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b Our model: linearized Boltzmann equation
Aim: Study the asymptotic behaviour of a kinetic equation with random interface conditions

Outside the interface Z := {y = 0}, phonons dymanics is described in terms of a linearized Boltzmann equation:

ey, {FWE R+ (WY K) = VLW (£, b);
(07 Y, k) - WO(Y7 k)7

where

W(t,y, k) is the phonons energy density at position y € R and frequency k € T := [f%, %]/N;
e wEeE CZ(']T*) even and unimodal (with infimum in 0), is the dispersion relation;

e ~ > 0is the scattering rate of phonons;

e the scattering operator Ly, acting only on the frequency variable k, is given by

Leu(k) = / R(k, k') [u(K') — u(k)] dk/,

for a symmetric scattering kernel R € C*(T x T).
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Our model: interface conditions

At the interface Z, the phonons undergo a random transmission-reflection-absorption mechanism:

(10): W(t,0%,k) = p4 (k)W(t,07, k) + p—(k)W(t,0", —k) + po(k)T, fork € T ;
"\ W(t,07,k) = p+(k)W(t, 0", k) + p—(k)W(t,0~, —k) + po(k)T, fork € T_

where
e T > Qis the temperature preset of the system;
® pi,p—,po: T — [0, 1] are even, continuous and such that p (k) + p— (k) + po(k) = 1;
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Our model: interface conditions

At the interface Z, the phonons undergo a random transmission-reflection-absorption mechanism:

(10): W(t,0%,k) = p4 (k)W(t,07, k) + p—(k)W(t,0", —k) + po(k)T, fork € T ;
" | W(t,07,k) = py (K)W(t, 07, k) + p_ (k)W (t,0, —k) + po(k)T, fork € T_

where
e T > Qis the temperature preset of the system;
® pi,p—,po: T — [0, 1] are even, continuous and such that p (k) + p— (k) + po(k) = 1;

Aim: To understand the right scaling index o > 0 such that
Wa(t,y, k) := WAL Ay k), A > 0;

satisfying the interface conditions (IC) and

1 1,
Xafw)\(tv Y, k) + W(’J (k)a}’w)\(t, Y, k) = ’YLRW)\(E Y, k)a
W (0,y, k) = Wo(y, k)

admits the limit lim_, o W and characterise the limit function W.

(KEx) :
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B A problem in non-equilibrium statistical mechanics

Aim: To understand heat conduction in crystalline solids (from microscopic to macroscopic scales).

A prototypical example on R is the Fermi-Pasta-Ulam (FPU) 3-chain whose Hamiltonian is:

ZPH' OZJ Z%‘fk( — i)’ ZBJ 4 — )’

JGZ JEZ j,keZ ],keZ

kinetic pinning harmonic anharmonic

where (p;, q;) € R x R momentum and position of particlej and «y, 3; € R suitable coupling parameters.
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A problem in non-equilibrium statistical mechanics

Aim: To understand heat conduction in crystalline solids (from microscopic to macroscopic scales).

A prototypical example on R is the Fermi-Pasta-Ulam (FPU) 3-chain whose Hamiltonian is:

ZPH' OZJ Z%‘fk( — i)’ ZBJ 4 — )’

JGZ JEZ j,keZ J,keZ

kinetic pinning harmonic anharmonic

where (p;, q;) € R x R momentum and position of particlej and «y, 3; € R suitable coupling parameters.

/A\ Difficult to study the macroscopic energy conduction in the FPU 3-chain due to anharmonic term!
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A problem in non-equilibrium statistical mechanics

Aim: To understand heat conduction in crystalline solids (from microscopic to macroscopic scales).

A prototypical example on R is the Fermi-Pasta-Ulam (FPU) 3-chain whose Hamiltonian is:

221&; b LR S ol - an)s

JEZ JEZ J,kEZ

kinetic pinning harmonic
where (p;, qj) € R x R momentum and position of particlej and «y, 3; € R suitable coupling parameters.
/A\ Difficult to study the macroscopic energy conduction in the FPU /3-chain due to anharmonic term!

