Nonlinear Markov processes in the sense of McKean

Michael Röckner

(Bielefeld University and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing)

Joint work with: Marco Rehmeier (TU Berlin)

Reference:

• Rehmeier/R.: arXiv: 2212.12424v2, to appear in J. Theor. Probab.

Barbu/Rehmeier/R.: arXiv: 2409.18744v2, in revision at AOP

Barbu/R.: Springer LN 2024

Barbu/R./Deng Zhang: arXiv: 2309.13910, to appear in JEMS

Barbu/R.: PTRF 2024

Barbu/R.: JFA 2023 and JFA 2021

Barbu/R.: IUMJ 2023

Barbu/R.: AOP 2020 and SIAM 2018

R./Longjie Xie/Xicheng Zhang: PTRF 2020

Contents

- 0. Motivation and longterm programme
- 1. Introduction: Definition of a nonlinear Markov process
- Nonlinear Fokker-Planck equations (FPEs) and McKean-Vlasov stochastic differential equations (MVSDEs)
- 3. Main result: A general condition for path laws of MVSDE solutions to form an nonlinear Markov process
- 4. Examples
- 4.1 FPE = parabolic p-Laplace equation
- 4.2 FPE = generalized porous media equation
- 4.3 FPE = fractional generalized porous media equation
- 4.4 FPE = Burgers equation
- 4.5 FPE = 2D vorticity Navier-Stokes equation

0. Motivation and longterm programme: Recall Classical Case (Linear!)

A N A L Y S I S Core example: Heat equation on \mathbb{R}^d :

$$\begin{split} \frac{\partial}{\partial t} u(t,x,y) &= \Delta_x u(t,x,y), \, (t,x) \in (0,\infty) \times \mathbb{R}^d, \\ u(0,x,y) &= \delta_y(x) \; (= \text{Dirac measure in } y \in \mathbb{R}^d). \end{split}$$

Solution: Classical heat kernel

$$u(t,x,y) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{1}{4t}|x-y|^2}, \ (t,x) \in (0,\infty) \times \mathbb{R}^d.$$

P R O B A B I

Wiener measure \mathbb{W}_y on $C([0,\infty); \mathbb{R}^d)_y$ [Wiener 1923] For $W(t): C([0,\infty); \mathbb{R}^d)_y \to \mathbb{R}^d$, $W(t)(w):=w(t), \ t\geq 0$, $(W(t))_*(\mathbb{W}_y)(\mathrm{d}x)=u(t,x,y)\mathrm{d}x, \ t>0,$ "push forward" $(W(0))_*(\mathbb{W}_y)=\delta_y$

 $(W(t))_{t\geq 0}, \mathbb{W}_y)_{y\in\mathbb{R}^d}$ "Brownian motion"

Markov process!

GENERAL Linear Parabolic PDE (more precisely: linear Fokker-Planck equation)

linear Markov process (described by SDE)

0. Motivation and longterm programme: Nonlinear case

Core example: parabolic p-Laplace equation on \mathbb{R}^d with p > 2:

Α N A L Y S I S

$$\begin{split} &\frac{\partial}{\partial t} u(t,x,y) = \operatorname{div}(|\nabla u|^{p-2} \nabla u)(t,x,y), \ (t,x) \in (0,\infty) \times \mathbb{R}^d, \\ &u(0,x,y) = \delta_y(x) \ (= \text{Dirac measure in } y \in \mathbb{R}^d). \end{split}$$

Solution: Barenblatt solution

$$\begin{array}{l} u(t,x,y) = t^{-k} \big(C_1 - q t^{-\frac{kp}{d(p-1)}} \big| x - y \big|^{\frac{p}{p-1}} \big)_+^{\frac{p-1}{p-2}}, \\ (t,x) \in (0,\infty) \times \mathbb{R}^d, \text{ where } k := \big(p-2 + \frac{p}{d} \big)^{-1}, \\ q := \frac{p-2}{p} \left(\frac{k}{d} \right)^{\frac{1}{p-1}} \text{ and } C_1 > 0 \text{ s.th. } \int_{\mathbb{R}^d} u(t,x,y) \, \mathrm{d}x = 1. \end{array}$$

Our result: \exists prob. measure P_v on $C([0,\infty); \mathbb{R}^d)_v$ s. th.

$$(X(t))_*(P_y)(\mathrm{d}x) = u(t,x,y)\,\mathrm{d}x,\ t>0,\ (\mathsf{McKean!})$$
"push forward"

where $X = (X(t))_{t>0}$ is the solution of

$$dX(t) = \nabla(|\nabla u(t, X(t), y)|^{p-2})dt$$

$$+ |\nabla u(t, X(t), y)|^{\frac{p-2}{2}}dW(t), t > 0, (X(0))_*(P_v) = \delta_v.$$

$$((X(t))_{t\geq 0}, P_y)_{y\in \mathbb{R}^d}$$
 "p-Brownian motion"

Nonlinear Markov process!

