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Object of interest in this talk

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Q1/2dWt

(Stochastic) McKean-Vlasov Equation



Overview

▶ Motivation

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x)

▶ Modelling issues
▶ Behaviour of the Particle System vs behaviour of the PDE

▶ Relation to SPDEs - Stochastic McKean-Vlasov equation
▶ Can we obtain the SPDE as limit of interacting particles?
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McKean-Vlasov equation
▶ Interacting particle system

dX i
t = −

V ′(X i
t ) +

1
N

∑
j ̸=i

F ′(X i
t − X j

t )

dt +
√

2σdBi
t , i = 1, . . . ,N

▶ The empirical measure ρN := 1
N

∑N
i=1 δX i

t

N→∞−→ ρt solution of

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) (1)

▶ Propagation of chaos: each X i
t converges to Xt solution of a

McKean-Vlasov SDE

dXt = −V ′(Xt)−
(∫

Rd
F ′(Xt − y)ρt(y)dy

)
dt +

√
2σdBt ,

where ρt = Law(Xt) and it solves (1)
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Typical situation

Particle system and limiting PDE have very different behaviour, in general

▶ Particle system has a unique invariant measure

▶ Limiting process undergoes phase transitions, number of
invariant measures determined e.g. by noise strength

▶ In some cases the situation can be even more patological
▶ Particle system has periodic behaviour
▶ PDE nicely equilibrates to a stationary state

[ P. Butta’, T. Hodgson, B. Goddard, M.O., K. Painter, Math. Mod.
Methods in Appl. Sci, 2022 ]
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Mean-field vs non-mean field

▶ Mean field interacting particle system

dX i
t = −∇V (X i

t )dt +
1
N

∑
j ̸=i

K (X i
t − X j

t )dt +
√

2DdBi
t , i = 1, . . . ,N

▶ Non-mean field interacting particle system

dX i
t = −∇V (X i

t )dt +
1
N

∑
j ̸=i

1(0,R](|X i,N
t − X i,N

t |)K (X i
t − X j

t )dt +
√

2DdBi
t ,

▶ How do we normalise?

1
N

∑
j ̸=i

1(0,R](|X i,N
t − X i,N

t |)K (X i
t − X j

t )

or

1

#{j : |X i,N
t − X i,N

t | ≤ R}
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1(0,R](|X i,N
t − X i,N
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Taking one step back

Finding all the stationary solutions is a difficult problem

∂x [V ′(x)ρ(x) + (F ′ ∗ ρ)(x)ρ(x)] + σ∂xxρ(x) = 0



How to count the (stable) stationary solutions
▶ ODE in R

dXt = −V ′(Xt)dt

▶ Add noise

dXt = −V ′(Xt)dt +
√

2dWt

with invariant measure µ ∼ e−V

▶ Number of modes (metastable states) ∼ number of (stable)
stationary solutions of the ODE
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How to count the (stable) stationary solutions

▶ Would like to do something similar in infinite dimension

▶ Use the SPDE

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)]+σ∂xxρt(x)+Q1/2dWt

to count the number of (stable) stationary states of the PDE

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x)

▶ ....assuming it all goes well
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Stochastic McKean-Vlasov
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(Stochastic) McKean-Vlasov Equation

▶ Initial Motivation: Tool to find all the stable stationary solutions of
the PDE part

▶ Can we obtain SPDEs as limits of interacting particles?
▶ Series of works of Kurtz et al on derivation of non-linear SPDEs

with (multiplicative) noise
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A couple of preliminary observations

ρN
t :=

1
N

N∑
i=1

δX i
t

N→∞−→ ρt

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) (1)

▶ ρN
t is a random probability measure, hence positive

▶ Coherently, ρt is positive (if started with positive initial datum)
▶ Particles are not being killed
▶ The evolution (1) preserves mass ( (1) is in gradient form)
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As before...
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preserves mass
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Some problems...

