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Our model: linearized Boltzmann equation
Aim: Study the asymptotic behaviour of a kinetic equation with random interface conditions
Outside the interface I := {y = 0}, phonons dymanics is described in terms of a linearized Boltzmann equation:

(KE):
{
∂tW(t, y, k) + ω′(k)∂yW(t, y, k) = γLkW(t, y, k);

W(0, y, k) = W0(y, k),

where
• W(t, y, k) is the phonons energy density at position y ∈ R and frequency k ∈ T := [− 1

2 ,
1
2 ]/∼;

• ω ∈ C2(T∗) even and unimodal (with infimum in 0), is the dispersion relation;
• γ > 0 is the scattering rate of phonons;
• the scattering operator Lk, acting only on the frequency variable k, is given by

Lku(k) :=
∫
T

R(k, k′)
[
u(k′)− u(k)

]
dk′,

for a symmetric scattering kernel R ∈ C2(T× T).
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Our model: interface conditions
At the interface I, the phonons undergo a random transmission-reflection-absorption mechanism:

(IC):
{

W(t, 0+, k) = p+(k)W(t, 0−, k) + p−(k)W(t, 0+,−k) + p0(k)T, for k ∈ T+;

W(t, 0−, k) = p+(k)W(t, 0+, k) + p−(k)W(t, 0−,−k) + p0(k)T, for k ∈ T−

where
• T ≥ 0 is the temperature preset of the system;
• p+, p−, p0 : T → [0, 1] are even, continuous and such that p+(k) + p−(k) + p0(k) = 1;

Aim: To understand the right scaling index α > 0 such that
Wλ(t, y, k) := W(λt, λ1/αy, k), λ > 0;

satisfying the interface conditions (IC) and
(KEλ) :


1
λ
∂tWλ(t, y, k) +

1
λ1/α

ω′(k)∂yWλ(t, y, k) = γLkWλ(t, y, k);

Wλ(0, y, k) = W0(y, k)

admits the limit limλ→∞ Wλ and characterise the limit function W̄.
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A problem in non-equilibrium statistical mechanics

Aim: To understand heat conduction in crystalline solids (from microscopic to macroscopic scales).
A prototypical example on R is the Fermi-Pasta-Ulam (FPU) β-chain whose Hamiltonian is:

H(p, q) :=
1
2

∑
j∈Z

p2
j︸ ︷︷ ︸kinetic

+
ω2

0

2

∑
j∈Z

q2
j︸ ︷︷ ︸pinning

+
1
2

∑
j,k∈Z

αj−k(qj − qk)
2

︸ ︷︷ ︸harmonic

+
1
4

∑
j,k∈Z

βj−k(qj − qk)
4

︸ ︷︷ ︸anharmonic

,

where (pj, qj) ∈ R× Rmomentum and position of particle j and αj, βj ∈ R suitable coupling parameters.

△! Difficult to study the macroscopic energy conduction in the FPU β-chain due to anharmonic term!
⇝ Consider only the harmonic chain:

(H):
{
q̇j(t) = ∂pjH(p, q) = pj(t), j ∈ Z, t > 0

ṗj(t) = −∂qjH(p, q) = −(ᾱ ⋆ q(t))j,

.
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△! Difficult to study the macroscopic energy conduction in the FPU β-chain due to anharmonic term!
⇝ Consider only the harmonic chain:

(H):
{
q̇j(t) = ∂pjH(p, q) = pj(t), j ∈ Z, t > 0

ṗj(t) = −∂qjH(p, q) = −(ᾱ ⋆ q(t))j,
⇝ ballistic transport!

△! Numerical simulations show different macroscopic heat behaviours for the FPU β-chain:
• diffusive transport in the pinned case, i.e. ω0 ̸= 0;• super-diffusive transport in the unpinned case, i.e. ω0 = 0.
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A problem in non-equilibrium statistical mechanics
[BO05]: Replace anharmonicity with a random exchange of momenta between nearest neighbourhood particles:
(wPH):


dqj(t) = pj(t)dt, j ∈ Z, t > 0

dpj(t) = −(ᾱ ⋆ q(t))jdt +
εγ

2
∆d(pj+1(t) + 4pj(t) + pj−1(t))dt +

√
εγ

∑
k=−1,0,1

Lj+kpj(t)dwj+k(t),

where {wj(t)}j∈Z independent BMs on R, ε ≪ 1,∆d discrete Laplacian and vector fields
Lj = (pj − pj+1)∂pj−1 + (pj+1 − pj−1)∂pj + (pj−1 − pj)∂pj+1 .