~~ Consider only the harmonic chain:

) {w) = M (p, 0) = 0y (1), j€Z,t>0
B = =0y H(p,0) = —(axa());,
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A problem in non-equilibrium statistical mechanics

Aim: To understand heat conduction in crystalline solids (from microscopic to macroscopic scales).

A prototypical example on R is the Fermi-Pasta-Ulam (FPU) 5-chain whose Hamiltonian is:

):%ijz+ OZ%"" Zajk _qk s

jez jez JkEZL
——
kinetic pinning harmonic

where (p;, q;) € R x R momentum and position of particle j and ¢y, f5j € R suitable coupling parameters.
/\ Difficult to study the macroscopic energy conduction in the FPU /3-chain due to anharmonic term!
~~ Consider only the harmonic chain:
) {emf) = Oy H(p,0) = pi(0), j€Zt>0
pi(t) = —0qH(p, ) = —(a*q(t));,
/A Numerical simulations show different macroscopic heat behaviours for the FPU 3-chain:

o diffusive transport in the pinned case, i.e. wo # 0;
e super-diffusive transport in the unpinned case, i.e. wp = 0.

~~ ballistic transport!
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B A problem in non-equilibrium statistical mechanics

[BOO5]: Replace anharmonicity with a random exchange of momenta between nearest neighbourhood particles:
dg;(t) = p;i(t)de, JEZ, t>0
. _ &
(WPHD: 3 dpy(€) = — (@ a(e)dt + 5 Da(pra(t) + py(6) + poa(O)de+ Va7 D Lyapy(€)dwys(),

k=—1,0,1
where {w;(t) }jez independent BMs on R, ¢ < 1, A4 discrete Laplacian and vector fields

L = (pj = pj+1)0p_y + (Bi+1 — Dj=1)p + (D=1 — D) Opy1 -
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A problem in non-equilibrium statistical mechanics

[BOO5]: Replace anharmonicity with a random exchange of momenta between nearest neighbourhood particles:
dq;(t) = p;(t)dt, JEZ,t>0
(WPH): . .
dp;(t) = — (@ q(t));dt + dB" (pj—1, by, Pit1),
where {w;(t)};jcz independent BMs on R, £ < 1, A4 discrete Laplacian and vector fields
Lj = (pj — pj+1)0y_; + (Bi+1 — Pj—1)0p + (Pi—1 — i) Opysr -
Main features of the random perturbations

e ¢ < 1~ Boltzmann-Grad hypothesis (only a finite number of collisions at macroscopic scale);
e The infinitesimal generator of 3% is given by

2 ()

~ local conservation of kinetic energy and momentum!
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B A problem in non-equilibrium statistical mechanics

[BOO5]: Replace anharmonicity with a random exchange of momenta between nearest neighbourhood particles:
dqi(t) = p;(t)dt, jEZ t>0
(LwPH) { qi(t) J(_) E
dp;(t) = —(a % q(t));dt + dB" (pj—1, by, 1) + (V2Tdw(t) — po(t)dt)dy;,
where {w;(t)};jcz independent BMs on R, £ < 1, A4 discrete Laplacian and vector fields
Lj = (pi — Pi+1)0 1 + (Bi+1 — Pi-1) 0y + (Pi-1 — Pi) Oy -

Main features of the random perturbations
e ¢ < 1~ Boltzmann-Grad hypothesis (only a finite number of collisions at macroscopic scale);
e The infinitesimal generator of 3% is given by

2 ()

~ local conservation of kinetic energy and momentum!
e the Langevin thermostat ensures that E[p3] = T;
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A problem in non-equilibrium statistical mechanics

[BOO5]: Replace anharmonicity with a random exchange of momenta between nearest neighbourhood particles:
dg;(t) = pj(t)dt, JEZ,t>0
(LWpH){ qi(t) J(_) E
dp;(t) = —(a*q(t));dt + dB" (pj—1,pj, pj+1) + (V2Tdw(t) — po(t)dt)dy;,
where {w;(t)};jcz independent BMs on R, £ < 1, A4 discrete Laplacian and vector fields
Li = (pj — Pi+1)0p_1 + (Pi+1 — Pi=1)9 + (Pi-1 — Pi)Op1s -
Main features of the random perturbations

e ¢ < 1~ Boltzmann-Grad hypothesis (only a finite number of collisions at macroscopic scale);
e The infinitesimal generator of 3% is given by