GENERAL Nonlinear Parabolic PDE (more precisely: nonlinear Fokker-Planck equation)

nonlinear (timeinhomogeneous) Markov process (described

by MVSDE)

R O B A B

1. Introduction: Definition of a nonlinear Markov process

Define for $s \ge 0$

 $\Omega_s:=C([s,\infty),\mathbb{R}^d)=$ space of continuous paths in \mathbb{R}^d starting at time s with Borel σ -algebra $\mathcal{B}(\Omega_s)$ and for $\tau\geq s$

$$\pi^{\mathsf{s}}_{ au}:\Omega_{\mathsf{s}} o \mathbb{R}^d, \quad \pi^{\mathsf{s}}_{ au}(w):=w(au), \ w \in \Omega_{\mathsf{s}}$$
 and for $r > s$

$$\mathcal{F}_{s,r} := \sigma(\pi_{\tau}^{s} | s \leq \tau \leq r).$$

Definition ([McKean: PNAS 1966])

Let $\mathcal{P}_0 \subseteq \mathcal{P}(\mathbb{R}^d)$. A nonlinear Markov process is a family $(\mathbb{P}_{(s,\zeta)})_{(s,\zeta)\in\mathbb{R}_+\times\mathcal{P}_0}$ of probability measures $\mathbb{P}_{(s,\zeta)}$ on $\mathcal{B}(\Omega_s)$ such that

- (i) The marginals $\mathbb{P}_{(s,\zeta)} \circ (\pi_t^s)^{-1} =: \mu_t^{s,\zeta}$ belong to \mathcal{P}_0 for all $0 \le s \le r \le t$ and $\zeta \in \mathcal{P}_0$.
- (ii) The nonlinear Markov property holds, i.e., for all $0 \le s \le r \le t$, $\zeta \in \mathcal{P}_0$

$$\mathbb{P}_{(s,\zeta)}(\pi^s_t \in A|\mathcal{F}_{s,r})(\cdot) = p_{(s,\zeta),(r,\pi^s_r(\cdot))}(\pi^r_t \in A) \quad \mathbb{P}_{(s,\zeta)} - a.s. \text{ for all } A \in \mathcal{B}(\mathbb{R}^d), \quad (\mathsf{MF}_{s,\zeta}) = p_{(s,\zeta),(r,y)}, y \in \mathbb{R}^d, \text{ is a regular conditional probability kernel from } \mathbb{R}^d \text{ to } \mathcal{B}(\Omega_r) \text{ of } \mathbb{P}_{(r,\mu^s_r,\zeta)}[\cdot|\pi^r_r = y], \ y \in \mathbb{R}^d \text{ (i.e., in particular } p_{(s,\zeta),(r,y)} \in \mathcal{P}(\Omega_r) \text{ and } p_{(s,\zeta),(r,y)}(\pi^r_r = y) = 1).$$

The term *nonlinear* Markov property originates from the fact that in the situation of the above definition the map $\mathcal{P}_0 \ni \zeta \mapsto \mu^{s,\zeta}$ is, in general, not convex.

Remark 3

(i) The one-dimensional time marginals $\mu_t^{s,\zeta} = \mathbb{P}_{(s,\zeta)} \circ (\pi_t^s)^{-1}$ of a nonlinear Markov process satisfy the flow property, i.e.

$$\mu_t^{s,\zeta} = \mu_t^{r,\mu_r^{s,\zeta}}, \quad \forall \, 0 \le s \le r \le t, \zeta \in \mathcal{P}_0.$$

(ii) In the linear case the above definition coincides with the classical definition of a (linear) Markov process and the above flow property corresponds to the classical Chapman–Kolmogorov equations.

2. Nonlinear Fokker–Planck equations (FPEs) and McKean–Vlasov stochastic differential equations (MVSDEs)

Let $\mathcal{P}(\mathbb{R}^d)$ denote the space of all Borel probability measures on \mathbb{R}^d , and for $1 \leq i, j \leq d$ consider measurable maps

$$b_i, a_{ij} : [0, \infty) \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$$

such that the matrix $(a_{ij})_{i,j}$ is pointwise symmetric and nonnegative definite. Then, for $(s,\zeta)\in[0,\infty)\times\mathcal{P}(\mathbb{R}^d)$ a **nonlinear FPE** is an equation of type

$$\frac{\partial}{\partial t} \mu_t^{\mathfrak{s},\zeta} = \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \left(a_{ij}(t,x,\mu_t^{\mathfrak{s},\zeta}) \mu_t^{\mathfrak{s},\zeta} \right) - \sum_{i=1}^d \frac{\partial}{\partial x_i} \left(b_i(t,x,\mu_t^{\mathfrak{s},\zeta}) \mu_t^{\mathfrak{s},\zeta} \right), \ (t,x) \in [\mathfrak{s},\infty) \times \mathbb{R}^d,$$
 (FPE)

where the solution $[s,\infty)\ni t\mapsto \mu_t^{s,\zeta}$ is a weakly continuous curve in $\mathcal{P}(\mathbb{R}^d)$ with some specified initial condition $\mu_0=\zeta$. (FPE) is meant in the weak sense of Schwartz distributions. More precisely:

