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The equation

We start from the following stochastic damped wave equation
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂2
t u(t, x) + |∂tu(t, x)|2u(t, x) = ∂2

xu(t, x) + |∂xu(t, x)|2u(t, x)

−γ ∂tu(t, x) +
󰀃
u(t, x)× ∂tu(t, x)

󰀄
◦ ∂tw(t, x),

u(0, x) = u0(x), ∂tu(0, x) = v0(x),
(1)

in dimension 1 + 1, whose solution takes value in S2, the
unitary sphere of R3.
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We start from the following stochastic damped wave equation
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂2
t u(t, x) + |∂tu(t, x)|2u(t, x) = ∂2

xu(t, x) + |∂xu(t, x)|2u(t, x)

−γ ∂tu(t, x) +
󰀃
u(t, x)× ∂tu(t, x)

󰀄
◦ ∂tw(t, x),

u(0, x) = u0(x), ∂tu(0, x) = v0(x),
(1)

in dimension 1 + 1, whose solution takes value in S2, the
unitary sphere of R3.

Here γ is a positive constant friction coefficient and the initial
condition (u0, v0) is taken in M, where

M :=
󰀋
(u, v) : R 󰀁→ TS2

󰀌
,

and
TS2 :=

󰀋
(h, k) ∈ S2 × R3 : h · k = 0

󰀌
.
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The noise

Here the stochastic differential is in Stratonovich form and

w(t), t ≥ 0, is a spatially homogeneous Wiener process on a
complete filtered probability space

󰀃
Ω,F , (Ft)t≥0,P

󰀄
,

We assume that the spectral measure µ of the noise has a
density m such that

󰁝

R
(1 + x2)m(x) dx < ∞.
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The noise

Here the stochastic differential is in Stratonovich form and

w(t), t ≥ 0, is a spatially homogeneous Wiener process on a
complete filtered probability space

󰀃
Ω,F , (Ft)t≥0,P

󰀄
,

We assume that the spectral measure µ of the noise has a
density m such that

󰁝

R
(1 + x2)m(x) dx < ∞.

The well-posedness of equations of this type have been already
studied in the existing literature.

See the works by Brzezniak- Ondrejat and others.
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Our problem

We have studied equation (1) under a parabolic rescaling,

which transforms the system into a family of equations
parametrized by a small parameter 󰂃 > 0, in which time is
dilated and space is rescaled.
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Our problem

We have studied equation (1) under a parabolic rescaling,

which transforms the system into a family of equations
parametrized by a small parameter 󰂃 > 0, in which time is
dilated and space is rescaled.

Namely, for every 󰂃 > 0 we define

u󰂃(t, x) := u(t/󰂃, x/
√
󰂃), (t, x) ∈ [0,+∞)× R,

and

investigate the asymptotic behavior of u󰂃, as 󰂃 ↓ 0.

In particular, we study the transition from the stochastic
hyperbolic regime to a deterministic parabolic limit.
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The deterministic case

This problem has been already addressed by Jiang, Luo, Tang,
and Zarnescu (2019) when there is no noise, in the more
delicate situation of space dimension d > 2.
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The deterministic case

This problem has been already addressed by Jiang, Luo, Tang,
and Zarnescu (2019) when there is no noise, in the more
delicate situation of space dimension d > 2.

In that case, in order to get the same convergence, which is
clearly only local in time, the authors expanded u󰂃(t, x) as

u󰂃(t, x) = u(t, x) + uI0(t/󰂃, x) +
√
󰂃u󰂃R(t, x),

where uI0 is a suitable boundary layer which is given explicitly
and u󰂃R is the solution of the damped wave equation

󰂃 ∂2
t u

󰂃
R(t, x) = ∂2

xu
󰂃
R(t, x)−∂tu

󰂃
R(t, x)+S(u󰂃R)(t, x)+R(u󰂃R)(t, x),

for some singular term S(u󰂃R) and regular term R(u󰂃R).
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The rescaled equation

After converting the Stratonovich’s differential into the Itô’s
one, u󰂃 satisfies the equation

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰂃∂2
t u(t, x) + 󰂃|∂tu(t, x)|2u(t, x) = ∂ 2

x u(t, x) + |∂xu(t, x)|2u(t, x)

−γ0 ∂tu(t, x) +
√
󰂃
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

󰂃(t, x),

u(0, x) = u󰂃0(x), ∂tu(0, x) = v󰂃0(x),
(2)

for some initial conditions u󰂃0 and v󰂃0 depending on 󰂃. Notice
that here the friction γ is enhanced by the new one

γ0 := γ +
1

2
µ(R).
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The rescaled equation

After converting the Stratonovich’s differential into the Itô’s
one, u󰂃 satisfies the equation

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰂃∂2
t u(t, x) + 󰂃|∂tu(t, x)|2u(t, x) = ∂ 2

x u(t, x) + |∂xu(t, x)|2u(t, x)

−γ0 ∂tu(t, x) +
√
󰂃
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

󰂃(t, x),

u(0, x) = u󰂃0(x), ∂tu(0, x) = v󰂃0(x),
(2)

for some initial conditions u󰂃0 and v󰂃0 depending on 󰂃. Notice
that here the friction γ is enhanced by the new one

γ0 := γ +
1

2
µ(R).

