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Polarity of points

Hitting probabilities and polarity of points for random fields

Let U = (U(x), x ∈ Rk) be an Rd -valued continuous stochastic process.

Fix I ⊂ Rk , compact with positive Lebesgue measure.

The range of U over I is the random compact set

U(I ) = {U(x), x ∈ I}.

Question. (Hitting probabilities) For A ⊂ Rd , what are bounds on the
probability that U hits A, that is,

P{U(I ) ∩ A ̸= ∅} ?

Related question. (Polarity of points) Fix z ∈ Rd . Does U fail to hit z , that
is, do we have

P{∃x ∈ I : U(x) = z} = 0 ?

Polarity. If P{∃x ∈ I : U(x) = z} = 0, then z is polar for U.

Typically, there is a critical value Q(k) such that:

• if d < Q(k), then points are not polar • if d > Q(k), then points are polar
• at the critical valued d = Q(k): ???
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The Brownian sheet

First example: the Brownian sheet

Let (W (x), x ∈ Rk
+) denote an k-parameter Rd -valued Brownian sheet, that is,

a centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E [Wi (x)Wj(y)] = δi,j

k∏
ℓ=1

min(xℓ, yℓ), i , j ∈ {1, . . . , d},

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

Theorem 1 (Khoshnevisan and Shi, 1999)

Fix M > 0. Let I be a box. There exists 0 < C < ∞ such that for all compact
sets A ⊂ B(0,M) (⊂ Rd),

1

C
Capd−2k(A) ⩽ P{W (I ) ∩ A ̸= ∅} ⩽ C Capd−2k(A).

Example. A = {z}.
Capd−2k({z}) =

{
1 if d < 2k,
0 if d ⩾ 2k,

so points are polar in the critical dimension d = 2k.
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The Brownian sheet

First example: the Brownian sheet

Let (W (x), x ∈ Rk
+) denote an k-parameter Rd -valued Brownian sheet, that is,

a centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E [Wi (x)Wj(y)] = δi,j

k∏
ℓ=1

min(xℓ, yℓ), i , j ∈ {1, . . . , d},

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

Theorem 1 (Khoshnevisan and Shi, 1999)

Fix M > 0. Let I be a box. There exists 0 < C < ∞ such that for all compact
sets A ⊂ B(0,M) (⊂ Rd),

1

C
Capd−2k(A) ⩽ P{W (I ) ∩ A ̸= ∅} ⩽ C Capd−2k(A).

Example. A = {z}.
Capd−2k({z}) =

{
1 if d < 2k,
0 if d ⩾ 2k,

so points are polar in the critical dimension d = 2k.
Sharp upper bounds on hitting probabilities Robert C. Dalang 4 / 20



The Brownian sheet

First example: the Brownian sheet

Let (W (x), x ∈ Rk
+) denote an k-parameter Rd -valued Brownian sheet, that is,

a centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E [Wi (x)Wj(y)] = δi,j

k∏
ℓ=1

min(xℓ, yℓ), i , j ∈ {1, . . . , d},

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

Theorem 1 (Khoshnevisan and Shi, 1999)

Fix M > 0. Let I be a box. There exists 0 < C < ∞ such that for all compact
sets A ⊂ B(0,M) (⊂ Rd),

1

C
Capd−2k(A) ⩽ P{W (I ) ∩ A ̸= ∅} ⩽ C Capd−2k(A).

Example. A = {z}.
Capd−2k({z}) =

{
1 if d < 2k,
0 if d ⩾ 2k,

so points are polar in the critical dimension d = 2k.
Sharp upper bounds on hitting probabilities Robert C. Dalang 4 / 20



Other Gaussian processes

Anisotropic Gaussian random fields (Biermé, Lacaux & Xiao, 2007)

Let (V (x), x ∈ Rk) be centered continuous Gaussian, values in Rd ,
i.i.d. components: V (x) = (V1(x), . . . ,Vd(x)). Let I be a box. Assume:

(C) There exists 0 < c < ∞ and H1, . . . ,Hk ∈ ]0, 1[ such that for all x , y ∈ I ,

c−1
k∑

ℓ=1

|xℓ − yℓ|Hℓ ⩽ ∆(x , y) := ∥V1(x)− V1(y)∥L2(Ω) ⩽ c
k∑

ℓ=1

|xℓ − yℓ|Hℓ

and some non-degeneracy assumptions.