Main features of the random perturbations
• ε ≪ 1⇝ Boltzmann-Grad hypothesis (only a finite number of collisions at macroscopic scale);• The infinitesimal generator of Bε is given by

1
2

∑
j∈Z

(Lj)
2,

⇝ local conservation of kinetic energy and momentum!• the Langevin thermostat ensures that E[p2
0] = T;

[KO20]: Our interface model (KE) + (IC) emerges as the kinetic limit for the ”energy density” of (LwPH)!
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Related results: classical vs anomalous diffusive limits
△! Only in the case of nearest neighbourhood interactions, i.e. αj = 0 if |j| > 1, we know that

R(k) :=
∫
T

R(k, k′) dk′ ≈ |k|2, pι(k) ≈ p∗
ι > 0, |k| ≪ 1, ι ∈ {0,±}

• [BKO19] In the pinned case⇝ ω′(k) ≈ |k|, the right scaling is diffusive: α = 2 and
lim

λ→∞
Wλ(t, y, k) = W̄(t, y) where

{
∂tW̄(t, y) = γ̄∂2

yyW̄(t, y), y ∈ R∗

W̄(t, 0) = T.

• [KOR20] In the unpinned case⇝ ω′(k) ≈ O(1), the right scaling is super-diffusive: α = 3/2 and
∂tW̄(t, y) = γ̄ p.v.

∫
yy′>0

q 3
2
(y′ − y)[W̄(t, y′)− W̄(t, y)] dy′

+

∫
yy′<0

q 3
2
(y′−y)

{
p∗
+[W̄(t, y′)−W̄(t, y)]+p∗

−[W̄(t,−y′)−W̄(t, y)]+p∗
0 [To−W̄(t, y)]

}
dy′, y ∈ R∗

for explicitly given diffusion coefficients γ̄ > 0 and qα(y) := cα|y|−(1+α);
△! frequency homogenisation happens at the limit : W̄(0, y) = W̄0(y) :=

∫
T

W0(y, k) .
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Precise assumptions on our model
[MK]: the scattering kernel is non-symmetric but of multiplicative form:

R(k, k′) = R1(k)R2(k
′)

for (normalised) even, non-negative R1,R2 in C(T);

[S]: We consider abstract scaling features:
Rj(k) ≈ |k|βj , S(k) :=

|ω′(k)|
γR1(k)

≈ |k|−β3 k ≪ 1, j = 1, 2

for β1 ≤ 1 + β2 and β3 < 1 + β2 < 2β3;
[D]: the absorption probability has a logarithmic decay of order κ > 0 at 0:

p0(k) ≈ |log |k||−κ , k ≪ 1

[ND]: the transmission probability is non-zero on T:
inf
k∈T

p+(k) ̸= 0

⇝We introduce the scaling parameter:
α :=

1 + β2

β3
∈ (1, 2)

.
.
.
.
.


Precise assumptions on our model
[MK]: the scattering kernel is non-symmetric but of multiplicative form:

R(k, k′) = R1(k)R2(k
′)

for (normalised) even, non-negative R1,R2 in C(T);
[S]: We consider abstract scaling features:

Rj(k) ≈ |k|βj , S(k) :=
|ω′(k)|
γR1(k)

≈ |k|−β3 k ≪ 1, j = 1, 2

for β1 ≤ 1 + β2 and β3 < 1 + β2 < 2β3;

[D]: the absorption probability has a logarithmic decay of order κ > 0 at 0:
p0(k) ≈ |log |k||−κ , k ≪ 1

[ND]: the transmission probability is non-zero on T:
inf
k∈T

p+(k) ̸= 0

⇝We introduce the scaling parameter:
α :=

1 + β2

β3
∈ (1, 2)

.
.
.
.
.