2 ()

~ local conservation of kinetic energy and momentum!
e the Langevin thermostat ensures that E[p3] = T;

[KO20]: Our interface model (KE) + (IC) emerges as the kinetic limit for the "energy density” of (LwPH)!
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S Related results: classical vs anomalous diffusive limits

A\ Only in the case of nearest neighbourhood interactions, i.e. aj = 0 if |j| > 1, we know that

R(K) = / RIGK)AK ~ kP, pk)~pl >0, [k <1, L€ {04}
T
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Related results: classical vs anomalous diffusive limits

A\ Only in the case of nearest neighbourhood interactions, i.e. aj = 0 if |j| > 1, we know that

RO9 = [ROGK)A( ~ K" pu0g~pi >0, <1, € {0.2)
T

e [BKO19] In the pinned case ~ w'(k) = |k|, the right scaling is diffusive: & = 2 and

_ W(t,y) = 702 W(t R.
lim Wi (t,y,k) = W(t,y) where 3_: (&:¥) = 38, W(t.p), ve
A—00 W(t, 0) =T,
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Related results: classical vs anomalous diffusive limits

A\ Only in the case of nearest neighbourhood interactions, i.e. aj = 0 if |j| > 1, we know that

RO9 = [ROGK)A( ~ K" pu0g~pi >0, <1, € {0.2)
T

e [BKO19] In the pinned case ~ w'(k) = |k|, the right scaling is diffusive: & = 2 and

_ W(t,y) = 702 W(t R.
lim Wi (t,y,k) = W(t,y) where 3_: (&:¥) = 38, W(t.p), ve
A— 00 W(t, 0) =

¢ [KOR20] In the unpinned case ~» w’(k) a O(1), the right scaling is super-diffusive: o = 3/2 and

oWy =70, [ 4y ~yWey) - W] ay

+//<0 a; (V' =n){pL [W(e,y) =W, )] +pZ W(t, —y) = W(e, )] +ps [To—W(t,p)]} &', yER.

for explicitly given diffusion coefficients 5 > 0 and qa (y) := caly|~+%);
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e Related results: classical vs anomalous diffusive limits

SUPERIORE

A\ Only in the case of nearest neighbourhood interactions, i.e. aj = 0 if |j| > 1, we know that

R(K) = / RIGK)AK ~ kP, pk)~pl >0, [k <1, L€ {04}
T

e [BKO19] In the pinned case ~ w'(k) = |k|, the right scaling is diffusive: & = 2 and

_ W(t,y) = 702 W(t R.
lim Wi (t,y,k) = W(t,y) where 3_: (&,¥) =30, W(E V), ve
A—00 W(t,0) =

¢ [KOR20] In the unpinned case ~» w’(k) a O(1), the right scaling is super-diffusive: o = 3/2 and
oW(ey) =7pv. [y —nIF(Er) - W)l dy
yy'>0
+/ a3 (V' =) {pL W (e, y") = W(e ) +pZ [W(t, —y) - W(t, V)] +po[T—W(t. )]} dy', v €R.
vy’ <0

for explicitly given diffusion coefficients 5 > 0 and qa(y) := caly|~+);
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e Related results: classical vs anomalous diffusive limits

SUPERIORE

A\ Only in the case of nearest neighbourhood interactions, i.e. aj = 0 if |j| > 1, we know that

R(K) = / RIGK)AK ~ kP, pk)~pl >0, [k <1, L€ {04}
T

e [BKO19] In the pinned case ~ w'(k) = |k|, the right scaling is diffusive: & = 2 and

_ W(t,y) = 702 W(t R.
lim Wi (t,y,k) = W(t,y) where 3_: (&,¥) =30, W(E V), ve
A—o0 W(t,0) =

¢ [KOR20] In the unpinned case ~» w’(k) a O(1), the right scaling is super-diffusive: o = 3/2 and
oW(ey) =7pv. [y —nIF(Er) - W)l dy
yy’' >0