Theorem 2 (Biermé, Lacaux & Xiao, 2007)

Fix M > 0. Set Q =
∑k

ℓ=1
1
Hℓ

. Then there is 0 < C < ∞ such that for every

compact set A ⊂ B(0,M),

C−1 Capd−Q(A) ⩽ P{V (I ) ∩ A ̸= ∅} ⩽ CHd−Q(A).

Example. The Brownian sheet. Theorem 2 is close to Theorem 1: for
ℓ = 1, . . . , k, xℓ 7→ W (x1, . . . , xℓ, . . . , xk) is a Brownian motion, so Hℓ =

1
2
and

Q =
k∑

ℓ=1

1

Hℓ
= 2k

Sharp upper bounds on hitting probabilities Robert C. Dalang 5 / 20



Other Gaussian processes

Anisotropic Gaussian random fields (Biermé, Lacaux & Xiao, 2007)
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Other Gaussian processes

Main difference between Theorems 2 and 1

In both theorems, the “dimension” that appears is d − Q = d − 2k;

For the Brownian sheet, both theorems identify the critical dimension d = 2k.

But compare the right-hand sides:

in Theorem 2, Hausdorff measure.
in Theorem 1, capacity.

Case where A = {z}:

Capd−Q({z}) =


1 if d < Q,
0 if d = Q,
0 if d > Q,

Hd−Q({z}) =


∞ if d < Q,
1 if d = Q,
0 if d > Q.

If d = Q, Theorem 2 says: 0 ⩽ P{∃x ∈ I : V (x) = z} ⩽ 1 (not informative)!

Remark. Theorem 2 is not enough to decide the issue of polarity of points in
the critical dimension.
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Other Gaussian processes

Funaki’s random string

Let (V (t, x), (t, x) ∈ R+ × R) be an Rd -valued random field such that

∂

∂t
V (t, x) =

∂2

∂x2
V (t, x) + Ẇ (t, x), x ∈ R, t > 0,

V (0, ·) : R → Rd given, Ẇ (t, x) is Rd -valued space-time white noise
(Gaussian).

Theorem 3 (Mueller & Tribe, 2002)

The critical dimension for hitting points is d = 6 and points are polar in this
dimension.

(Also treat the issue of double points for this random field)

Theorem 4 (D., Khoshnevisan & E. Nualart, 2007)

Fix M > 0. There is 0 < C < ∞ such that for every compact set A ⊂ B(0,M),

C−1 Capd−6(A) ⩽ P{V (I ) ∩ A ̸= ∅} ⩽ CHd−6(A).(
Q = 1

1
4

+ 1
1
2

= 6
)
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Non-Gaussian random fields

Systems of nonlinear wave equations in spatial dimension 1

Let (U(t, x), (t, x) ∈ R+ × R) be an Rd -valued random field such that

∂2

∂t2
U(t, x) =

∂2

∂x2
U(t, x) + σ(U(t, x))Ẇ (t, x), x ∈ R, t > 0,

U(0, ·), ∂
∂t
U(0, ·) : R → Rd given,

Ẇ (t, x) is Rd -valued space-time white noise, v 7→ σ(v) smooth (Lipschitz).

Theorem 5 (D. & E. Nualart, 2004)

1

C
Capd−4(A) ⩽ P{U(I ) ∩ A ̸= ∅} ⩽ C Capd−4(A).(

Q = 1
1
2

+ 1
1
2

= 4
)

The critical dimension for hitting points is d = 4 and points are polar in this
dimension.

The proof uses Malliavin calculus (lower bound) and Cairoli’s maximal
inequality for multi-parameter martingales (upper bound).
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Non-Gaussian random fields

Other non-linear systems of stochastic p.d.e.’s

Let L be a partial differential operator (e.g. L = ∂
∂t

−∆ or L = ∂2

∂t2
−∆).

Let U(t, x) = (U1(t, x), . . . ,Ud(t, x)) ∈ Rd be the solution of
LU1(t, x) = b1(U(t, x)) +

∑d
j=1 σ1,j(U(t, x))Ẇj(t, x),

...