The rescaled noise w󰂃(t, x) is white in time and inherits a
spatial covariance structure adapted to the parabolic scaling.
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Stratonovich vs Itô

As a general principle, considering Stratonovich formulation in
S(P)DEs is essential for preserving the geometric compatibility
of the solution space.
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Stratonovich vs Itô

As a general principle, considering Stratonovich formulation in
S(P)DEs is essential for preserving the geometric compatibility
of the solution space.

In the specific case studied here, where the random
perturbation involves the co-normal term u× ∂tu,

it would be possible to introduce an Itô noise instead, and still
preserve the geometric constraint of remaining on S2.
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Stratonovich vs Itô

As a general principle, considering Stratonovich formulation in
S(P)DEs is essential for preserving the geometric compatibility
of the solution space.

In the specific case studied here, where the random
perturbation involves the co-normal term u× ∂tu,

it would be possible to introduce an Itô noise instead, and still
preserve the geometric constraint of remaining on S2.

- However, this alternative would require imposing a sufficiently
large friction coefficient γ, in order to control the dynamics and
study the limiting behavior of u󰂃, instead of any arbitrary
γ > 0, as here.
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Stratonovich vs Itô

As a general principle, considering Stratonovich formulation in
S(P)DEs is essential for preserving the geometric compatibility
of the solution space.

In the specific case studied here, where the random
perturbation involves the co-normal term u× ∂tu,

it would be possible to introduce an Itô noise instead, and still
preserve the geometric constraint of remaining on S2.

- However, this alternative would require imposing a sufficiently
large friction coefficient γ, in order to control the dynamics and
study the limiting behavior of u󰂃, instead of any arbitrary
γ > 0, as here.

- Moreover, the limiting equation would forget about the noise
used in the hyperbolic system.
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Some related previous work

We have already studied similar asymptotic problems for
stochastic damped wave equations with constraints.

However, in those works we considered equations on a bounded
domain O ⊂ Rd, where the solutions were constrained to lie on
the Hilbert manifold of functions in H := L2(O) with norm
equal 1.

Sandra Cerrai Parabolic rescaling of a stochastic wave map



Some related previous work

We have already studied similar asymptotic problems for
stochastic damped wave equations with constraints.

However, in those works we considered equations on a bounded
domain O ⊂ Rd, where the solutions were constrained to lie on
the Hilbert manifold of functions in H := L2(O) with norm
equal 1.

The analysis of both papers

- was motivated by the study of the small-mass limit, also
known as Smoluchowski-Kramers approximation;

- was only related to the study of the limit of u󰂃.
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The first model

Together with Z. Brzeźniak we have studied

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰂃 ∂2
t u󰂃(t, x) + 󰂃|∂tu󰂃(t)|2Hu󰂃(t, x) = ∆u󰂃(t, x)

+|∇u󰂃(t)|2Hu󰂃(t, x)− γ ∂tu󰂃(t, x) + σ(u󰂃(t)) ∂tw(t, x),

u󰂃(0, x) = uin(x), ∂tu󰂃(0, x) = vin(x),

u󰂃(t, x) = 0, x ∈ ∂O,

when the parameter 󰂃 ↓ 0. Here O ⊆ Rd is a bounded and
regular domain and σ has a suitable form.
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The first model

Together with Z. Brzeźniak we have studied

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰂃 ∂2
t u󰂃(t, x) + 󰂃|∂tu󰂃(t)|2Hu󰂃(t, x) = ∆u󰂃(t, x)

+|∇u󰂃(t)|2Hu󰂃(t, x)− γ ∂tu󰂃(t, x) + σ(u󰂃(t)) ∂tw(t, x),

u󰂃(0, x) = uin(x), ∂tu󰂃(0, x) = vin(x),

u󰂃(t, x) = 0, x ∈ ∂O,

when the parameter 󰂃 ↓ 0. Here O ⊆ Rd is a bounded and
regular domain and σ has a suitable form.

We have shown that

the solution u󰂃 converges to the solution of a stochastic
parabolic equation subject to the same constraint, where an

extra noise-induced drift emerges.

Sandra Cerrai Parabolic rescaling of a stochastic wave map



The small-mass limit

We have shown that under suitable regularity conditions for the
initial conditions, x for every T > 0 and η > 0 we have

lim
󰂃→0

P
󰀃
|u󰂃 − u|L4(0,T ;H1) > η

󰀄
= 0,

where u ∈ L2(Ω;L4(0, T ;H1 ∩M) ∩ L2(0, T ;H2)) is the unique
solution of the equation

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

γ ∂tu(t, x) = ∆u(t, x) + |∇u(t)|2Hu(t, x)− 1

2
󰀂σ(u(t))󰀂2L2(K,H)u(t)

+σ(u(t))∂tw(t, x),

u(0, x) = uin(x), u(t, x) = 0, x ∈ ∂O.
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A second model

Together with M. Xie, we have considered the constrained
system

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰂃 ∂2
t u󰂃(t, x) + 󰂃 |∂tu󰂃(t)|2H u󰂃(t, x),

= ∆u󰂃(t, x) + |∇u󰂃(t)|2H u󰂃(t, x)− γ ∂tu󰂃(t, x)

+
√
󰂃
󰀃
u󰂃(t)× ∂tu󰂃(t)

󰀄
◦ ∂tw(t, x),

(3)

with Dirichlet boundary conditions and initial conditions

u󰂃(0, x) = uin(x), ∂tu󰂃(0, x) = vin(x),

in a bounded interval [0, L]. Here

u : [0,+∞)× [0, L] → R3.
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The noise

The noise w(t, x) is a scalar cylindrical Wiener process given by

w(t, x) =

∞󰁛

i=1

ξi(x)βi(t),

for a sequence of independent Brownian motions defined on
some stochastic basis (Ω,F , {F}t≥0,P).
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The noise

The noise w(t, x) is a scalar cylindrical Wiener process given by

w(t, x) =

∞󰁛

i=1

ξi(x)βi(t),

for a sequence of independent Brownian motions defined on
some stochastic basis (Ω,F , {F}t≥0,P).