+//<0 a; (V' =n){pL [W(e,y) =W, )] +pZ W(t, —y) = W(e, )] +ps [To—W(t,p)]} &', yER.

for explicitly given diffusion coefficients 5 > 0 and qa(y) := caly|~+);

A frequency homogenisation happens at the limit : ~ W(0,y) = / Wo(y, k
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B Precise assumptions on our model

[MK]: the scattering kernel is non-symmetric but of multiplicative form:
R(k, k) = Ri(K)R2(K')

for (normalised) even, non-negative R1, R, in C(T);
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Precise assumptions on our model

[MK]: the scattering kernel is non-symmetric but of multiplicative form:
R(k, k) = Ri(K)R2(K')
for (normalised) even, non-negative R1, R, in C(T);

[S]: We consider abstract scaling features:

R ~ k%, S(k) = ~KTR k<1, j=1,2

for 1 <1+ foand B3 < 1+ By < 203;
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Precise assumptions on our model

[MK]: the scattering kernel is non-symmetric but of multiplicative form:
R(k, k) = Ri(K)R2(K')
for (normalised) even, non-negative R1, R, in C(T);

[S]: We consider abstract scaling features:

R ~ k%, S(k) = ~KTR k<1, j=1,2

for 1 < 14 Brand B3 < 1+ By < 203;
[D]: the absorption probability has a logarithmic decay of order x > 0 at O:
po(k) ~ [log[k||™", k<1
[ND]: the transmission probability is non-zero on T:

infp. (k) # 0

~+ We introduce the scaling parameter:
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Associated function spaces

In order to state our main result, we need to introduce:
e the space Cr of the interface admissible configurations, composed by all ¢ € Cp(R. x T, satisfying (IC) and
which can be continuously extended to R, x T, for. € {+, —};
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Associated function spaces

In order to state our main result, we need to introduce:
e the space Cr of the interface admissible configurations, composed by all ¢ € Cp(R. x T.,) satisfying (IC) and
which can be continuously extended to R, x T, for . € {+,—};
e the space H, of the limit admissible configurations as the completion of Cc°(R..) under the seminorm
Il - ||, given by
ulla, == \/EMul,
for any Borel function u: R, — R and with the following Dirichlet form:

Eu] = %//>0(u(y’) —u(y))’qaly’ —y) dydy’

" % /yy’<0 Gy’ =¥) {p:[“(yl) —u)® +p* [u(—y) - u(y)}z} dydy’;
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Associated function spaces

In order to state our main result, we need to introduce:
e the space Cr of the interface admissible configurations, composed by all ¢ € Cp(R. x T.,) satisfying (IC) and
which can be continuously extended to R, x T, for . € {+,—};
e the space H, of the limit admissible configurations as the completion of Cc°(R..) under the seminorm
Il - ||, given by
ulla, == \/EMul,
for any Borel function u: R, — R and with the following Dirichlet form:

Eu] = %//>0(u(y’) —u(y))’qaly’ —y) dydy’

" % /yy’<0 Gy’ =¥) {p:[“(yl) —u)® +p* [u(—y) - u(y)}z} dydy’;

e the scattering invariant measure 7 on T associated with the scattering operator Ly:

_ Ra(k)

m(dk) := Rk dk.
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Our main result
Let Wy be a “suitable” initial condition: Wo € Cr and Wo — T € H, where

Wo(y) := /T Wo(y, k) w(dk) € L*(R).
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SRS, Our main result
Let Wy be a “suitable” initial condition: Wy € Cr and Wo — T € H, where

Wo(y) = /Two(y, k) w(dk) € L*(R).

Existence of super-diffusive limit and its characterisation

Let W (t,y, k) be the classical solution to (KEx ) + (IC). Then,

)\ETOO<W)\(t)>F>L2(R><’J1‘) = (W(t), F)p@exry, FeCZRxT).

Moreover, the limit function W is the unique weak solution to

o) =pv. [ auly ~pW(ey) - Wy

(L8) : + /,<O QoY = V{PLIW(L,Y) = W(t,p)] + pZ[W(t, =) — W(t,p)]} dy';

W(tv 0) =T, W(Ovy) = WO(Y)7

for an explicitly given diffusion coefficient 4 > 0.
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SRS, Our main result
Let Wy be a “suitable” initial condition: Wy € Cr and Wo — T € H, where

Wo(y) = /Two(y, k) w(dk) € L*(R).

