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Motivation and longterm programme

0. Motivation and longterm programme: Recall Classical Case (Linear!)

A
N
A
L
Y
S
I
S

Core example: Heat equation on Rd :

∂

∂t
u(t, x , y) = ∆xu(t, x , y), (t, x) ∈ (0,∞)× Rd ,

u(0, x , y) = δy (x) (= Dirac measure in y ∈ Rd ).

Solution: Classical heat kernel

u(t, x , y) =
1

(4πt)
d
2

e−
1
4t

|x−y|2 , (t, x) ∈ (0,∞)× Rd .

GENERAL
Linear
Parabolic
PDE
(more
precisely:
linear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

Wiener measure Wy on C([0,∞);Rd )y [Wiener 1923]
For W (t) : C([0,∞);Rd )y → Rd ,
W (t)(w) := w(t), t ≥ 0,

(W (t))∗(Wy )(dx)
“push forward”

= u(t, x , y)dx , t > 0,

(W (0))∗(Wy ) = δy

(W (t))t≥0,Wy )y∈Rd “Brownian motion”

Markov process!

xy
linear
Markov
process
(described
by SDE)
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Motivation and longterm programme

0. Motivation and longterm programme: Nonlinear case

A
N
A
L
Y
S
I
S

Core example: parabolic p–Laplace equation on Rd with p > 2:

∂

∂t
u(t, x , y) = div(|∇u|p−2∇u)(t, x , y), (t, x) ∈ (0,∞)× Rd ,

u(0, x , y) = δy (x) (= Dirac measure in y ∈ Rd ).

Solution: Barenblatt solution

u(t, x , y) = t−k (C1 − qt
− kp

d(p−1) |x − y |
p

p−1 )
p−1
p−2
+ ,

(t, x) ∈ (0,∞)× Rd , where k :=
(
p − 2 + p

d

)−1
,

q := p−2
p

(
k
d

) 1
p−1

and C1 > 0 s.th.
∫
Rd u(t, x , y) dx = 1.

GENERAL
Nonlinear
Parabolic
PDE
(more
precisely:
nonlinear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

Our result: ∃ prob. measure Py on C([0,∞);Rd )y s. th.

(X (t))∗(Py )(dx)
“push forward”

= u(t, x , y) dx , t > 0, (McKean!)

where X =
(
X (t)

)
t≥0

is the solution of

dX (t) = ∇(|∇u(t,X (t), y)|p−2)dt

+ |∇u(t,X (t), y)|
p−2
2 dW (t), t > 0, (X (0))∗(Py ) = δy .

((X (t))t≥0,Py )y∈Rd “p–Brownian motion”

Nonlinear Markov process!

xy
nonlinear
(time-
inhomo-
geneous)
Markov
process
(described
by MVSDE)
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Introduction: Definition of a nonlinear Markov process

1. Introduction: Definition of a nonlinear Markov process

Define for s ≥ 0

Ωs := C([s,∞),Rd ) = space of continuous paths in Rd starting at time s
with Borel σ−algebra B(Ωs) and for τ ≥ s

πs
τ : Ωs → Rd , πs

τ (w) := w(τ), w ∈ Ωs

and for r ≥ s

Fs,r := σ(πs
τ | s ≤ τ ≤ r).

Definition ([McKean: PNAS 1966])

Let P0 ⊆ P(Rd ). A nonlinear Markov process is a family (P(s,ζ))(s,ζ)∈R+×P0
of probability

measures P(s,ζ) on B(Ωs) such that

(i) The marginals P(s,ζ) ◦ (πs
t )

−1 =: µs,ζ
t belong to P0 for all 0 ≤ s ≤ r ≤ t and ζ ∈ P0.