M. Röckner (Bielefeld)

Definition (see [Bogachev/Krylov/R./Shaposhnikov: AMS-Monograph 2015] and the references therein)

(i) A distributional solution to (FPE) with starting time $s \in [0, \infty)$ and initial condition ζ is a weakly continuous curve $(\mu_t^{s,\zeta})_{t \geq s}$ of signed Borel measures on \mathbb{R}^d of bounded variation such that $(t,x) \mapsto a_{ij}(t,x,\mu_t^{s,\zeta})$ and $(t,x) \mapsto b_i(t,x,\mu_t^{s,\zeta})$ are measurable on $(s,\infty) \times \mathbb{R}^d$,

$$\int_{\mathfrak{s}}^{t} \int_{\mathbb{R}^{d}} \sum_{i,j=1}^{d} \left(|a_{ij}(r,x,\mu_{r}^{\mathfrak{s},\zeta})| + |\sum_{i=1}^{d} b_{i}(r,x,\mu_{r}^{\mathfrak{s},\zeta})| \right) \mu_{r}^{\mathfrak{s},\zeta}(dx) dr < \infty, \ \forall t \geq \mathfrak{s},$$

and $\forall t \geq s$

$$\begin{split} &\int_{\mathbb{R}^d} \varphi \, d\mu_t^{s,\zeta} = \int_{\mathbb{R}^d} \varphi \, d\zeta \\ &+ \int_s^t \int_{\mathbb{R}^d} \left(\sum_{i,i=1}^d a_{ij}(r,x,\mu_r^{s,\zeta}) \, \frac{\partial}{\partial x_i} \, \frac{\partial}{\partial x_j} \, \varphi(x) + \sum_{i=1}^d b_i(r,x,\mu_r^{s,\zeta}) \, \frac{\partial}{\partial x_i} \, \varphi(x) \right) \mu_r^{s,\zeta}(dx) dr, \end{split}$$

for all $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. It is called **probability solution**, if, in addition, ζ and each $\mu_t^{s,\zeta}$, $t \geq s$, are in $\mathcal{P}(\mathbb{R}^d)$.

(ii) Suppose $\mathcal{P}_0 \subset \mathcal{P}(\mathbb{R}^d)$ such that for each $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$ there exists a probability solution $[s,\infty) \ni t \mapsto \mu_t^{s,\zeta} \in \mathcal{P}_0$ with initial condition ζ such that the flow property

$$\mu_t^{s,\zeta} = \mu_t^{r,\mu_r^{s,\zeta}}, \quad \forall \ 0 \le s \le r \le t, \ \zeta \in \mathcal{P}_0$$
 holds. Then $(\mu^{s,\zeta})_{(s,\zeta) \in [0,\infty) \times \mathcal{P}_0}$ is called a solution flow of *(FPE)* in \mathcal{P}_0 .

The (in space) dual operator to the operator on the right hand side of (FPE) is called the corresponding Kolmogorov operator L_{μ} for $\mu \in \mathcal{P}(\mathbb{R}^d)$, i.e. its action on test functions $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ is given as

$$L_{\mu}\varphi(t,x) = \sum_{i,j=1}^{d} a_{ij}(t,x,\mu) \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \varphi(x) + \sum_{i=1}^{d} b_i(t,x,\mu) \frac{\partial}{\partial x_i} \varphi(x), \tag{K}$$

where $(t, x) \in (0, \infty) \times \mathbb{R}^d$.

In turn, this operator determines the corresponding McKean-Vlasov SDE (see [Carmona/Delarue: Springer Vol. I and II 2018] and the references therein)

$$dX^{s,\zeta}(t) = b(t,X^{s,\zeta}(t),\mu_t^{s,\zeta})dt + \sigma(t,X^{s,\zeta}(t),\mu_t^{s,\zeta})dW(t), \ t>s, \tag{MVSDEa}$$

$$\mathcal{L}_{X^{s,\zeta}(t)} = \mu_t^{s,\zeta}, \ t \ge s,$$
 (MVSDEb)

where $\sigma=(\sigma_{ij})_{ij}$ with $\sigma\sigma^{\top}=(a_{ij})_{ij}$, $b=(b_1,...,b_d)$, W(t), $t\geq s$, is a d-dimensional Brownian motion on some probability space $(\Omega,\mathcal{F},\mathbb{P})$, and the maps $X^{s,\zeta}(t):\Omega\to\mathbb{R}^d$, $t\geq s$, form the continuous in t solution process to (MVSDEa) such that its one-dimensional time marginals

$$\mathcal{L}_{X^{s,\zeta}(t)}:=(X^{s,\zeta}(t))_*\mathbb{P},\ t\geq 0,$$

i.e. the push forward or image measures of \mathbb{P} under $X^{s,\zeta}(t)$, satisfy (MVSDEb).