Precise assumptions on our model
[MK]: the scattering kernel is non-symmetric but of multiplicative form:

R(k, k′) = R1(k)R2(k
′)

for (normalised) even, non-negative R1,R2 in C(T);
[S]: We consider abstract scaling features:

Rj(k) ≈ |k|βj , S(k) :=
|ω′(k)|
γR1(k)

≈ |k|−β3 k ≪ 1, j = 1, 2

for β1 ≤ 1 + β2 and β3 < 1 + β2 < 2β3;
[D]: the absorption probability has a logarithmic decay of order κ > 0 at 0:

p0(k) ≈ |log |k||−κ , k ≪ 1

[ND]: the transmission probability is non-zero on T:
inf
k∈T

p+(k) ̸= 0

⇝We introduce the scaling parameter:
α :=

1 + β2

β3
∈ (1, 2)

.
.
.
.
.


Associated function spaces
In order to state our main result, we need to introduce:• the space CT of the interface admissible configurations, composed by all ϕ ∈ Cb(R∗ ×T∗) satisfying (IC) andwhich can be continuously extended to R̄ι × T∗, for ι ∈ {+,−};

• the spaceHo of the limit admissible configurations as the completion of C∞
c (R∗) under the seminorm

∥ · ∥Ho given by
∥u∥Ho :=

√
Ê [u],

for any Borel function u : R∗ → R and with the following Dirichlet form:
Ê [u] := 1

2

∫
yy′>0

(u(y′)− u(y))2qα(y
′ − y) dydy′

+
1
2

∫
yy′<0

qα(y
′ − y)

{
p∗
+[u(y

′)− u(y)]2 + p∗
−[u(−y′)− u(y)]2

}
dydy′;

• the scattering invariant measure π on T associated with the scattering operator Lk:
π(dk) :=

R2(k)
R1(k)

dk.

.
.
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Our main result
Let W0 be a “suitable” initial condition: W0 ∈ CT and W̄0 − T ∈ Ho where

W̄0(y) :=

∫
T

W0(y, k)π(dk) ∈ L2(R).

Existence of super-diffusive limit and its characterisation

Let Wλ(t, y, k) be the classical solution to (KEλ) + (IC). Then,
lim

λ→+∞
⟨Wλ(t), F⟩L2(R×T) = ⟨W̄(t), F⟩L2(R×T), F ∈ C∞

c (R× T).

Moreover, the limit function W̄ is the unique weak solution to

(LE) :


∂tW̄(t, y) = γ̄ p.v.

∫
yy′>0

qα(y
′ − y)[W̄(t, y′)− W̄(t, y)] dy′

+

∫
yy′<0

qα(y
′ − y)

{
[W̄(t, y′)− W̄(t, y)] + [W̄(t,−y′)− W̄(t, y)]

}
dy′;

, W̄(0, y) = W̄0(y),

for an explicitly given diffusion coefficient γ̄ > 0.
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Sketch of the proof: Probabilistic interpretation
1) We construct the skeleton random sequences in terms of {τn}n≥0 i.i.d. such that∼ exp(1):

• the frequency and position chains as K0(k) = k and {Kn}n∈N i.i.d. on T such that
K1 ∼ R2(k)dk Zn(y, k) := y −

n−1∑
j=0

S(Kj(k))τj;

• the crossing times sequence as n0 := 0 and
nm+1 := inf {n > nm : (−1)myZn(y, k) < 0} , m ∈ N;

• the interface mechanism chain as {σm}m∈N independent when conditioned on {Kn(k)}n≥0 and
P (σm = ι|{Kn(k)}n≥0) = pι(Knm−1(k)), ι ∈ {0,±};

• the interface frequency and interface position chains as
Ko

n(k) :=

 m∏
j=0

σj

Kn(k), Zo
n(y, k) :=

 m∏
j=0

σj

 Zn(y, k), for nm ≤ n ≤ nm+1;

• the scattering clock sequence as
Tn(k) :=

n∑
j=0

t(Kj(k))τj where t(k) :=
1

γR1(k)
.

.
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Sketch of the proof: Probabilistic interpretation
2) We interpolate between values and rescale at scattering clock time frame:

• By ϕ̃(t) we denote linear interpolation between values of ϕ(n). The frequency and position processes are
Ko(t, k) := Ko

[T̃−1(t,k)](k) Yo(t, y, k) := Z̃o(T̃−1(t, k), y, k) = y −
∫ t

0
ω′(Ko(s, k)) ds;

⇝ (KE)+ (IC) is the Kolmogorov equation associated with {Ko(t, k), Yo(t, y, k)};

• Let η(t, y) be the process starting from y whose infinitesimal generator is
Lαu(x) := γ̄ p.v.