(ii) The nonlinear Markov property holds, i.e., for all 0 ≤ s ≤ r ≤ t, ζ ∈ P0

P(s,ζ)(π
s
t ∈ A|Fs,r )(·) = p(s,ζ),(r,πs

r (·))(π
r
t ∈ A) P(s,ζ) − a.s. for all A ∈ B(Rd ), (MP)

where p(s,ζ),(r,y), y ∈ Rd , is a regular conditional probability kernel from Rd to B(Ωr ) of

P
(r,µ

s,ζ
r )

[ · |πr
r = y ], y ∈ Rd (i.e., in particular p(s,ζ),(r,y) ∈ P(Ωr ) and

p(s,ζ),(r,y)(π
r
r = y) = 1).

The term nonlinear Markov property originates from the fact that in the situation of the above

definition the map P0 ∋ ζ 7→ µs,ζ
t is, in general, not convex.
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Introduction: Definition of a nonlinear Markov process

Remark 3

(i) The one-dimensional time marginals µs,ζ
t = P(s,ζ) ◦ (πs

t )
−1 of a nonlinear Markov process

satisfy the flow property, i.e.

µs,ζ
t = µ

r,µs,ζ
r

t , ∀ 0 ≤ s ≤ r ≤ t, ζ ∈ P0.

(ii) In the linear case the above definition coincides with the classical definition of a (linear)
Markov process and the above flow property corresponds to the classical
Chapman–Kolmogorov equations.
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Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic
differential equations (MVSDEs)

2. Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov
stochastic differential equations (MVSDEs)

Let P(Rd ) denote the space of all Borel probability measures on Rd , and for 1 ≤ i , j ≤ d consider
measurable maps

bi , aij : [0,∞)× Rd × P(Rd )→ R

such that the matrix (aij )i,j is pointwise symmetric and nonnegative definite. Then, for

(s, ζ) ∈ [0,∞)× P(Rd ) a nonlinear FPE is an equation of type

∂

∂t
µs,ζ
t =

d∑
i,j=1

∂

∂xi

∂

∂xj
(aij (t, x , µ

s,ζ
t )µs,ζ

t )−
d∑

i=1

∂

∂xi
(bi (t, x , µ

s,ζ
t )µs,ζ

t ), (t, x) ∈ [s,∞)×Rd ,

(FPE)

where the solution [s,∞) ∋ t 7→ µs,ζ
t is a weakly continuous curve in P(Rd ) with some specified

initial condition µ0 = ζ.
(FPE) is meant in the weak sense of Schwartz distributions. More precisely:
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Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic
differential equations (MVSDEs)

Definition (see [Bogachev/Krylov/R./Shaposhnikov: AMS-Monograph 2015] and the
references therein)

(i) A distributional solution to (FPE) with starting time s ∈ [0,∞) and initial condition ζ is a

weakly continuous curve (µs,ζ
t )t≥s of signed Borel measures on Rd of bounded variation such

that (t, x) 7→ aij (t, x , µ
s,ζ
t ) and (t, x) 7→ bi (t, x , µ

s,ζ
t ) are measurable on (s,∞)× Rd ,∫ t

s

∫
Rd

d∑
i,j=1

(
|aij (r , x , µs,ζ

r )|+ |
d∑

i=1

bi (r , x , µ
s,ζ
r )|

)
µs,ζ
r (dx)dr <∞, ∀t ≥ s,

and ∀t ≥ s∫
Rd

φ dµs,ζ
t =

∫
Rd
φ dζ

+

∫ t

s

∫
Rd

 d∑
i,j=1

aij (r , x , µ
s,ζ
r )

∂

∂xi

∂

∂xj
φ(x) +

d∑
i=1

bi (r , x , µ
s,ζ
r )

∂

∂xi
φ(x)

µs,ζ
r (dx)dr ,

for all φ ∈ C∞
0 (Rd ). It is called probability solution, if, in addition, ζ and each µs,ζ

t , t ≥ s,

are in P(Rd ).