Correspondence: McKean−Vlasov SDE ←→ nonlinear FPE

a) McKean–Vlasov SDE → nonlinear FPE:

Consider (MVSDEa,b) and assume there exists a weak solution $X^{s,\zeta}$. Let $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.

Then by Itô's formula, since $\mu_t^{s,\zeta}=(X^{s,\zeta}(t))_*\mathbb{P},\ t\geq s$,

$$\begin{split} \int_{\mathbb{R}^d} \varphi(x) \mu_t^{s,\zeta}(\mathrm{d}x) &= \int_{\Omega} \varphi(X^{s,\zeta}(t)(\omega)) \, \mathbb{P}(\mathrm{d}\omega) \\ &= \int_{\Omega} \varphi(X^{s,\zeta}(0)(\omega)) \, \mathbb{P}(\mathrm{d}\omega) + \int_{\Omega} \int_s^t L_{\mathcal{L}_{X^{s,\zeta}(r)}} \varphi(X^{s,\zeta}(r)(\omega)) \, \mathrm{d}r \, \mathbb{P}(\mathrm{d}\omega) \\ &= \int_{\mathbb{R}^d} \varphi(x) \zeta(\mathrm{d}x) + \int_s^t \int_{\mathbb{R}^d} L_{\mu_r^{s,\zeta}} \varphi(x) \mu_r^{s,\zeta}(\mathrm{d}x) \mathrm{d}r \end{split}$$

Hence $(\mu_t^{s,\zeta})_{t\geq 0}$ is a **distributional solution** of (FPE), more precisely a **probability solution**.

b) Nonlinear FPE --- McKean-Vlasov SDE:

Theorem 0 ([Barbu/R: SIAM 2018, AOP 2020])

Let $(s,\zeta)\in\mathbb{R}_+ imes\mathcal{P}(\mathbb{R}^d)$ and assume there exists a probability solution $[s,\infty)\ni t\mapsto \mu_t^{s,\zeta}\in\mathcal{P}(\mathbb{R}^d)$ of (FPE). Then there exists a d-dimensional (\mathcal{F}_t) -Brownian motion $W(t),\ t\geq s,$ on a stochastic basis $(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq s},\mathbb{P})$ and a continuous (\mathcal{F}_t) -progressively measurable map $X^{s,\zeta}:[s,\infty)\times\Omega\to\mathbb{R}^d$ satisfying (MVSDEa,b).

Proof.

Nonlinear version of [Trevisan: EJP 2016] (generalizing [Figalli: JFA 2008]).

Remark

b, σ assumed to be **only measurable** in measure variable!

3. Main result: A general condition for path laws of MVSDE-solutions to form an nonlinear Markov process

Key: Look at the **linearized equation** corresponding to (FPE), i.e. for any weakly continuous curve $[s,\infty) \ni t \mapsto \eta_t \in \mathcal{P}(\mathbb{R}^d)$ consider

$$\frac{\partial}{\partial t} \nu_t^{s,\zeta} = \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \left(a_{ij}(t,x,\eta_t) \nu_t^{s,\zeta} \right) - \sum_{i=1}^d \frac{\partial}{\partial x_i} \left(b_i(t,x,\eta_t) \nu_t^{s,\zeta} \right), \quad (t,x) \in [s,\infty) \times \mathbb{R}^d$$

$$(\ell_{\eta} \mathsf{FPE})$$

where the solution $[s,\infty) \ni t \mapsto \nu_t^{s,\zeta} \in \mathcal{P}(\mathbb{R}^d)$ is a weakly continuous curve with initial condition $\zeta \in \mathcal{P}(\mathbb{R}^d)$. (Again, $(\ell_\eta \mathsf{FPE})$ is meant in the Schwartz distribution sense!)

Now for $\mathcal{P}_0 \subset \mathcal{P}(\mathbb{R}^d)$ let $(\mu^{s,\zeta})_{(s,\zeta)\in[0,\infty)\times\mathcal{P}_0}$ be a **solution flow** of (FPE) in \mathcal{P}_0 and choose specifically $\eta:=\mu^{s,\zeta}$ with $(s,\zeta)\in[0,\infty)\times\mathcal{P}_0$ and consider

$$\frac{\partial}{\partial t} \nu_t^{s,\zeta} = \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \left(a_{ij}(t,x,\mu_t^{s,\zeta}) \nu_t^{s,\zeta} \right) - \sum_{i=1}^d \frac{\partial}{\partial x_i} \left(b_i(t,x,\mu_t^{s,\zeta}) \nu_t^{s,\zeta} \right), (t,x) \in [s,\infty) \times \mathbb{R}^d, \\
\nu_t^{s,\zeta} = \zeta.$$

Then clearly, $\nu^{s,\zeta} := \mu^{s,\zeta}$ is a solution to $(\ell_{\mu^{s,\zeta}}FPE)$.