Existence of super-diffusive limit and its characterisation

Let W (t,y, k) be the classical solution to (KEx ) + (IC). Then,

)\ETOO<W)\(t)>F>L2(R><’J1‘) = (W(t), F)p@exry, FeCZRxT).

Moreover, the limit function W is the unique weak solution to

o) =pv. [ auly ~pW(ey) - Wy

(L8) : + /,<O QoY = V{PLW(t,Y) — W(t,p)] + pZ[W(t, =) — W(t,p)]} dy';

W(t,0) =T,  W(0,y) = Wo(y),

for an explicitly given diffusion coefficient 4 > 0.
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Sketch of the proof: Probabilistic interpretation

1) We construct the skeleton random sequences in terms of {7, },>0 i.i.d. such that ~ exp(1):

e the frequency and position chains as Ko(k) = k and {Kx }nen i.i.d. on T such that

K Rl Zaly k) = v — 3 S0
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SRS Sketch of the proof: Probabilistic interpretation

1) We construct the skeleton random sequences in terms of {7, },>0 i.i.d. such that ~ exp(1):

e the frequency and position chains as Ko(k) = k and {Kx }nen i.i.d. on T such that
n—1

Ki~Ro(k)dk  Za(y, k) := vy — Y S(K;(K))7;
=0
e the crossing times sequence as np := 0 and

Nt :=inf {n > np: (—1)"yZa(y,k) <0}, meN;
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Sketch of the proof: Probabilistic interpretation

1) We construct the skeleton random sequences in terms of {7, },>0 i.i.d. such that ~ exp(1):
e the frequency and position chains as Ko(k) = k and {Kx }nen i.i.d. on T such that
n—1
K~ ReOdk  Zu(pd) = v = 3 SE(0):
j=0
e the crossing times sequence as np := 0 and

Nt :=inf {n > np: (—1)"yZa(y,k) <0}, meN;
e the interface mechanism chain as {om }mecw independent when conditioned on {K; (k) }n>0 and

P (om = t[{Ka(K)}n>0) = p(Knp-1(k)), ¢ €{0,+};
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Sketch of the proof: Probabilistic interpretation

1) We construct the skeleton random sequences in terms of {7, },>0 i.i.d. such that ~ exp(1):

e the frequency and position chains as Ko(k) = k and {Kx }nen i.i.d. on T such that
n—1
K~ Re(l)dk  Za(r,k) =y — S S(K ()7
j=0
e the crossing times sequence as np := 0 and

Nmt1 = inf {n > np: (=1)"yZ,(y,k) <0}, meN;
e the interface mechanism chain as {om }mecw independent when conditioned on {K; (k) }n>0 and

P (om = t[{Kn(k) }n>0) = p.(Kn,-1(k)), ¢€{0,£}
e the interface frequency and interface position chains as

KK = ([0 | ka0 220k = ([[o7 | Zar k). formm <n < nps;
j=0 j=0
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Sketch of the proof: Probabilistic interpretation

1) We construct the skeleton random sequences in terms of {7, },>0 i.i.d. such that ~ exp(1):

e the frequency and position chains as Ko(k) = k and {Kx }nen i.i.d. on T such that

n—1

Ki~Ro(k)dk  Za(y, k) := vy — Y S(K;(K))7;
=0
e the crossing times sequence as np := 0 and

Nt :=inf {n > np: (—1)"yZa(y,k) <0}, meN;

e the interface mechanism chain as {om }mecw independent when conditioned on {K; (k) }n>0 and
P(om = t[{Kn(k)}nz0) = p.(Kn,-1(k)), ¢ € {0, £}

e the interface frequency and interface position chains as

KK = ([[o ]| K, 20k = [[[or]) 2k, formm <n < npes;
j=0 j=0
e the scattering clock sequence as
. 1
Ta(k) := t(Ki(k))r; where t(k) := .
(k) 2 (Ki(k))T (k) TR ()
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Sketch of the proof: Probabilistic interpretation