(ii) Suppose P0 ⊂ P(Rd ) such that for each (s, ζ) ∈ [0,∞)× P0 there exists a probability

solution [s,∞) ∋ t 7→ µs,ζ
t ∈ P0 with initial condition ζ such that the flow property

µs,ζ
t = µ

r,µs,ζ
r

t , ∀ 0 ≤ s ≤ r ≤ t, ζ ∈ P0

holds. Then (µs,ζ)(s,ζ)∈[0,∞)×P0
is called a solution flow of (FPE) in P0.
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Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic
differential equations (MVSDEs)

The (in space) dual operator to the operator on the right hand side of (FPE) is called the
corresponding Kolmogorov operator Lµ for µ ∈ P(Rd ), i.e. its action on test functions
φ ∈ C∞

0 (Rd ) is given as

Lµφ(t, x) =
d∑

i,j=1

aij (t, x , µ)
∂

∂xi

∂

∂xj
φ(x) +

d∑
i=1

bi (t, x , µ)
∂

∂xi
φ(x), (K)

where (t, x) ∈ (0,∞)× Rd .

In turn, this operator determines the corresponding McKean–Vlasov SDE (see [Carmona/Delarue:
Springer Vol. I and II 2018] and the references therein)

dX s,ζ(t) = b(t,X s,ζ(t), µs,ζ
t )dt + σ(t,X s,ζ(t), µs,ζ

t )dW (t), t > s, (MVSDEa)

LX s,ζ (t) = µs,ζ
t , t ≥ s, (MVSDEb)

where σ = (σij )ij with σσ⊤ = (aij )ij , b = (b1, ..., bd ), W (t), t ≥ s, is a d-dimensional Brownian

motion on some probability space (Ω,F ,P), and the maps X s,ζ(t) : Ω→ Rd , t ≥ s, form the
continuous in t solution process to (MVSDEa) such that its one-dimensional time marginals

LX s,ζ(t) := (X s,ζ(t))∗P, t ≥ 0,

i.e. the push forward or image measures of P under X s,ζ(t), satisfy (MVSDEb).
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Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic
differential equations (MVSDEs)

Correspondence: McKean–Vlasov SDE ←→ nonlinear FPE

a) McKean–Vlasov SDE −→ nonlinear FPE:

Consider (MVSDEa,b) and assume there exists a weak solution X s,ζ . Let φ ∈ C∞
0 (Rd ).

Then by Itô’s formula, since µs,ζ
t = (X s,ζ(t))∗P, t ≥ s,∫∫∫

Rd
φ(x)µs,ζ

t (dx) =

∫
Ω
φ(X s,ζ(t)(ω))P(dω)

=
Itô

∫
Ω
φ(X s,ζ(0)(ω))P(dω) +

∫
Ω

∫ t

s
LL

Xs,ζ (r)
φ(X s,ζ(r)(ω)) dr P(dω)

=

∫∫∫
Rd

φ(x)ζ(dx) +
∫∫∫ t

s

∫∫∫
Rd

L
µs,ζ

r
φ(x)µs,ζ

r (dx)dr

Hence (µs,ζ
t )t≥0 is a distributional solution of (FPE), more precisely a probability solution.
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Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic
differential equations (MVSDEs)

b) Nonlinear FPE −→ McKean–Vlasov SDE:

Theorem 0 ([Barbu/R: SIAM 2018, AOP 2020])

Let (s, ζ) ∈ R+ × P(Rd ) and assume there exists a probability solution

[s,∞) ∋ t 7→ µs,ζ
t ∈ P(Rd ) of (FPE). Then there exists a d-dimensional (Ft)-Brownian motion

W (t), t ≥ s, on a stochastic basis (Ω,F , (Ft)t≥s ,P) and a continuous (Ft)-progressively

measurable map X s,ζ : [s,∞)× Ω→ Rd satisfying (MVSDEa,b).

Proof.