For
$$(s,\zeta)\in [0,\infty) imes \mathcal{P}_0$$
 define

$$M^{s,\zeta}_{\mu^{s,\zeta}}:=$$
 set of all probability solutions to $\ell_{\mu^{s,\zeta}}\mathit{FPE}$

Then $M_{\mu^{s,\zeta}}^{s,\zeta}$ is a convex set. Define

$$M^{s,\zeta}_{\mu^{s,\zeta},\mathrm{ex}}:=$$
 set of all extreme points of $M^{s,\zeta}_{\mu^{s,\zeta}}$

Now we can formulate our main result.

Theorem I ([Rehmeier/R.: JTP 2025+])

Let $\mathcal{P}_0 \subset \mathcal{P}(\mathbb{R}^d)$. Assume:

 $(\mathcal{P}_0 - \mathsf{Flow/lin_{ex}})$ There exists a solution flow $(\mu^{s,\zeta})_{(s,\zeta) \in [0,\infty) \times \mathcal{P}_0}$ of (FPE) in \mathcal{P}_0 such that $\mu^{s,\zeta} \in M_{u^{s,\zeta}}^{s,\zeta}$ for every $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$.

Then:

(i) For every $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$ the corresponding (MVSDEa,b) has a unique weak solution $X^{s,\zeta}$ with time marginal laws

$$\mathcal{L}_{X^{s,\zeta}(t)} = \mu_t^{s,\zeta}, \quad t \geq s.$$

(ii) The path laws

$$\mathbb{P}_{(s,\zeta)}:=\mathcal{L}_{X^{s,\zeta}}:=(X^{s,\zeta})_*(\mathbb{P})\,,\quad (s,\zeta)\in[0,\infty)\times\mathcal{P}_0$$
 form a nonlinear Markov process.

Corollary I

Let $\mathcal{P}_0 \subset \mathcal{P}(\mathbb{R}^d)$ and $(\mu^{s,\zeta})_{(s,\zeta)\in[0,\infty)\times\mathcal{P}_0}$ be a solution flow of (FPE) in \mathcal{P}_0 . Let $\tilde{\mathcal{P}}_0 \subset \mathcal{P}_0$ and assume:

 $(\mathcal{P}_0 - \mathsf{Flow}/\mathsf{lin}_{\mathsf{ex}}) \; (\mu^{s,\zeta})_{(s,\zeta) \in [0,\infty) \times \tilde{\mathcal{P}}_0}$ is a solution flow of (FPE) in $\tilde{\mathcal{P}}_0$ such that

$$\mu^{s,\zeta}\in M^{s,\zeta}_{\mu^{s,\zeta},{\sf ex}}$$
 for all $(s,\zeta)\in [0,\infty) imes ilde{\mathcal{P}}_0$

and

$$(\tilde{\mathcal{P}}_0 - \text{smoothing}) \text{ For every } (s, \zeta) \in [0, \infty) \times \mathcal{P}_0$$

$$u_s^{s,\zeta} \in \tilde{\mathcal{P}}_0 \quad \forall t > s.$$

Then for every $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$ the corresponding (MVSDEa,b) has a weak solution $X^{s,\zeta}$ with time marginal laws

$$\mathcal{L}_{X^{s,\zeta}}(t) = \mu_t^{s,\zeta}, \quad t \geq s,$$
 (*)

such that the path laws

$$\mathbb{P}_{(s,\zeta)} = \mathcal{L}_{X^{s,\zeta}}, \quad (s,\zeta) \in [0,\infty) \times \mathcal{P}_0,$$

form a nonlinear Markov process. Moreover, for $(s,\zeta)\in [0,\infty) imes \tilde{\mathcal{P}}_0$, the above weak solution $X^{s,\zeta}$ is unique in law among all weak solutions satisfying (*).

4. Example

4.1 FPE = parabolic p-Laplace equation

Key Step: Identify the parabolic p-Laplace equation as a nonlinear FPE for p > 2.