LUd(t, x) = bd(U(t, x)) +
∑d

j=1 σd,j(U(t, x))Ẇj(t, x),

t ∈ ]0,T ], x ∈ Rk .

smooth (Lipschitz) non-linearities: bi , σi,j : Rd → R, i = 1, . . . , d

Initial conditions: e.g. U(0, x) = U0(x) given.

Ẇj(t, x): independent space-time white noises, real-valued.
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Non-Gaussian random fields

Other nonlinear systems of spde’s

Suppose that we have optimal Hölder exponents for the solution:

c(p)∆(t, x ; s, y) ⩽ ∥U(t, x)− U(s, y)∥Lp(Ω) ⩽ C(p)∆(t, x ; s, y),

where

∆(t, x ; s, y) = |t − s|H0 +
k∑

ℓ=1

|xℓ − yℓ|Hℓ .

Define

Q =
k∑

ℓ=0

1

Hℓ
.

Typical result 1

Fix η > 0. Then

cηCapd−Q+η(A) ⩽ P{U(I × J) ∩ A ̸= ∅} ⩽ CηHd−Q−η(A)

Remarks. (a) This is similar to the result of Biermé, Lacaux and Xiao (2007).
(b) In the critical dimension d = Q, this is not informative!
(c) There is an additional parameter η on the left- and right-hand sides: this is
less sharp than in the Gaussian case.
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Non-Gaussian random fields

The nonlinear system of stochastic heat equations

(U(t, x), (t, x) ∈ R+ ×R): Rd -valued random field such that for t > 0, x ∈ R,

∂

∂t
U(t, x) =

∂2

∂x2
U(t, x) + b(U(t, x)) + σ(U(t, x)) · Ẇ (t, x),

U(0, ·) : R → Rd given, Ẇ (t, x) is Rd -valued space-time white noise

σ = (σi,j , i , j = 1, . . . , d) : Rd → Md×d , b = (bi , i = 1, . . . , d) : Rd → Rd

Assumption. The σi,j and bi are C∞, bounded, with bounded derivatives of all
orders, and σ is uniformly elliptic.

Theorem 6 (D., Khoshnevisan & E. Nualart, 2009)

Fix η > 0, M > 0 and two non-trivial compact intervals I and J. There exists
c > 0 such that for all compact sets A ⊆ [−M,M]d ,

c−1 Capd−6+η(A) ⩽ P{U(I × J) ∩ A ̸= ∅} ⩽ c Hd−6−η(A).
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orders, and σ is uniformly elliptic.

Theorem 6 (D., Khoshnevisan & E. Nualart, 2009)

Fix η > 0, M > 0 and two non-trivial compact intervals I and J. There exists
c > 0 such that for all compact sets A ⊆ [−M,M]d ,

c−1 Capd−6+η(A) ⩽ P{U(I × J) ∩ A ̸= ∅} ⩽ c Hd−6−η(A).
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Non-Gaussian random fields

Proving the upper bound

Let U = (U(t, x), (t, x) ∈ R+ ×Rk) be an Rd -valued continuous random field.

Typical result 2

Let D ⊂ Rd . In addition to knowing the Hölder exponents Hℓ, assume that for
any t > 0 and x ∈ Rk , U(t, x) has a density p(t,x), and

sup
z∈D(2)

sup
(t,x)∈(I×J)(1)

p(t,x)(z) ≤ C (1)

(D(2) is the 2-enlargement of D.)

Then for any η > 0, for every Borel set A ⊂ D,

P {U(I ) ∩ A ̸= ∅} ≤ CHd−η−Q(A).

Remarks. (a) Gaussian case: (1) becomes det Cov (U(t, x),U(t, x)) > 0.

(b) Non-Gaussian case: Condition (1) can often be obtained by using Malliavin
calculus.
(c) The main step in the proof (Gaussian and non-Gaussian cases) is a covering
argument.
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Non-Gaussian random fields

Proving the lower bound
Lower bounds

Let U = (U(t, x), (t, x) ∈ R+ × Rk) be an Rd -valued continuous random field.

Typical result 3

In addition to knowing the Hölder exponents Hℓ, assume that:

the density of U(t, x) is strictly positive

the two-point density of (U(s, y),U(t, x)) satisfies the upper bound

ps,y ;t,x(z1, z2) ⩽ [∆(s, y ; t, x)]−(d+η) exp

[
− ∥z1 − z2∥2

c ∆2(s, y ; t, x)

]
.