Nonlinear version of [Trevisan: EJP 2016] (generalizing [Figalli: JFA 2008]). □

Remark

b, σ assumed to be only measurable in measure variable !
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Main result: A general condition for path laws of MVSDE–solutions to form an
nonlinear Markov process

3. Main result: A general condition for path laws of MVSDE–solutions to
form an nonlinear Markov process

Key: Look at the linearized equation corresponding to (FPE), i.e. for any weakly continuous
curve [s,∞) ∋ t 7→ ηt ∈ P(Rd ) consider

∂

∂t
νs,ζt =

d∑
i,j=1

∂

∂xi

∂

∂xj

(
aij (t, x , ηt) ν

s,ζ
t

)
−

d∑
i=1

∂

∂xi

(
bi (t, x , ηt) ν

s,ζ
t

)
, (t, x) ∈ [s,∞)× Rd

(ℓηFPE)

where the solution [s,∞) ∋ t 7→ νs,ζt ∈ P(Rd ) is a weakly continuous curve with initial condition
ζ ∈ P(Rd ). (Again, (ℓηFPE) is meant in the Schwartz distribution sense!)

Now for P0 ⊂ P(Rd ) let (µs,ζ)(s,ζ)∈[0,∞)×P0
be a solution flow of (FPE) in P0 and choose

specifically η := µs,ζ with (s, ζ) ∈ [0,∞)× P0 and consider

∂

∂t
νs,ζt =

d∑
i,j=1

∂

∂xi

∂

∂xj

(
aij (t, x , µ

s,ζ
t ) νs,ζt

)
−

d∑
i=1

∂

∂xi

(
bi (t, x , µ

s,ζ
t ) νs,ζt

)
, (t, x) ∈ [s,∞)× Rd ,

νs,ζs = ζ.

Then clearly, νs,ζ := µs,ζ is a solution to (ℓµs,ζFPE).
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Main result: A general condition for path laws of MVSDE–solutions to form an
nonlinear Markov process

For (s, ζ) ∈ [0,∞)× P0 define

Ms,ζ

µs,ζ := set of all probability solutions to ℓµs,ζFPE

Then Ms,ζ

µs,ζ is a convex set. Define

Ms,ζ

µs,ζ ,ex
:= set of all extreme points of Ms,ζ

µs,ζ

Now we can formulate our main result.
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Main result: A general condition for path laws of MVSDE–solutions to form an
nonlinear Markov process

Theorem I ([Rehmeier/R.: JTP 2025+])

Let P0 ⊂ P(Rd ). Assume:

(P0−Flow/linex) There exists a solution flow (µs,ζ)(s,ζ)∈[0,∞)×P0
of (FPE) in P0 such that

µs,ζ ∈ Ms,ζ

µs,ζ ,ex
for every (s, ζ) ∈ [0,∞)× P0.

Then:

(i) For every (s, ζ) ∈ [0,∞)× P0 the corresponding (MVSDEa,b) has a unique weak solution
X s,ζ with time marginal laws

LX s,ζ (t) = µs,ζ
t , t ≥ s.

(ii) The path laws

P(s,ζ) := LX s,ζ := (X s,ζ)∗(P) , (s, ζ) ∈ [0,∞)× P0

form a nonlinear Markov process.
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Main result: A general condition for path laws of MVSDE–solutions to form an
nonlinear Markov process

Corollary I

Let P0 ⊂ P(Rd ) and (µs,ζ)(s,ζ)∈[0,∞)×P0
be a solution flow of (FPE) in P0. Let P̃0 ⊂ P0 and

assume:

(P0−Flow/linex) (µs,ζ)(s,ζ)∈[0,∞)×P̃0
is a solution flow of (FPE) in P̃0 such that

µs,ζ ∈ Ms,ζ

µs,ζ ,ex
for all (s, ζ) ∈ [0,∞)× P̃0

and

(P̃0 − smoothing) For every (s, ζ) ∈ [0,∞)×P0

µs,ζ
t ∈ P̃0 ∀ t > s.