Recall: Coefficients in FPE only need to be measurable in μ . So, if for the solutions μ_t , t > 0, we have $\mu_t(dx) = u(t,x)dx$, t > 0, we can allow dependencies as

$$a_{ij}(t,x,\mu_t) = \tilde{a}_{ij}(t,x,\Gamma_1(u)(t,x)),$$

$$b_i(t,x,\mu_t) = \tilde{b}_i(t,x,\Gamma_2(u)(t,x)),$$
(**)

where $\tilde{b}_i, \tilde{a}_{ii}: [0,\infty) \times \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}$ are measurable and each Γ_i is a functional on the space of distributional solutions whose values are again measurable functions of t and x. Noting that

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \operatorname{div}(\nabla(|\nabla u|^{p-2}u) - \nabla(|\nabla u|^{p-2})u),$$

we can rewrite the parabolic p-Laplace equation (see "first motivation page") as

$$\frac{\partial}{\partial t} u(t,x) = \Delta(|\nabla u(t,x)|^{p-2} u(t,x)) - \operatorname{div}(\nabla(|\nabla u(t,x)|^{p-2}) u(t,x)), \ (t,x) \in (0,\infty) \times \mathbb{R}^d.$$
(p-LE)

Hence we see that (p-LE) is of type (FPE) with a_{ii} , b_i as in (**), where

$$\tilde{a}_{ij}(t,x,\Gamma_1(u)(t,x)) = \delta_{ij}|\nabla u(t,x)|^{p-2},$$

$$\tilde{b}(t,x,\Gamma_2(u)(t,x)) = \nabla(|\nabla u(t,x)|^{p-2}).$$

Apply Corollary I

To the solution flow $(u^{s,\zeta})_{(s,\zeta)\in[0,\infty)\times\mathcal{P}_0}$ of (p-LE) (= special FPE) given by the famous Barenblatt solution (see [Kamin/Vázquez 1988])

$$u^{s,\delta_y}(t,x) := (t-s)^{-k} \left(C_1 - q(t-s)^{-\frac{kp}{d(p-1)}} |x-y|^{\frac{p}{p-1}} \right)_+^{\frac{p-1}{p-2}}, \ (t,x) \in (s,\infty) \times \mathbb{R}^d,$$

where $k:=\left(p-2+\frac{p}{d}\right)^{-1}, q:=\frac{p-2}{p}\left(\frac{k}{d}\right)^{\frac{1}{p-1}}$, $C_1\in(0,\infty)$ such that $\int_{\mathbb{R}^d}u^{s,\delta_y}(t,x)dx=1$ for all t > 0, and $f_+ := \max(f, 0)$. Here

$$\mathcal{P}_0 := \tilde{\mathcal{P}}_0 \cup \{\delta_y : y \in \mathbb{R}^d\}$$

$$\tilde{\mathcal{P}}_0 := \{ u^{0,\delta_y}(\epsilon,x) dx | \epsilon \in (0,\infty), y \in \mathbb{R}^d \}.$$

Then we obtain that for every $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$ the corresponding (MVSDEab) (see "second motivation page") has a weak solution $X^{s,\zeta}$ with time marginals

$$\mathcal{L}_{X^{s,\zeta}(t)} = u^{s,\zeta}(t,x)dx, \quad t \geq s,$$

(which is unique in law if $(s,\zeta)\in [0,\infty) imes ilde{\mathcal{P}}_0$) such that the path laws

$$\mathbb{P}_{(s,\zeta)} = \mathcal{L}_{X^{s,\zeta}}, \quad (s,\zeta) \in [0,\infty) \times \mathcal{P}_{\mathbf{0}},$$
form a population Markov process

form a nonlinear Markov process.

Remark

In this particular case it turns out that:

- (i) The solution $X^{s,\zeta}$ is unique in law for all $(s,\zeta) \in [0,\infty) \times \mathcal{P}_0$.
- (ii) Due to time translation invariance

$$\mathbb{P}_{(s,\zeta)} = \mathbb{P}_{(0,\zeta)} \circ \hat{\Pi}_s^{-1} \quad \forall (s,\zeta) \in [0,\infty) \times \mathcal{P}_0,$$
 where

$$\begin{split} \hat{\Pi}_s &: C([0,\infty); \mathbb{R}^d) \to C([s,\infty); \mathbb{R}^d) \\ \hat{\Pi}_s(w(t))_{t \geq 0} &:= (w(t-s))_{t \geq s}, \quad w \in C([0,\infty); \mathbb{R}^d. \end{split}$$

(iii) For
$$\zeta = u^{0,\delta_y}(\epsilon,x)dx \in \tilde{\mathcal{P}}_0$$

$$\mathbb{P}_{(0,\zeta)} = \mathbb{P}_{(0,\delta_y)} \circ \Pi_{\epsilon}^{-1},$$

where

$$\Pi_{\epsilon}: C([0,\infty) \times \mathbb{R}^d) \to C([0,\infty) \times \mathbb{R}^d)$$

$$\Pi_{\epsilon}((w(t)_{t\geq 0}):=(w(t+\epsilon))_{t\geq 0},\quad w\in C([s,\infty) imes\mathbb{R}^d.$$

Set

$$\mathbb{P}_y := \mathbb{P}_{(0,\delta_y)}, \quad y \in \mathbb{R}^d.$$

Then $\{\mathbb{P}_v \mid v \in \mathbb{R}^d\}$ uniquely determines the nonlinear Markov process $\{\mathbb{P}_{(s,\zeta)}|(s,\zeta)\in[0,\infty)\times\mathcal{P}_0\}$. Therefore, we call $\mathbb{P}_v,\ v\in\mathbb{R}^d$, p-Brownian motion.