We assume that ξi ∈ C2([0, L]), for all i ∈ N. Moreover, the
functions

ϕ(x) :=

∞󰁛

i=1

|ξi(x)|2, ϕ1(x) :=

∞󰁛

i=1

|ξ′i(x)|2, ϕ2(x) :=

∞󰁛

i=1

|ξ′′i (x)|2,

belong to C([0, L]). In particular, ϕ ∈ C2([0, L]).
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The limiting result

We have proved that if the initial condition is sufficiently
regular, then for every T > 0 and δ < 2

lim
󰂃→0

P

󰀣
sup

t∈ [0,T ]
|u󰂃(t)− u(t)|Hδ > η

󰀤
= 0,

for every η > 0, where

u ∈ C([0,+∞);H2), ∂tu ∈ L2(0,+∞;H)

is the unique solution of the equation

∂t

󰀗󰀕
γ +

1

2
ϕ |u|2R3

󰀖
u

󰀘
= ∆u+

3ϕ

2γ
(∆u · u)u

+

󰀗
1 +

3ϕ

2γ
|u|2R3

󰀘
|∇u|2Hu,

(4)

with Dirichlet b.c.
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We emphasize that the methods we developed for those two
models

- cannot be reduced to a parabolic rescaling,
- relied on substantially different techniques,

due to the fundamentally distinct nature of the imposed
functional constraints.
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Back to our problem

With M. Xie we have considered the equation

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰂃∂2
t u(t, x) + 󰂃|∂tu(t, x)|2u(t, x) = ∂ 2

x u(t, x) + |∂xu(t, x)|2u(t, x)

−γ0 ∂tu(t, x) +
√
󰂃
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

󰂃(t, x),

u(0, x) = u󰂃0(x), ∂tu(0, x) = v󰂃0(x),
(5)

where, we recall,

γ0 := γ +
1

2
µ(R).
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Back to our problem

With M. Xie we have considered the equation

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰂃∂2
t u(t, x) + 󰂃|∂tu(t, x)|2u(t, x) = ∂ 2

x u(t, x) + |∂xu(t, x)|2u(t, x)

−γ0 ∂tu(t, x) +
√
󰂃
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

󰂃(t, x),

u(0, x) = u󰂃0(x), ∂tu(0, x) = v󰂃0(x),
(5)

where, we recall,

γ0 := γ +
1

2
µ(R).

In 2007, Brzeźniak and Ondreijat showed that for every 󰂃 > 0
such equation is well-posed in

󰀃
H2

loc(R;R3)×H1
loc(R;R3)

󰀄
∩M.
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Well-posedness

In fact, we could improve such result and show that

for every T > 0 and (u󰂃0, v
󰂃
0) ∈

󰀃
Ḣ2(R;R3)×H1(R;R3)

󰀄
∩M,

there exists a unique global strong adapted solution u󰂃

such that
u󰂃 ∈ L2(Ω;L∞(0, T ; Ḣ2(R;R3))),

and
∂tu󰂃 ∈ L2(Ω;L∞(0, T ;H1(R;R3))).
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The initial conditions

In the study of the limiting behavior of (u󰂃, ∂tu󰂃) we assume
that for every 󰂃 ∈ (0, 1),

(u󰂃0, v
󰂃
0) ∈

󰀃
Ḣ2(R;R3)×H1(R;R3)

󰀄
∩M,

and the following condition holds

Λ1 := sup
󰂃∈(0,1)

󰀏󰀏(u󰂃0,
√
󰂃v󰂃0)

󰀏󰀏
Ḣ1(R)×L2(R) < ∞,

and
Λ2 := sup

󰂃∈(0,1)

√
󰂃
󰀏󰀏(u󰂃0,

√
󰂃v󰂃0)

󰀏󰀏
Ḣ2(R)×H1(R) < ∞.
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Uniform estimates - Itô’s formula

We fix 0 < T < R, and for every 󰂃 > 0 we apply the Itô formula
to the mapping

(t, (u󰂃, ∂tu󰂃))

󰀁→ |∂ k+1
x u󰂃|2L2(I((R−t)/

√
󰂃)) + 󰂃 |∂ k

x ∂tu󰂃|2L2(I((R−t)/
√
󰂃)),

with t ∈ [0, T ], for k = 0, 1.
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Uniform estimates - Itô’s formula

We fix 0 < T < R, and for every 󰂃 > 0 we apply the Itô formula
to the mapping

(t, (u󰂃, ∂tu󰂃))

󰀁→ |∂ k+1
x u󰂃|2L2(I((R−t)/

√
󰂃)) + 󰂃 |∂ k

x ∂tu󰂃|2L2(I((R−t)/
√
󰂃)),

with t ∈ [0, T ], for k = 0, 1.