Then for every (s, ζ) ∈ [0,∞)×P0 the corresponding (MVSDEa,b) has a weak solution X s,ζ

with time marginal laws

LX s,ζ (t) = µs,ζ
t , t ≥ s, (∗)

such that the path laws

P(s,ζ) = LX s,ζ , (s, ζ) ∈ [0,∞)× P0,

form a nonlinear Markov process. Moreover, for (s, ζ) ∈ [0,∞)× P̃0, the above weak solution
X s,ζ is unique in law among all weak solutions satisfying (∗).
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Examples FPE = parabolic p-Laplace equation

4. Example
4.1 FPE = parabolic p-Laplace equation

Key Step: Identify the parabolic p–Laplace equation as a nonlinear FPE for p > 2.

Recall: Coefficients in FPE only need to be measurable in µ. So, if for the solutions µt , t ≥ 0, we
have µt(dx) = u(t, x)dx , t > 0, we can allow dependencies as

aij (t, x , µt) = ãij (t, x , Γ1(u)(t, x)),

bi (t, x , µt) = b̃i (t, x , Γ2(u)(t, x)),
(∗∗)

where b̃i , ãij : [0,∞)× Rd × Rk → R are measurable and each Γi is a functional on the space of
distributional solutions whose values are again measurable functions of t and x . Noting that

div(|∇u|p−2∇u) = div(∇(|∇u|p−2u)−∇(|∇u|p−2)u),

we can rewrite the parabolic p-Laplace equation (see ”first motivation page”) as

∂

∂t
u(t, x) = ∆(|∇u(t, x)|p−2u(t, x))−div(∇(|∇u(t, x)|p−2)u(t, x)), (t, x) ∈ (0,∞)×Rd .

(p-LE)
Hence we see that (p-LE) is of type (FPE) with aij , bi as in (∗∗), where

ãij (t, x,Γ1(u)(t, x)) = δij |∇u(t, x)|p−2,

b̃(t, x,Γ2(u)(t, x)) = ∇(|∇u(t, x)|p−2).
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Examples FPE = parabolic p-Laplace equation

Apply Corollary I

To the solution flow (us,ζ)(s,ζ)∈[0,∞)×P0
of (p-LE) (= special FPE) given by the famous

Barenblatt solution (see [Kamin/Vázquez 1988])

us,δy (t, x) := (t − s)−k

(
C1 − q(t − s)

− kp
d(p−1) |x − y |

p
p−1

) p−1
p−2

+

, (t, x) ∈ (s,∞)× Rd ,

where k :=
(
p − 2 + p

d

)−1
, q := p−2

p

(
k
d

) 1
p−1

, C1 ∈ (0,∞) such that
∫
Rd us,δy (t, x)dx = 1 for

all t > 0, and f+ := max(f , 0). Here

P0 := P̃0 ∪ {δy : y ∈ Rd}
and

P̃0 := {u0,δy (ϵ, x)dx |ϵ ∈ (0,∞), y ∈ Rd}.

Then we obtain that for every (s, ζ) ∈ [0,∞)× P0 the corresponding (MVSDEab) (see ”second
motivation page”) has a weak solution X s,ζ with time marginals

LX s,ζ (t) = us,ζ(t, x)dx , t ≥ s,

(which is unique in law if (s, ζ) ∈ [0,∞)× P̃0) such that the path laws

P(s,ζ) = LX s,ζ , (s, ζ) ∈ [0,∞)×P0,
form a nonlinear Markov process.
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Examples FPE = parabolic p-Laplace equation

Remark

In this particular case it turns out that:

(i) The solution X s,ζ is unique in law for all (s, ζ) ∈ [0,∞)×P0.

(ii) Due to time translation invariance

P(s,ζ) = P(0,ζ) ◦ Π̂
−1
s ∀ (s, ζ) ∈ [0,∞)× P0,

where

Π̂s : C([0,∞);Rd )→ C([s,∞);Rd )

Π̂s(w(t))t≥0) := (w(t − s))t≥s , w ∈ C([0,∞);Rd .