4.2 FPE = generalized porous media equation

[Barbu/R.: JFA 2021 and 2023]

Nonlinear Fokker– Planck equation (distri-

butional

solutions)

$$\begin{split} \frac{\partial}{\partial t} u^{s,\zeta}(t,x) - \Delta_{x}(\beta(u^{s,\zeta}(t,x))) \\ + \operatorname{div}_{x}(D(x)b(u^{s,\zeta}(t,x))u^{s,\zeta}(t,x)) &= 0, \\ \forall (t,x) \in (s,\infty) \times \mathbb{R}^{d}. \end{split} \tag{FPE}$$

$$u^{s,\zeta}(s,x)dx := \zeta \in \mathcal{P}(\mathbb{R}^{d}), s \geq 0.$$

Our approach solve this first!

McKean-Vlasov SDE (probabilistically weak sense)

$$dX^{s,\zeta}(t) = D(X^{s,\zeta}(t))b(u^{s,\zeta}(t,X^{s,\zeta}(t)))dt + \left(\frac{2\beta(u^{s,\zeta}(t,X^{s,\zeta}(t)))}{u^{s,\zeta}(t,X^{s,\zeta}(t))}\right)^{\frac{1}{2}}dW(t),$$

$$\mathcal{L}_{X^{s,\zeta}(t)}(dx) = u^{s,\zeta}(t,x)dx, \ t \ge s \ge 0.$$
 (MVSDE)

Then under suitable conditions on $\beta: \mathbb{R} \to \mathbb{R}, b: \mathbb{R} \to \mathbb{R}$, and $D: \mathbb{R}^d \to \mathbb{R}^d$ (see [Barbu/R.: JFA 2021 and 2023] and [Barbu/R.: Springer LN 2024]) Corollary I above applies with

$$\mathcal{P}_0 := \mathcal{P}(\mathbb{R}^d),$$

$$\tilde{\mathcal{P}}_0 = \{u_0(x)dx \,|\, u_0 \geq 0, \, \int_{\mathbb{R}^d} u_0 dx = 1, \, u_0 \in L^{\infty}(\mathbb{R}^d; dx)\}.$$

Hence the path laws

$$\mathbb{P}_{(s,\zeta)} := \mathcal{L}_{X^{s,\zeta}} \,, \quad (s,\zeta) \in [0,\infty) imes \mathcal{P}(\mathbb{R}^d),$$

form a nonlinear Markov process.

4.3 FPE = fractional generalized porous media equation

[Barbu/R.: PTRF 2024], [Barbu/da Silva/R.: arXiv: 2308.06388], [Barbu/R.: Springer LN 2024]

Let $\Psi: \mathbb{R}_+ \to \mathbb{R}_+$ be a Bernstein function, e.g. $\Psi(r) = r^s, \, s \in (0,1)$.

Nonlinear fractional

Fokker– Planck equation (distri-

butional solutions)

$$\frac{\partial}{\partial t}u^{s,\zeta}(t,x) + \Psi(-\Delta_{x})(\beta(u^{s,\zeta}(t,x))) + \operatorname{div}_{x}(D(x)b(u^{s,\zeta}(t,x))u^{s,\zeta}(t,x)) = 0,$$

$$\forall (t,x) \in (s,\infty) \times \mathbb{R}^{d}, \ u^{s,\zeta}(s,x)dx := \zeta \in \mathcal{P}_{0}, \ s \geq 0.$$
 (FPE_{\psi})}

Our approsolve first!

(nonlinear) **nonlocal** superposition

principle

[R./Xie/Zhang: PTRF 2020]

ltô (or Dynkin formul

McKean-Vlasov SDE with multiplicative Lévy noise (probabilistically weak sense)

 $\exists \mathbb{P}_{(s,\zeta)}$ probability measure on $\mathbb{D}([0,\infty);\mathbb{R}^d)$ solving the martingale problem for $(\mathcal{L}_t, C_c^2(\mathbb{R}^d))$ such that

Here

$$\mathcal{L}_t f(x) = b(u^{s,\zeta}(t,x)) D(x) \cdot \nabla f(x) + \frac{\beta(u^{s,\zeta}(t,x))}{u^{s,\zeta}(t,x)} p.v. - \int_{\mathbb{R}^d} (f(x+z) - f(x)) \nu_{\Psi}(dz)$$

with

$$\nu_{\Psi}(dz) = \left(\int_0^{\infty} (2t)^{-\frac{d}{2}} e^{-\frac{|z|^2}{2t}} \mu(dt)\right) dz \text{ and } \Psi(r) = \int_0^{\infty} (1 - e^{-rt}) \mu(dt).$$

Then under suitable conditions on β , b, D and Ψ , Corollary I above applies with

$$\tilde{\mathcal{P}}_0 = \mathcal{P}_0 := \{ u_0(x) dx \mid u_0 \ge 0, \int_{\mathbb{R}^d} u_0 dx = 1, \ u_0 \in L^{\infty}(\mathbb{R}^d; dx) \}.$$

Hence

$$\mathbb{P}_{(s,\zeta)},(s,\zeta)\in[0,\infty)\times\mathcal{P}_0,$$

form a nonlinear Markov process.