Notice that we need to handle boundary terms, but we have
nice cancellations and at the end we have estimates that do not
have boundary terms.
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Uniform estimates - Estimates in Ḣ1 × L2

A first consequence of the Itô formula is

|∂xu󰂃(t)|2L2(I((R−t)/
√
󰂃)) + 󰂃|∂tu󰂃(t)|2L2(I((R−t)/

√
󰂃))

+2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(I((R−s)/

√
󰂃))ds ≤ |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R),

P-almost surely.
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Uniform estimates - Estimates in Ḣ1 × L2

A first consequence of the Itô formula is

|∂xu󰂃(t)|2L2(I((R−t)/
√
󰂃)) + 󰂃|∂tu󰂃(t)|2L2(I((R−t)/

√
󰂃))

+2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(I((R−s)/

√
󰂃))ds ≤ |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R),

P-almost surely.

If we take 󰂃 ∈ (0, 1), this implies that for every R > 1

|∂xu󰂃(t)|2L2(−R,R) + 󰂃|∂tu󰂃(t)|2L2(−R,R)

+2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(−R,R)ds ≤ |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R),

P-a.s. Notice that L2(−R,R) can be replaced by L2(R).
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Uniform estimates - Estimates in Ḣ2 ×H1

A second consequence is that for every R > 0 and T > 0

E sup
t∈[0,T ]

󰀓
|∂2

xu󰂃(t)|2L2(−R,R) + 󰂃|∂x∂tu󰂃(t)|2L2(−R,R)

󰀔

+E
󰁝 T

0
|∂x∂tu󰂃(t)|2L2(−R,R)dt

≲T,Λ1 |D2u󰂃0|2L2(R) + 󰂃|Dv󰂃0|2L2(R) +
1

󰂃
.
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Uniform estimates - Estimates in Ḣ2 ×H1

A second consequence is that for every R > 0 and T > 0

E sup
t∈[0,T ]

󰀓
|∂2

xu󰂃(t)|2L2(−R,R) + 󰂃|∂x∂tu󰂃(t)|2L2(−R,R)

󰀔

+E
󰁝 T

0
|∂x∂tu󰂃(t)|2L2(−R,R)dt

≲T,Λ1 |D2u󰂃0|2L2(R) + 󰂃|Dv󰂃0|2L2(R) +
1

󰂃
.

Notice that since the estimate above is uniform w.r.t. R > 1,
we can replace L2(−R,R) with L2(R) on the left hand side.
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Two fundamental facts

Thanks to the regularity of u󰂃 and ∂tu󰂃, we can integrate by
parts in R and obtain

|∂xu󰂃(t)|2L2(R) + 󰂃 |∂tu󰂃(t)|2L2(R) + 2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(R)ds

= |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R), P-a.s.
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Two fundamental facts

Thanks to the regularity of u󰂃 and ∂tu󰂃, we can integrate by
parts in R and obtain

|∂xu󰂃(t)|2L2(R) + 󰂃 |∂tu󰂃(t)|2L2(R) + 2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(R)ds

= |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R), P-a.s.

Another crucial fact we can prove is

sup
󰂃∈ (0,1)

E
󰁝 T

0
|∂2

xu󰂃(s)|2L2(R)ds ≤ cT .
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The heat flow equation

We introduce the deterministic heat flow equation

󰀻
󰀿

󰀽

γ0 ∂tu(t, x) = ∂2
xu(t, x) + |∂xu(t, x)|2u(t, x), (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R,
(6)

where u0 ∈ M := {u : R → S2}. We recall that

γ0 = γ +
1

2
µ(R).

It is easy to check that u(t) ∈ M , for all t ∈ R+.
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The heat flow equation

We introduce the deterministic heat flow equation

󰀻
󰀿

󰀽

γ0 ∂tu(t, x) = ∂2
xu(t, x) + |∂xu(t, x)|2u(t, x), (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R,
(6)

where u0 ∈ M := {u : R → S2}. We recall that

γ0 = γ +
1

2
µ(R).

It is easy to check that u(t) ∈ M , for all t ∈ R+.

We have proved that for every T > 0 and u0 ∈ Ḣ1(R) ∩M ,
problem (6) admits at most one solution in

L∞((0, T )× R) ∩ L∞(0, T ; Ḣ1(R)) ∩ L2(0, T ; Ḣ2(R)).
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A law of large numbers

We fix u0 ∈ Ḣ1(R) ∩M such that

lim
󰂃→0

|u󰂃0 − u0|L2
loc(R)

= 0. (7)

Then, for every T > 0, δ1 < 1 and δ2 < 2, and every η > 0, we
have

lim
󰂃→0

P
󰀓
|u󰂃 − u|

C([0,T ];H
δ1
loc(R))

+ |u󰂃 − u|
L2(0,T ;H

δ2
loc(R))

> η
󰀔
= 0,

where u is the unique solution of the heat flow equation (6).
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A few remarks

- Due to our assumptions, the sequence (u󰂃0 − u0)󰂃∈ (0,1) is
bounded in H1

loc(R).
Hence (7) implies that for every δ < 1

lim
󰂃→0

|u󰂃0 − u0|Hδ
loc(R)

= 0.
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A few remarks

- Due to our assumptions, the sequence (u󰂃0 − u0)󰂃∈ (0,1) is
bounded in H1

loc(R).
Hence (7) implies that for every δ < 1

lim
󰂃→0

|u󰂃0 − u0|Hδ
loc(R)

= 0.