(iii) For ζ = u0,δy (ϵ, x)dx ∈ P̃0

P(0,ζ) = P(0,δy ) ◦ Π
−1
ϵ ,

where

Πϵ : C([0,∞)× Rd )→ C([0,∞)× Rd )

Πϵ((w(t)t≥0) := (w(t + ϵ))t≥0, w ∈ C([s,∞)× Rd .
Set

Py := P(0,δy ), y ∈ Rd .

Then {Py | y ∈ Rd} uniquely determines the nonlinear Markov process
{P(s,ζ)|(s, ζ) ∈ [0,∞)× P0}. Therefore, we call Py , y ∈ Rd , p-Brownian motion.
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Examples FPE = generalized porous media equation

4.2 FPE = generalized porous media equation

[Barbu/R.: JFA 2021 and 2023]

Nonlinear
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
us,ζ(t, x)−∆x (β(u

s,ζ(t, x)))

+ divx (D(x)b(us,ζ(t, x))us,ζ(t, x)) = 0,

∀ (t, x) ∈ (s,∞)× Rd . (FPE)

us,ζ(s, x)dx := ζ ∈ P(Rd ), s ≥ 0.

Our approach:
solve this
first!

(nonlinear)

superposition

principle

[Barbu/R.: AOP 2020]

wwwww�
~wwwww Itô (or

Dynkin formula)

McKean-
Vlasov
SDE
(proba-
bilistically
weak sense)

dX s,ζ(t) = D(X s,ζ(t))b(us,ζ(t,X s,ζ(t)))dt +

(
2β(us,ζ(t,X s,ζ(t)))

us,ζ(t,X s,ζ(t))

) 1
2

dW (t),

LX s,ζ(t)(dx) = us,ζ(t, x)dx , t ≥ s ≥ 0. (MVSDE)
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Examples FPE = generalized porous media equation

Then under suitable conditions on β : R→ R, b : R→ R, and D : Rd → Rd (see [Barbu/R.: JFA
2021 and 2023] and [Barbu/R.: Springer LN 2024]) Corollary I above applies with

P0 := P(Rd ),

P̃0 =
{
u0(x)dx | u0 ≥ 0,

∫
Rd

u0dx = 1, u0 ∈ L∞(Rd ; dx)
}
.

Hence the path laws

P(s,ζ) := LX s,ζ , (s, ζ) ∈ [0,∞)× P(Rd ),

form a nonlinear Markov process.
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Examples FPE = fractional generalized porous media equation

4.3 FPE = fractional generalized porous media equation

[Barbu/R.: PTRF 2024], [Barbu/da Silva/R.: arXiv: 2308.06388], [Barbu/R.: Springer LN 2024]

Let Ψ : R+ → R+ be a Bernstein function, e.g. Ψ(r) = r s , s ∈ (0, 1).

Nonlinear
fractional
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
us,ζ(t, x) +Ψ(−∆x)(β(u

s,ζ(t, x))) + divx (D(x)b(us,ζ(t, x))us,ζ(t, x)) = 0,

∀ (t, x) ∈ (s,∞)× Rd , us,ζ(s, x)dx := ζ ∈ P0, s ≥ 0. (FPEψ)

Our
approach:
solve this
first!

(nonlinear) nonlocal

superposition

principle

[R./Xie/Zhang: PTRF 2020]

wwwww�
~wwwww Itô (or

Dynkin formula)

McKean-
Vlasov
SDE with
multi-
plicative
Lévy noise
(proba-
bilistically
weak sense)

∃P(s,ζ) probability measure on D([0,∞);Rd ) solving the martingale

problem for (Lt ,C2
c (Rd )) such that

P(s,ζ) ◦ X(t)−1(dx) = us,ζ(t, x)dx , t ≥ s ≥ 0. (MVSDEψ)
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Examples FPE = fractional generalized porous media equation

Here

Lt f (x) = b(us,ζ(t, x))D(x) ·∇f (x) +
β(us,ζ(t, x))

us,ζ(t, x)
p.v .−

∫
Rd

(
f (x + z)− f (x)

)
νΨ(dz)

with

νΨ(dz) =

(∫ ∞

0
(2t)−

d
2 e−

|z|2
2t µ(dt)

)
dz and Ψ(r) =

∫ ∞

0
(1− e−rt)µ(dt).