2) We interpolate between values and rescale at scattering clock time frame:

e By é(t) we denote linear interpolation between values of ¢(n). The frequency and position processes are
t

Ka(t7 k) = K[O‘i—l(t,k)] (k) Ya(ta v, k) = Zo(iil(tv k)7 Y, k) =V—- /0 w/(Ko(s7 k)) dS;

~ (KE) + (IC) is the Kolmogorov equation associated with {K°(t, k), Y°(t, y, k) };
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2) We interpolate between values and rescale at scattering clock time frame:
e By é(t) we denote linear interpolation between values of ¢(n). The frequency and position processes are

t
Ko(tv k) = Kfi—l(r,k)](k) Yu(t7 Y, k) = Zu(sil(t’ k)va k) =V / w’((s, k)) dS;
0

~ (KE) + (IC) is the Kolmogorov equation associated with {K°(t, k), Y°(t, v, k) };

e Let 7)(t,y) be the process starting from y whose infinitesimal generator is

Lou(x) :==7p.v. / qa(z — x)[u(z) — u(x)] dz;

R
~ (LE) is the Kolmogorov equation for the process 1°(t, y) obtained from 7(t, y) similarly as before;
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2) We interpolate between values and rescale at scattering clock time frame:
e By é(t) we denote linear interpolation between values of ¢(n). The frequency and position processes are
t
K =K, (00 V(R = B(E R ) =y = X% [ W5 k)ds
a6 0
~ (KEx) + (IC) is the Kolmogorov equation associated with {K5 (t, k), Y3 (t,y,k)};
e Let 7)(t,y) be the process starting from y whose infinitesimal generator is

Lou(x) :==7p.v. / qa(z — x)[u(z) — u(x)] dz;

R
~ (LE) is the Kolmogorov equation for the process 1°(t, y) obtained from 7(t, y) similarly as before;

3) We suitably rescale in \ the full model;
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SRS Sketch of the proof: Probabilistic interpretation

2) We interpolate between values and rescale at scattering clock time frame:
e By é(t) we denote linear interpolation between values of ¢(n). The frequency and position processes are

t
K =K, (00 V(R = B(E R ) =y = X% [ W5 k)ds
AN 0

~ (KEx) + (IC) is the Kolmogorov equation associated with {K5 (t, k), Y3 (t,y,k)};

e Let 7)(t,y) be the process starting from y whose infinitesimal generator is

Lou(x) :==7p.v. / qa(z — x)[u(z) — u(x)] dz;

R
~ (LE) is the Kolmogorov equation for the process 1°(t, y) obtained from 7(t, y) similarly as before;

3) We suitably rescale in \ the full model;
4) As A\ — 400, the solution W to (KE,) + (IC) weakly converges to solution W of (LE) if

the processes {Y (t, y, k) } » weakly converge to n°(t, y) over D[0, +o0) with the M;-topology.
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Sketch of the proof: Semigroup analysis

5) Introducing 6 := E[t(K1)], one can show that

lim sup |%)'(t,k) — g) =0, P-as.

A—+4o00 te[0,t4]
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S Sketch of the proof: Semigroup analysis

5) Introducing 6 := E[t(K1)], one can show that

lim sup “igl(t, k)
]

1
A—=+00 teo,t,

0 =0, P-as.

6) Let us consider the corresponding Markov semigroups:
Pruy) = Eu(Z(ty,k), £ <y
Pu(y) == E[u(¢’(t,y)), t < ty4]-
The weak convergence of Z3 (¢, y, k) to C°(t,y) := n°(6t, y) now follows from:

As A — +o0, the semigroups {13‘;”\},\>0 strongly Lz-converges, uniformly on compact time intervals, to P?
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S Sketch of the proof: Semigroup analysis

5) Introducing 6 := E[t(K1)], one can show that

lim sup “i;l(t, k)
]

1
A—=+00 teo,t,

0 =0, P-as.

6) Let us consider the corresponding Markov semigroups:
Pruy) = Eu(Z(ty,k), £ <y
Pu(y) == E[u(¢’(t,y)), t < ty4]-
The weak convergence of Z3 (¢, y, k) to C°(t,y) := n°(6t, y) now follows from:

As A — +o0, the semigroups {Pf”\},\>0 strongly Lz-converges, uniformly on compact time intervals, to P?