These two properties (obtained via Malliavin calculus) imply the lower bound

P{U(I × J) ∩ A ̸= ∅} ≥ c Capd+η−Q(A)

where Q =
∑k

ℓ=0
1
Hℓ

. (optimal if η = 0)
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Non-Gaussian random fields

Improving the lower bound

Question. Is the extra η > 0 needed in the nonlinear case?

Theorem 7 (Fei Pu, Thesis, 2018; D. & Pu, 2021)

In Theorem 6 (nonlinear system of stochastic heat equations), it is possible to
remove the η in the lower bound:

c−1 Capd−6(A) ⩽ P{U(I × J) ∩ A ̸= ∅}.

The proof consists in refining the Malliavin calculus argument used for
Theorem 6.
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Non-Gaussian random fields

Improving the upper bound

Proofs of upper bound use a covering argument:

I × J ⊂ (0,T ]× [−M,M]. For n,m, ℓ ∈ N, set

tnm := m 2−nH−1
1 , xn

ℓ := ℓ 2−nH−1
ℓ ,

and
I nm = [tnm, t

n
m+1], Jn

ℓ = [xn
ℓ , x

n
ℓ+1], Rn

m,ℓ = I nm × Jn
ℓ .

For z ∈ Rd , need a good estimate of

P

{
inf

(t,x)∈Rn
m,ℓ

|U(t, x)− z | ⩽ 2−n

}
.

Reverse triangle inequality: this is bounded above by

P

{
|U(tnm, x

n
ℓ )− z | ⩽ 2−n + sup

(t,x)∈Rn
m,ℓ

|U(t, x)− U(tnm, x
n
ℓ )|

}
.

This can come from bounds on the joint probability density function of

(F1,F2) :=

(
U(tnm, x

n
ℓ ), sup

(t,x)∈Rn
m,ℓ

(U(t, x)− U(tnm, x
n
ℓ ))

)

Sharp upper bounds on hitting probabilities Robert C. Dalang 15 / 20



Non-Gaussian random fields

Improving the upper bound

Proofs of upper bound use a covering argument:

I × J ⊂ (0,T ]× [−M,M]. For n,m, ℓ ∈ N, set

tnm := m 2−nH−1
1 , xn

ℓ := ℓ 2−nH−1
ℓ ,

and
I nm = [tnm, t

n
m+1], Jn

ℓ = [xn
ℓ , x

n
ℓ+1], Rn

m,ℓ = I nm × Jn
ℓ .

For z ∈ Rd , need a good estimate of

P

{
inf

(t,x)∈Rn
m,ℓ

|U(t, x)− z | ⩽ 2−n

}
.

Reverse triangle inequality: this is bounded above by

P

{
|U(tnm, x

n
ℓ )− z | ⩽ 2−n + sup

(t,x)∈Rn
m,ℓ

|U(t, x)− U(tnm, x
n
ℓ )|

}
.

This can come from bounds on the joint probability density function of

(F1,F2) :=

(
U(tnm, x

n
ℓ ), sup

(t,x)∈Rn
m,ℓ

(U(t, x)− U(tnm, x
n
ℓ ))

)

Sharp upper bounds on hitting probabilities Robert C. Dalang 15 / 20



Non-Gaussian random fields

Improving the upper bound

Proofs of upper bound use a covering argument:

I × J ⊂ (0,T ]× [−M,M]. For n,m, ℓ ∈ N, set

tnm := m 2−nH−1
1 , xn

ℓ := ℓ 2−nH−1
ℓ ,

and
I nm = [tnm, t

n
m+1], Jn

ℓ = [xn
ℓ , x

n
ℓ+1], Rn

m,ℓ = I nm × Jn
ℓ .

For z ∈ Rd , need a good estimate of

P

{
inf

(t,x)∈Rn
m,ℓ

|U(t, x)− z | ⩽ 2−n

}
.

Reverse triangle inequality: this is bounded above by

P

{
|U(tnm, x

n
ℓ )− z | ⩽ 2−n + sup

(t,x)∈Rn
m,ℓ

|U(t, x)− U(tnm, x
n
ℓ )|

}
.

