary profile: still a parabola with

eheat (O) _ T,, eheat(l) _ F2 =+ 4,7wheat LT

o0 o0



A little flavour of the proof




A few elements of proof

1. Estimate boundary terms: for instance

t C(t+1)
/ [E[po(sj\ﬂ)] ds| < ————2 Jr ‘/ pN 5N2
0

C’(t +1)
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A few elements of proof

1. Estimate boundary terms: for instance

Clt+1)
N

<

/t[E[po(sj\ﬂ)} ds / E[pn(sN?)] ds
0 0

2. L? bound on averages:

;]nz_% {([E[Tn(s)])Q + (E[ n(s)])“} <C

<
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A few elements of proof

1. Estimate boundary terms: for instance

t
/ [E[po(sj\ﬂ)] ds| < ————2 t+1 ‘/ pN 5N2
0

2. L? bound on averages:

N Z { ru(s)])” + (] n(s)])z} <C

3. Energy bound (via control of entropy production):

N

% S E[El(tN?)] < Ot +1)

n=0

C’(t +1)

17



Time evolution of averages

We have a closed system of evolution for the averages:

Pu(t) :=Elpn(8)],  Tn(t) := E[ra(t)]

18



Time evolution of averages

We have a closed system of evolution for the averages:

Pu(t) :=Elpn(8)],  Tn(t) := E[ra(t)]

In the bulk:
d_ 9/ B
STall) = N2 (B, (1) = P, 1 (1)
d
T Pn(8) = N*(Fusa (8) = ) =29N" 1, (1)
and at the boundaries:

%po(t) = N7y (t) — N?(2y + 1)po(t)

Shult) = ~N*Tx(t) + N? Fu(t) — N*(2y + DBy ()

18



Control of covariances

An interesting result is the following equipartition between fluctuations
of distances and momenta

N—oc0

1 & 2 2
AT G ﬂa I n— Tn - n_in ]\72 d 0.
/Oan_% (7:9) [(7‘ ) = (p p)}(s ) ds ——
~ thermal

> Thanks to a good control of covariances. Let

Cn(t) := N Z (Cov(pn,rk) +Cov(pn,pk) + Cov(rp, k) )(th)

Then

Cn(t) S Cn(0) + Ctlog®(N)

19
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Pn
oo —ojfi® 1 e[[|[e e
q0 q1 dn—1 dn qN
—

1) Purely harmonic chain — transport of energy phonons
2) Add stochastic FLIP noise — diffusion of total energy
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3) Conversion of work into heat via a simple microscopic model
— derivation of different boundary conditions
— in particular, the uphill phenomenon
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Thank you for your attention!
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