- As a consequence of our limiting result, we obtain that we
obtain that for every T > 0 and u0 ∈ Ḣ1(R) ∩M ,

the heat flow equation has a unique solution
u ∈ L∞(0, T ; Ḣ1(R)) ∩ L2(0, T ; Ḣ2(R)).

This result seems to be new in the existing literature.
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About the heat flow equation

In fact we prove that for every T > 0, k ∈ N and
u0 ∈ Ḣk(R) ∩M , there exists a unique solution

u ∈ L∞(0, T ; Ḣk(R)) ∩ L2(0, T ; Ḣk+1(R)),

with
∂tu ∈ L2(0, T ;Hk−1)

and

sup
t∈[0,T ]

|u(t)|2
Ḣk(R) +

󰁝 T

0
|u(t)|2

Ḣk+1(R)dt

+

󰁝 T

0
|∂tu(t)|2Hk−1(R)dt ≤ ck,T (|u0|Ḣk(R)

󰀄
.
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About the heat flow equation

In fact we prove that for every T > 0, k ∈ N and
u0 ∈ Ḣk(R) ∩M , there exists a unique solution

u ∈ L∞(0, T ; Ḣk(R)) ∩ L2(0, T ; Ḣk+1(R)),

with
∂tu ∈ L2(0, T ;Hk−1)

and

sup
t∈[0,T ]

|u(t)|2
Ḣk(R) +

󰁝 T

0
|u(t)|2

Ḣk+1(R)dt

+

󰁝 T

0
|∂tu(t)|2Hk−1(R)dt ≤ ck,T (|u0|Ḣk(R)

󰀄
.

Moreover,

|∂xu(t)|2L2(R) + 2γ0

󰁝 t

0
|∂tu(s)|2L2(R)ds = |Du0|2L2(R).
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A few comments about the proof

- In view of the uniform bounds we have proven for u󰂃 and
∂tu󰂃, we can show that for every T > 0 and for every δ1 < 1
and δ2 < 2,

the family of probability measures (L(u󰂃))󰂃∈(0,1) is tight in
the space

X := C([0, T ];Hδ1
loc(R)) ∩ L2(0, T ;Hδ2

loc(R)).
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A few comments about the proof

- In view of the uniform bounds we have proven for u󰂃 and
∂tu󰂃, we can show that for every T > 0 and for every δ1 < 1
and δ2 < 2,

the family of probability measures (L(u󰂃))󰂃∈(0,1) is tight in
the space

X := C([0, T ];Hδ1
loc(R)) ∩ L2(0, T ;Hδ2

loc(R)).

- We identify any weak limit of (L(u󰂃))󰂃∈(0,1) in X with the
solution of the heat flow equation.

Due to the uniqueness for the heat flow equation, we
conclude that

the whole sequence converges to u in X in probability.
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The limiting behavior of ∂tu󰂃 - A positive result

We have proved that

the sequence (∂tu󰂃)󰂃∈ (0,1) converges in probability to ∂tu, with
respect to the weak convergence in L2(0, T ;L2(R)).
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The limiting behavior of ∂tu󰂃 - A positive result

We have proved that

the sequence (∂tu󰂃)󰂃∈ (0,1) converges in probability to ∂tu, with
respect to the weak convergence in L2(0, T ;L2(R)).

We have that for some M > 0

{∂tu󰂃}󰂃∈ (0,1) ⊂ SM :=
󰀋
ϕ ∈ L2(0, T ;L2(R)) : |ϕ|L2(0,T ;L2(R)) ≤ M

󰀌
, P−a.s.

and ∂tu ∈ SM .
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The limiting behavior of ∂tu󰂃 - A positive result

We have proved that

the sequence (∂tu󰂃)󰂃∈ (0,1) converges in probability to ∂tu, with
respect to the weak convergence in L2(0, T ;L2(R)).

We have that for some M > 0

{∂tu󰂃}󰂃∈ (0,1) ⊂ SM :=
󰀋
ϕ ∈ L2(0, T ;L2(R)) : |ϕ|L2(0,T ;L2(R)) ≤ M

󰀌
, P−a.s.

and ∂tu ∈ SM .

Then, the metrizability of SM and the convergence in
probability of u󰂃 to u allow to conclude.
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The limiting behavior of ∂tu󰂃 - A negative result

We have shown that if
√
󰂃 |v󰂃0|L2(R) → 0, then

the sequence (∂tu󰂃)󰂃∈ (0,1) does not converges in probability to
∂tu, with respect to the strong convergence in L2(0, T ;L2(R)).
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The limiting behavior of ∂tu󰂃 - A negative result

We have shown that if
√
󰂃 |v󰂃0|L2(R) → 0, then

the sequence (∂tu󰂃)󰂃∈ (0,1) does not converges in probability to
∂tu, with respect to the strong convergence in L2(0, T ;L2(R)).