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Q1/2dWt

▶ Does not preserve mass (in general)

▶ Does not have a sign (does not preserve positivity)
▶ ......cannot expect to obtain it as limit of something of the form
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i=1 δX i
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The Stochastic McKean-Vlasov equation

Well posedness

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Q1/2dWt

▶ It is the McKean-Vlasov PDE berturbed by additive noise

▶ It is not an infinite dimensional McKean-Vlasov evolution
▶ The above is good news: setting

E [φ(ρt)|ρ0 = ρ] =: (Ptφ)(ρ) φ ∈ Cb(L2;R)

does give a semigroup

▶ Existence and uniqueness in L2 for trace class noise: a
combination of Burgers’ equation + McKean Vlasov PDE
arguments
▶ Existence and uniqueness for cylindrical noise not known yet
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The Stochastic McKean-Vlasov equation

Ergodicity

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Q1/2dWt

▶ Depending on the choice of V ,F , σ the McKean-Vlasov PDE, i.e.
the evolution

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x)

has multiple stationary solutions (equilibria)

▶ Adding noise restores uniqueness of the invariant measure
(equilibrium)
▶ with a caveat .... there exists at most one invariant measure of the

SMKV equation. Existence still to be done.
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Weighted Particle system converging to SMKV
▶ Start with simpler noise

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)]+σ∂xxρt(x)+Q(x)dWt

Q : T → R and Wt one-dimensional Brownian Motion

▶ Ansatz:

dX i
t = −V ′(X i

t )−
1
N

N∑
j=1

Aj
t F ′(X i

t − X j
t )dt +

√
2σdBi

t

dAi
t =

Q(X i
t )

1
N

∑
j ϕϵ(X i − X j)

dWt

▶ Claim :

ρN
t :

1
N

N∑
i=1

Ai
tδX i

t

N→∞−→ ρt

i.e. limN→∞⟨ρN
t − ρt , f ⟩ = 0, for every test function f .
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Explaining the ansatz continued

▶ Ansatz : ρN
t : 1

N

∑N
i=1 Ai

tδX i
t

N→∞−→ ρt where

dX i
t =

√
2σdBi

t

dAi
t =

Q(X i
t )

1
N

∑
j ϕϵ(X i − X j)

dWt

▶ Ito formula

d(Ai
t f (X

i
t )) = Ai

t f
′(X i

t )
√

2σdBi
t + σAi

t f
′′(X i

t )dt

+ f (X i
t )

Q(X i
t )

1
N

∑
j ϕϵ(X i − X j)

dWt



Explaining the ansatz continued
▶ Take sums

d

[
1
N

N∑
i=1

(Ai
t f (X

i
t ))

]
=

1
N

N∑
i=1

Ai
t f

′(X i
t )
√

2σdBi
t + σ

1
N

N∑
i=1

Ai
t f

′′(X i
t )dt

+
1
N

N∑
i=1

f (X i
t )

Q(X i
t )

1
N

∑
j ϕϵ(X i − X j)

dWt

▶ For less than the martingale term,

d(ρN,ϵ
t , f ) ≃ σ(ρN,ϵ

t , f ′′) +

(
fQ

ηN,ϵ
t ∗ ϕϵ

, ηN,ϵ
t

)
dWt ηN,ϵ

t =
1
N

∑
δX i

t

N→∞−→ σ(ρϵt , f
′′) +

(
fQ

ηϵt ∗ ϕϵ
, ηϵt

)
dWt

ϵ→0−→ σ(ρt , f ′′) +
(

fQ
ηt

, ηt

)
dWt

= σ(ρt , f ′′) + (f ,Q)dWt
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Something on the proof - fixing the noise

▶ Initial interest on

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)]+σ∂xxρt(x)+Q(x)dWt

▶ Results for perturbations of type

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Ut

where Ut is
▶ a piecewise smooth deterministic path
▶ a α− Hölder continuous deterministic path (fix the noise)
▶ a finite sum of Brownian Motions
▶ a trace class Wiener process



Something on the proof - fixing the noise

▶ Initial interest on

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)]+σ∂xxρt(x)+Q(x)dWt

▶ Results for perturbations of type

∂tρt(x) = ∂x [V ′(x)ρt(x) + (F ′ ∗ ρt)(x)ρt(x)] + σ∂xxρt(x) + Ut

where Ut is
▶ a piecewise smooth deterministic path
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Why is it convenient to fix the noise?
▶ The empirical measure µN

t := 1
N

∑
j δ(X j

t ,A
j
t )

converges to
µt = µt(x ,a) which solves

∂tµt = ∂xxµt + ∂x

[
(V ′ +

∫
aF ′(x − y)µt(dy ,da))µt

]
− Q

Φϵ ∗ ζt
∂aµtdWt +

1
2

Q2

(Φϵ ∗ ζt)2 ∂aaµt

▶ Morally , ρt(dx) =
∫
R aµt(dx ,da), but the equation for ρt is the

same with or without the blue term

▶ Fixing the noise is ‘natural’ as the noise we fix is the ‘common
noise’ on the weights
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