Then under suitable conditions on β, b,D and Ψ, Corollary I above applies with

P̃0 = P0 :=
{
u0(x)dx | u0 ≥ 0,

∫
Rd

u0dx = 1, u0 ∈ L∞(Rd ; dx)
}
.

Hence

P(s,ζ), (s, ζ) ∈ [0,∞)× P0,

form a nonlinear Markov process.
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Examples FPE = Burgers equation

4.4 FPE = Burgers equation

[Rehmeier/R.: arXiv: 2212.12424, to appear in JTP]

Nonlinear
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
us,ζ(t, x)−

∂2

∂x2
us,ζ(t, x) +

1

2

∂

∂x

(
us,ζ(t, x)us,ζ(t, x)

)
= 0

∀ (t, x) ∈ (s,∞)× R1, us,ζ(s, x)dx := ζ ∈ P0, s ≥ 0. (FPE)

Our approach:
solve this
first!

(nonlinear)

superposition

principle

[Barbu/R.: AOP 2020]

wwwww�
~wwwww Îto (or

Dynkin formula)

McKean-
Vlasov
SDE
(proba-
bilistically
weak sense)

dX s,ζ(t) =
1

2
us,ζ

(
t,X s,ζ(t)

)
dt +

√
2 dW (t)

LX s,ζ(t)(dx) = us,ζ(t, x)dx , t ≥ s ≥ 0. (MVSDE)
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Examples FPE = Burgers equation

Then Corollary I above applies with P̃0 = P0 = as in Example 4.3. Hence the path laws

P(s,ζ) := LX s,ζ , (s, ζ) ∈ [0,∞)× P0,

form a nonlinear Markov process.
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Examples FPE = 2D vorticity Navier-Stokes equation

4.5 FPE = 2D vorticity Navier-Stokes equation

[Barbu/R./Zhang: arXiv: 2309.13910, to appear in JEMS]

Nonlinear
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
us,ζ(t, x) + ∆us,ζ(t, x) + div

(
(k ∗ us,ζ(t, ·))(x)us,ζ(t, x)

)
= 0

∀ (t, x) ∈ (s,∞)× R2, us,ζ(s, x)dx := ζ ∈ P(R2) (FPE)

Our approach:
solve this
first!

(nonlinear)

superposition

principle

[Barbu/R.: AOP 2020]

wwwww�
~wwwww Itô (or

Dynkin formula)

McKean-
Vlasov
SDE
(proba-
bilistically
weak sense)

dX s,ζ(t) =
(
k ∗ us,ζ(t, ·)

)(
X s,ζ(t)

)
dt +

√
2 dW (t)

LX s,ζ(t)(dx) = us,ζ(t, x)dx , t ≥ s ≥ 0. (MVSDE)

Here

k(x) =
(−x2, x1)
2π|x |2R2

, x = (x1, x2) ∈ R2. “Biot-Savart kernel”
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Examples FPE = 2D vorticity Navier-Stokes equation

Then Corollary I applies with

P0 := P(R2)

and

P̃0 := {u0(x)dx | u0 ≥ 0,

∫
Rd

u0dx = 1, u0 ∈ L4(Rd ; dx)}.

Hence

Ps,ζ := LX s,ζ , (s, ζ) ∈ [0,∞)× P(R2),

form a nonlinear Markov process.

Remark

A beautiful result by Sebastian Grube ([PhD-thesis, IRTG 2235, Bielefeld University 2023])
implies that for (s, ζ) ∈ [0,∞)× P̃0 the weak solution X s,ζ of (MVSDE) above is in fact a
strong solution.
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