Recall that we proved

|∂xu󰂃(t)|2L2(R) + 󰂃 |∂tu󰂃(t)|2L2(R) + 2γ

󰁝 t

0
|∂tu󰂃(s)|2L2(R)ds

= |Du󰂃0|2L2(R) + 󰂃 |v󰂃0|2L2(R), P-a.s.

and

|∂xu(t)|2L2(R) + (2 γ + µ(R))
󰁝 t

0
|∂tu(s)|2L2(R) ds = |Du0|2L2(R).
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Therefore, we get

󰁝 T

0

󰁝 t

0
|∂tu󰂃(s)|2L2(R) ds dt−

󰀕
1 +

µ(R)
2γ

󰀖󰁝 T

0

󰁝 t

0
|∂tu(s)|2L2(R) ds dt

=
󰂃T

2γ
|v󰂃0|2L2(R) −

1

2γ

󰀣󰁝 T

0
|∂xu󰂃(s)|2L2(R) dt

−
󰁝 T

0
|∂xu(s)|2L2(R) dt

󰀤
− 󰂃

2γ

󰁝 T

0
|∂tu󰂃(s)|2L2(R) dt.
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Therefore, we get

󰁝 T

0

󰁝 t

0
|∂tu󰂃(s)|2L2(R) ds dt−

󰀕
1 +

µ(R)
2γ

󰀖󰁝 T

0

󰁝 t

0
|∂tu(s)|2L2(R) ds dt

=
󰂃T

2γ
|v󰂃0|2L2(R) −

1

2γ

󰀣󰁝 T

0
|∂xu󰂃(s)|2L2(R) dt

−
󰁝 T

0
|∂xu(s)|2L2(R) dt

󰀤
− 󰂃

2γ

󰁝 T

0
|∂tu󰂃(s)|2L2(R) dt.

Since the r.h.s. converges to zero in probability, we have that
the l.h.s. converges to zero in probability.

We show that if µ(R) ∕= 0, this implies

∂tu󰂃 ∕→ ∂tu, in probability in L2(0, T ;L2(R)).
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Analysis of fluctuations

Next, we want to address the nature of the stochastic
fluctuations around the deterministic limit, in the case the noise
has the special structure

w(t, x) := (η ∗ wH(t, ·))(x) =
󰁝

R
η(x− y)wH(t, y)dy,

where wH is a fractional noise of Hurst index H ∈ (1/2, 1) and
η is a smooth positive kernel such that

1− Fη(x) ≲ |x|a, x ∈ (−1, 1),

and
|Fη(x)| ≲ |x|b, x ≥ 1,

for some constants a ≥ H − 1/2 and b < H − 2.
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Some notations

In what follows we define

y󰂃(t, x) := 󰂃H/2−1(u󰂃(t, x)− u(t, x)), (t, x) ∈ R+ × R.

Moreover, we denote by 󰂄󰂃 the solution of the problem

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ0 ∂t󰂄󰂃(t, x) = ∂ 2
x 󰂄󰂃(t, x) + |∂xu(t, x)|2󰂄󰂃(t, x)

+2(∂x󰂄󰂃(t, x) · ∂xu(t, x))u󰂃(t, x) +
󰀃
u󰂃(t)× ∂tu󰂃(t)

󰀄
Q󰂃∂tw

H(t, x),

󰂄󰂃(0, x) = 󰂃H/2−1(u󰂃0(x)− u0(x)),
(8)

where

Q󰂃h (x) :=
1√
󰂃

󰁝

R
η
󰀓x− y√

󰂃

󰀔
h(y)dy, h ∈ L2(R).
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A weak central limit theorem

For every T > 0 and u0 ∈ Ḣ1(R) ∩M such that

|u󰂃0 − u0|L2(R) = o(󰂃1−H/2), 0 < 󰂃 ≪ 1,

we have

y󰂃 ⇀ 󰂄 in L2(Ω;L2(0, T ;L2(R))), as 󰂃 → 0,

where 󰂄 ∈ L2(Ω;L2(0, T ;H)) is the unique solution of the
equation

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ0 ∂t󰂄(t) = ∂ 2
x 󰂄(t) + |∂xu(t)|2󰂄(t) + 2(∂xu(t) · ∂x󰂄(t))u(t)

+
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

H(t),

󰂄(0) = 0,

and u is the unique solution of the heat flow equation.
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More precisely, with the notations introduced above, we have

󰂄󰂃 ⇀ 󰂄 in L2(Ω;L2(0, T ;L2(R))), as 󰂃 → 0,

and

lim
󰂃→0

E
󰀕󰁝 T

0
|y󰂃(t)− 󰂄󰂃(t)|2L2(R) dt

󰀖1/2

= 0.
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More precisely, with the notations introduced above, we have

󰂄󰂃 ⇀ 󰂄 in L2(Ω;L2(0, T ;L2(R))), as 󰂃 → 0,

and

lim
󰂃→0

E
󰀕󰁝 T

0
|y󰂃(t)− 󰂄󰂃(t)|2L2(R) dt

󰀖1/2

= 0.

Moreover, if we assume that u0 ∈ Ḣ3(R) ∩M , and

󰀏󰀏(u󰂃0 − u0,
√
󰂃v󰂃0)

󰀏󰀏
H1(R)×L2(R) = O(󰂃β), 0 < 󰂃 ≪ 1,

for some β > 0, then we get

lim sup
󰂃→0

E
󰁝 T

0
|󰂄󰂃(t)− 󰂄(t)|2L2(R) dt ≲T µ(R).
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A few comments about the result

The analysis of fluctuations is technically demanding due to the
geometry of the target manifold and the non-trivial structure of
the noise which involves not only the position u, but also the
velocity ∂tu.
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A few comments about the result

The analysis of fluctuations is technically demanding due to the
geometry of the target manifold and the non-trivial structure of
the noise which involves not only the position u, but also the
velocity ∂tu.