A Z8(t,y, k) is deterministic until first scattering ~~ construct a Markov process Z3 (t, y) which is “close” to it:

P00 <0) < e { -1,

where Z7 (v, k) is the position after the first jump of a phonon started in y.
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i Sketch of the proof: Dirichlet forms

7) To show the the L2-convergence of the semigroups, we rely on the corresponding Dirichlet forms:

Elu) = lim 1 / [u(y) — Bou(y)] u(y) dy

Mosco convergence for Dirichlet forms

A family of Dirichlet forms £, is M-convergent to a Dirichlet form £, as A — +o0, if for any u € LZ(]R):
e for any {uy } x>0 weakly convergent to u in L*(R), it holds that

lim inf 5>\ [u)\] Z goo [u];

A—+oo

o there exists {v, } >0 strongly convergent to u in L?(R) such that

limsup Ex[va] < Exolul;
A—~+oo

[M94]: The Dirichlet forms £ M-converge to Eifand only if the associated Markov semigroups strongly
L%-converge, uniformly on compact intervals.
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SRS Where the scaling index oo comes from?

e Without the interface, the f.d.d. convergence of Y, (t, y, k) essentially relies on:
T
Y(s,v,k) = Y(Tn, v, k) :y—/ W' (K(r,k)) dr =y — Z (K)w'(K))7j,  for Ty < s < Tupa;
0

o Let 7(dk) be the invariant measure for the frequency chain {Kn},.eN;
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0

o Let 7w(dk) be the invariant measure for the frequency chain {Kn},.eN;
e The type of Central Limit Theorem we can apply depends on the tails of the random variables

[ FHK)W' (K)| > A) =A™ forA>> 1. ]
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Where the scaling index o« comes from?
e Without the interface, the f.d.d. convergence of Y, (t, y, k) essentially relies on:
T
Vs, ) % V(S =y = [ /(KO dr =y - Z (K ()7, for Tu < s < Tups
0

o Let 7(dk) be the invariant measure for the frequency chain {Kn},.eN;

e The type of Central Limit Theorem we can apply depends on the tails of the random variables

[ FHK)W' (K)| > A) =A™ forA>> 1. ]

~~ pinned case: w’ (k) ~ |k| and 7(dk) = R(k)dk ~ |k|?dk. Thus, o = 3 ~~ diffusive limit (finite variance)!
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0

o Let 7w(dk) be the invariant measure for the frequency chain {Kn},.eN;
e The type of Central Limit Theorem we can apply depends on the tails of the random variables
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~~ pinned case: w’ (k) ~ |k| and 7(dk) = R(k)dk ~ |k|?dk. Thus, o = 3 ~~ diffusive limit (finite variance)!
~» unpinned case: w’(k) ~ 0(1) and 7 (dk) = R(k)dk ~ |k|>dk. Thus, o = 3/2 ~ anomalous diffusive limit!
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Where the scaling index oo comes from?

e Without the interface, the f.d.d. convergence of Y, (t, y, k) essentially relies on:

‘Zn
Y(s,y,ka(sn,y,k):y—/ W' (K(r,k)) dr =y — Z (K)w'(K))7j,  for Ty < s < Tupa;
0

o Let 7(dk) be the invariant measure for the frequency chain {Kn},.eN;

e The type of Central Limit Theorem we can apply depends on the tails of the random variables

[ FHK)W' (K)| > A) =A™ forA>> 1. ]

~ pinned case: w’(k) ~ |k| and 7 (dk) =

~ unpinned case: w’'(k) ~ 0(1) and @

~~ Our abstract framework: S(k) =

(d
t(k)w

R(k)dk ~ |k|>dk. Thus, o = 3 ~ diffusive limit (finite variance)!
k) = R(k)dk ~ |k|>dk. Thus, o = 3/2 ~ anomalous diffusive limit!
'(k) ~ |k|=% and 7 (dk) = Ry (k)dk ~ |k|®2dk. Thus,

145
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