4.4 FPE = Burgers equation

[Rehmeier/R.: arXiv: 2212.12424, to appear in JTP]

Nonlinear Fokker-

Planck equation (distributional solutions)

$$\begin{split} \frac{\partial}{\partial t} u^{s,\zeta}(t,x) - \frac{\partial^2}{\partial x^2} u^{s,\zeta}(t,x) + \frac{1}{2} \frac{\partial}{\partial x} \left(u^{s,\zeta}(t,x) u^{s,\zeta}(t,x) \right) &= 0 \\ \forall (t,x) \in (s,\infty) \times \mathbb{R}^1, \ u^{s,\zeta}(s,x) dx := \zeta \in \mathcal{P}_0, \ s \geq 0. \end{split} \tag{FPE}$$

Our approach solve this first!

McKean-Vlasov SDE (probabilistically weak sense)

$$\begin{split} dX^{s,\zeta}(t) &= \frac{1}{2} u^{s,\zeta} \left(t, X^{s,\zeta}(t) \right) \mathrm{d}t + \sqrt{2} \, \mathrm{d}W(t) \\ \mathcal{L}_{X^{s,\zeta}(t)}(\mathrm{d}x) &= u^{s,\zeta}(t,x) \mathrm{d}x, \ t \geq s \geq 0. \end{split} \tag{MVSDE}$$

Then Corollary I above applies with $\tilde{\mathcal{P}}_0=\mathcal{P}_0=$ as in Example 4.3. Hence the path laws

$$\mathbb{P}_{(s,\zeta)} := \mathcal{L}_{X^{s,\zeta}}, \quad (s,\zeta) \in [0,\infty) \times \mathcal{P}_0,$$

form a nonlinear Markov process.

4.5 FPE = 2D vorticity Navier-Stokes equation

[Barbu/R./Zhang: arXiv: 2309.13910, to appear in JEMS]

Nonlinear Fokker– Planck equation

(distri-

butional solutions)

$$\begin{split} \frac{\partial}{\partial t} u^{s,\zeta}(t,x) + \Delta u^{s,\zeta}(t,x) + \operatorname{div}\left((k*u^{s,\zeta}(t,\cdot))(x)u^{s,\zeta}(t,x)\right) &= 0 \\ \forall (t,x) \in (s,\infty) \times \mathbb{R}^2, u^{s,\zeta}(s,x)dx &:= \zeta \in \mathcal{P}(\mathbb{R}^2) \end{split} \tag{FPE}$$

Our approach: solve this first!

McKean-Vlasov SDE (probabilistically weak sense)

$$dX^{s,\zeta}(t) = \left(k * u^{s,\zeta}(t,\cdot)\right) \left(X^{s,\zeta}(t)\right) dt + \sqrt{2} dW(t)$$

$$\mathcal{L}_{X^{s,\zeta}(t)}(dx) = u^{s,\zeta}(t,x) dx, \ t \ge s \ge 0. \quad \text{(MVSDE)}$$

Here

$$k(x) = \frac{(-x_2, x_1)}{2\pi |x|_{\mathbb{R}^2}^2}, \ x = (x_1, x_2) \in \mathbb{R}^2.$$
 "Biot-Savart kernel"

Then Corollary I applies with

$$\mathcal{P}_0 := \mathcal{P}(\mathbb{R}^2)$$

and

$$\tilde{\mathcal{P}}_0 := \{ u_0(x) dx \mid u_0 \ge 0, \int_{\mathbb{R}^d} u_0 dx = 1, u_0 \in L^4(\mathbb{R}^d; dx) \}.$$

Hence

$$\mathbb{P}_{s,\zeta} := \mathcal{L}_{X^{s,\zeta}}, (s,\zeta) \in [0,\infty) \times \mathcal{P}(\mathbb{R}^2),$$

form a nonlinear Markov process.

Remark

A beautiful result by Sebastian Grube ([PhD-thesis, IRTG 2235, Bielefeld University 2023]) implies that for $(s,\zeta) \in [0,\infty) \times \tilde{\mathcal{P}}_0$ the weak solution $X^{s,\zeta}$ of (MVSDE) above is in fact a strong solution.