The key point is showing that

proving the convergence of y󰂃 to 󰂄 in L2(0, T ;L2(R)) - whether
in distribution, in probability, in mean-square, or in the weak
topology of L2(Ω;L2(0, T ;L2(R))) - can be reduced to proving

the analogous convergence of ϑ󰂃 to ϑ,

where ϑ󰂃 solves

γ0 ∂tϑ󰂃(t) = ∂2
xϑ󰂃(t) + (u(t)× ∂tu󰂃(t))∂twH(t), ϑ󰂃(0) = 0,

and ϑ solves

γ0 ∂tϑ(t) = ∂2
xϑ(t) + (u(t)× ∂tu(t))∂twH(t), ϑ(0) = 0.
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In particular, since we can show that for every
Φ ∈ L2(Ω;L2(0, T ;L2(R))) it holds

lim
󰂃→0

E
󰁝 T

0
〈ϑ󰂃(t)− ϑ(t),Φ(t)〉L2(R) dt = 0,

we obtain the validity of a weak version of the central limit
theorem, in the sense that

we show that y󰂃 converges to 󰂄 with respect to the weak
topology of L2(Ω;L2(0, T ;L2(R))).
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The classical CLT

Our result does not imply the CLT. The validity of a classical
CLT - convergence in distribution, to what limit - remains still
open and we are trying to understand that.
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The classical CLT

Our result does not imply the CLT. The validity of a classical
CLT - convergence in distribution, to what limit - remains still
open and we are trying to understand that.

The only rigorous result we can prove is

lim sup
󰂃→0

E
󰀕󰁝 T

0
|y󰂃(t)− 󰂄(t)|2L2(R) dt

󰀖1/2

≲T

󰁳
µ(R).
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The classical CLT

Our result does not imply the CLT. The validity of a classical
CLT - convergence in distribution, to what limit - remains still
open and we are trying to understand that.

The only rigorous result we can prove is

lim sup
󰂃→0

E
󰀕󰁝 T

0
|y󰂃(t)− 󰂄(t)|2L2(R) dt

󰀖1/2

≲T

󰁳
µ(R).

However, the fact that ∂tu󰂃 does not converge in probability to
∂tu with respect to the strong topology of L2(0, T ;L2(R),
makes us believe that the CLT should give in the limit
something different than 󰂄.
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Discussing with Francesco Caravenna this week, it seems that
we could conjecture that the possible limit is something like

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ0 ∂t󰂄(t) = ∂ 2
x 󰂄(t) + |∂xu(t)|2󰂄(t) + 2(∂xu(t) · ∂x󰂄(t))u(t)

+
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

H(t) + extra stochastic term,

󰂄(0) = 0.

The extra term could involve another noise w̃H independent of
wH , with some non-linear coefficient depending on u and its
derivative ∂tu.
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About the proof - Step 1

Recall that we have defined

y󰂃 := 󰂃H/2−1(u󰂃 − u), 󰂃 > 0.

We have proved that if H ∈ [1/2, 1), then, for every T > 0 and
α > 0

E sup
t∈[0,T ]

|y󰂃(t)|2L2(R) + E
󰁝 T

0
|y󰂃(t)|2H1dt

≲α,T 󰂃−(1/2+α) + 󰂃H−2 |u󰂃0 − u0|2L2(R), 0 < 󰂃 ≪ 1.
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About the proof - Step 1

Recall that we have defined

y󰂃 := 󰂃H/2−1(u󰂃 − u), 󰂃 > 0.

We have proved that if H ∈ [1/2, 1), then, for every T > 0 and
α > 0

E sup
t∈[0,T ]

|y󰂃(t)|2L2(R) + E
󰁝 T

0
|y󰂃(t)|2H1dt

≲α,T 󰂃−(1/2+α) + 󰂃H−2 |u󰂃0 − u0|2L2(R), 0 < 󰂃 ≪ 1.

In particular, we have

E sup
t∈[0,T ]

|u󰂃(t)− u(t)|2L2(R) + E
󰁝 T

0
|u󰂃(t)− u(t)|2H1dt

≲α,T 󰂃3/2−H−α + |u󰂃0 − u0|2L2(R), 0 < 󰂃 ≪ 1.
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An improved LLN

This means that if we fix u0 and a sequence (u󰂃0)󰂃∈ (0,1) as in the
CLT, we conclude

lim
󰂃→0

E sup
t∈[0,T ]

|u󰂃(t)− u(t)|2L2(R) + E
󰁝 T

0
|u󰂃(t)− u(t)|2H1dt = 0.
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An improved LLN

This means that if we fix u0 and a sequence (u󰂃0)󰂃∈ (0,1) as in the
CLT, we conclude

lim
󰂃→0

E sup
t∈[0,T ]

|u󰂃(t)− u(t)|2L2(R) + E
󰁝 T

0
|u󰂃(t)− u(t)|2H1dt = 0.

Therefore, the convergence in probability of u󰂃 to u in
C([0, T ];L2

loc(R)) ∩ L2(0, T ;H1
loc(R))

can be improved to mean-square convergence in
C([0, T ];L2(R)) ∩ L2(0, T ;H1(R)).