∫
R

qα(z − x)[u(z)− u(x)] dz;

⇝ (LE) is the Kolmogorov equation for the process ηo(t, y) obtained from η(t, y) similarly as before;
3) We suitably rescale in λ the full model;
4) As λ → +∞, the solution Wλ to (KEλ) + (IC) weakly converges to solution W̄ of (LE) if

the processes {Yo
λ(t, y, k)}λ weakly converge to ηo(t, y) overD[0,+∞) with the M1-topology.

.
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Sketch of the proof: Semigroup analysis
5) Introducing θ := E[t(K1)], one can show that

lim
λ→+∞

sup
t∈[0,t∗]

∣∣∣T̃−1
λ (t, k)− t

θ

∣∣∣ = 0, P-a.s.

6) Let us consider the corresponding Markov semigroups:
P̃o,λ

t u(y) := E[u(Z̃o
λ(t, y, k)), t < t̃λy,f];

Po
t u(y) := E[u(ζo(t, y)), t < ty,f].

The weak convergence of Z̃o
λ(t, y, k) to ζo(t, y) := ηo(θt, y) now follows from:

As λ → +∞, the semigroups {P̃o,λ
t }λ>0 strongly L2-converges, uniformly on compact time intervals, to Po

t

△! Z̃o
λ(t, y, k) is deterministic until first scattering⇝ construct a Markov process Ẑo

λ(t, y) which is “close” to it:
P
(

yZλ
1 (y, k) < 0

)
≤ exp

{
−|y|λ1/α

|S(k)|

}
,

where Zλ
1 (y, k) is the position after the first jump of a phonon started in y.

.
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Sketch of the proof: Dirichlet forms
7) To show the the L2-convergence of the semigroups, we rely on the corresponding Dirichlet forms:

Ẽλ[u] := lim
t→0+

1
t

∫
R

[
u(y)− P̃o

t u(y)
]

u(y) dy

Eo[u] := lim
t→0+

1
t

∫
R
[u(y)− Po

t u(y)] u(y) dy

Mosco convergence for Dirichlet forms
A family of Dirichlet forms Eλ is M-convergent to a Dirichlet form E∞, as λ → +∞, if for any u ∈ L2(R):

• for any {uλ}λ>0 weakly convergent to u in L2(R), it holds that
lim inf
λ→+∞

Eλ[uλ] ≥ E∞[u];

• there exists {vλ}λ>0 strongly convergent to u in L2(R) such that
lim sup
λ→+∞

Eλ[vλ] ≤ E∞[u];

[M94]: The Dirichlet forms Êλ M-converge to Ê if and only if the associated Markov semigroups strongly
L2-converge, uniformly on compact intervals.

.
.
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Where the scaling index α comes from?
• Without the interface, the f.d.d. convergence of Yλ(t, y, k) essentially relies on:

Y(s, y, k) ≈ Y(Tn, y, k) = y −
∫ Tn

0
ω′(K(r, k)) dr = y −

n∑
j=1

t(Kj)ω
′(Kj)τj, for Tn ≤ s < Tn+1;

• Let π̃(dk) be the invariant measure for the frequency chain {Kn}n∈N;

• The type of Central Limit Theorem we can apply depends on the tails of the random variables
π̃(|t(Ki)ω

′(Ki)| > λ) ≈ λ−α for λ ≫ 1.

⇝ pinned case: ω′(k) ≈ |k| and π̃(dk) = R(k)dk ≈ |k|2dk. Thus, α = 3⇝ diffusive limit (finite variance)!
⇝ unpinned case: ω′(k) ≈ O(1) and π̃(dk) = R(k)dk ≈ |k|2dk. Thus, α = 3/2⇝ anomalous diffusive limit!
⇝ Our abstract framework: S(k) = t(k)ω′(k) ≈ |k|−β3 and π̃(dk) = R2(k)dk ≈ |k|β2 dk. Thus,
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