This can come from bounds on the joint probability density function of

(F1,F2) :=

(
U(tnm, x

n
ℓ ), sup

(t,x)∈Rn
m,ℓ

(U(t, x)− U(tnm, x
n
ℓ ))

)

Sharp upper bounds on hitting probabilities Robert C. Dalang 15 / 20



Non-Gaussian random fields

Improving the upper bound: the Gaussian case

(F1,F2) =

(
U(tnm, x

n
ℓ ), sup

(t,x)∈Rn
m,ℓ

(U(t, x)− U(tnm, x
n
ℓ ))

)
Notice that

F2 = Z1,1 + Z1,2

where

Z1,1 := sup
(t,x)∈Rn

m,ℓ

(U(t, x)− E[U(t, x) | U(tnm, x
n
ℓ )]),

Z1,2 := sup
(t,x)∈Rn

m,ℓ

(E[U(t, x) | U(tnm, x
n
ℓ )]− U(tnm, x

n
ℓ )).

Then

(F1,F2) ∼ (F1,Z1,1,Z1,2) ∼ (F1,Z1,1, 2
−nF1)

and F1 and Z1,1 are independent because U is Gaussian.

This argument does not carry over to the non-Gaussian case.
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Non-Gaussian random fields

Improving the upper bound: the non-Gaussian case

Decoupled system:

U(t, x) = (U1(t, x), . . . ,Ud(t, x)),

and the U i are i.i.d. copies of u(t, x), where

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + b(u(t, x)) + σ(u(t, x)) Ẇ (t, x), (2)

u(0, ·) : R → R given, Ẇ (t, x) is real-valued space-time white noise,

σ, b : R → R.

Problem. For (t0, x0) fixed, give bounds on the joint probability density
function of

F u
1 = u(t0, x0) and F u

2 (ζ1, ζ2) = sup
t0≤t≤t0+ζ1
x0≤x≤x0+ζ2

(u(t, x)− u(t0, x0)).

Have not been able to do this.
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Non-Gaussian random fields

Solving the problem

Recall that

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + σ(u(t, x)) Ẇ (t, x) + b(u(t, x)),

Consider the Gaussian process (v(t, x)) such that{
∂tv(t , x) =

1
2
∂2
xv(t , x) + Ẇ (t , x), t > 0, x ∈ R,

v(0) ≡ 0.
(3)

(same Ẇ as in (2)). Define

F v
2 (ζ1, ζ2) = sup

t0≤t≤t0+ζ1
x0≤x≤x0+ζ2

(v(t, x)− v(t0, x0)).

Then:

(a) Have obtained good bounds on the density of (F u
1 ,F

v
2 (ζ1, ζ2));

(b) Can show that Lt0,x0(ζ1, ζ2) is small, where

sup
t0≤t≤t0+ζ1
x0≤x≤x0+ζ2

|u(t, x)− u(t0, x0)− σ(u(t0, x0)) (v(t, x)− v(t0, x0)|; (4)

(c) these properties are sufficient to establish the sharp upper bound

P{U(I × J) ∩ A ̸= ∅} ⩽ C Hd−6(A).
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Non-Gaussian random fields

Precise statements

Theorem 8 (D., Fei Pu & David Nualart, 2025)

(a) There is a constant c = c(I , J) such that: for (t0, x0) ∈ I × J and
ζ1, ζ2 ∈ ]0, 1[, the density pζ1,ζ2(z1, z2) of F = (F u

1 ,F
v
2 (ζ1, ζ2)), z1 ∈ R, z2 > 0,

is such that, for small ζ1 > 0 and ζ2 > 0, z1 ∈ R and z2 ≥ ζ := max(ζ
1/4
1 , ζ

1/2
2 ),

pζ1,ζ2(z1, z2) ≤
c

ζ
exp

(
− z22
c ζ2

)
.

(b) Let Lt0,x0(ζ1, ζ2) be as in (4).Then for all large k ∈ N,

∥Lt0,x0(ζ1, ζ2)∥Lk (Ω) ⩽ ζ
3
2

(c) Suppose that σ ∈ C 3(R), Lipschitz, bounded and infz∈R σ(z) > 0. Then
there exists C = C(I , J) < ∞ such that for all compact sets A ⊂ Rd ,

P{U(I × J) ∩ A ̸= ∅} ⩽ C Hd−6(A).
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