Moreover, a bound on the rate of convergence is given,
depending on the initial conditions.
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About the proof - Step 2

A few slides above we introduced 󰂄󰂃, the solution of the
problem

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ0 ∂t󰂄󰂃(t, x) = ∂ 2
x 󰂄󰂃(t, x) + |∂xu(t, x)|2󰂄󰂃(t, x)

+2(∂x󰂄󰂃(t, x) · ∂xu(t, x))u󰂃(t, x) +
󰀃
u󰂃(t)× ∂tu󰂃(t)

󰀄
Q󰂃∂tw

H(t, x),

󰂄󰂃(0, x) = 󰂃H/2−1(u󰂃0(x)− u0(x)),

We have proven that

lim
󰂃→0

E |y󰂃 − 󰂄󰂃|L2(0,T ;L2(R)) = 0.
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About the proof - Step 2

A few slides above we introduced 󰂄󰂃, the solution of the
problem

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

γ0 ∂t󰂄󰂃(t, x) = ∂ 2
x 󰂄󰂃(t, x) + |∂xu(t, x)|2󰂄󰂃(t, x)

+2(∂x󰂄󰂃(t, x) · ∂xu(t, x))u󰂃(t, x) +
󰀃
u󰂃(t)× ∂tu󰂃(t)

󰀄
Q󰂃∂tw

H(t, x),

󰂄󰂃(0, x) = 󰂃H/2−1(u󰂃0(x)− u0(x)),

We have proven that

lim
󰂃→0

E |y󰂃 − 󰂄󰂃|L2(0,T ;L2(R)) = 0.

Notice that this limit is not trivial at all, as we have to handle
several bad terms, among all 󰂃H/2 ∂2

t u󰂃.
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About the proof - Step 3

We fix T > 0 and ξ ∈ L2(0, T ;L2(R)), and for every
v ∈ L2(0, T ;L2(R)) we define

Θξ(v)(t) :=
1

γ0

󰁝 t

0
e

1
γ0

(t−s)A󰀃|∂xu(s)|2v(s)
󰀄
ds

+
2

γ0

󰁝 t

0
e

1
γ0

(t−s)A󰀃
(∂xu(s) · ∂xv(s))u(s)

󰀄
ds+ ξ(t).
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About the proof - Step 3

We fix T > 0 and ξ ∈ L2(0, T ;L2(R)), and for every
v ∈ L2(0, T ;L2(R)) we define

Θξ(v)(t) :=
1

γ0

󰁝 t

0
e

1
γ0

(t−s)A󰀃|∂xu(s)|2v(s)
󰀄
ds

+
2

γ0

󰁝 t

0
e

1
γ0

(t−s)A󰀃
(∂xu(s) · ∂xv(s))u(s)

󰀄
ds+ ξ(t).

We have shown that the mapping

Θξ : L
2(0, T ;L2(R)) → L2(0, T ;L2(R))

is well-defined and continuous.
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Next, we have shown that for every ξ ∈ L2(0, T ;L2(R)) there is
a unique Λ(ξ) ∈ L2(0, T ;L2(R)) such that

Θξ(Λ(ξ)) = Λ(ξ).
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Next, we have shown that for every ξ ∈ L2(0, T ;L2(R)) there is
a unique Λ(ξ) ∈ L2(0, T ;L2(R)) such that

Θξ(Λ(ξ)) = Λ(ξ).

Moreover, the mapping Λ : L2(0, T ;L2(R)) → L2(0, T ;L2(R)) is
linear and continuous. Namely

|Λ(ξ)|L2(0,T ;L2(R)) ≲T |ξ|L2(0,T ;L2(R)).
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About the proof - Step 4

Now, due to our definition of 󰂄󰂃, we have that

󰂄󰂃 = Λ(z󰂃),

where we have denoted by z󰂃 the solution of the problem

γ0 ∂tz󰂃(t) = ∂ 2
x z󰂃(t) + (u󰂃(t)× ∂tu󰂃(t))Q

󰂃dwH(t),

with initial condition z󰂃(0) = 󰂃H/2−1(u󰂃0 − u0).
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About the proof - Step 4

Now, due to our definition of 󰂄󰂃, we have that

󰂄󰂃 = Λ(z󰂃),

where we have denoted by z󰂃 the solution of the problem

γ0 ∂tz󰂃(t) = ∂ 2
x z󰂃(t) + (u󰂃(t)× ∂tu󰂃(t))Q

󰂃dwH(t),

with initial condition z󰂃(0) = 󰂃H/2−1(u󰂃0 − u0).

Thus, if we are able to prove that

z󰂃 → z, 󰂃 → 0,

in some appropriate sense, then

󰂄󰂃 = Λ(z󰂃) → Λ(z), 󰂃 → 0,

in some appropriate sense.
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We have proved that for every T > 0 and H ∈ (1/2, 1),

z󰂃 ⇀ z in L2(Ω;L2(0, T ;L2(R))), as 󰂃 → 0,

where

z(t) :=
1

γ0

󰁝 t

0
e

1
γ0

(t−s)A
(u(s)× ∂tu(s))dw

H(s), t ∈ [0, T ].
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We have proved that for every T > 0 and H ∈ (1/2, 1),

z󰂃 ⇀ z in L2(Ω;L2(0, T ;L2(R))), as 󰂃 → 0,

where

z(t) :=
1

γ0

󰁝 t

0
e

1
γ0

(t−s)A
(u(s)× ∂tu(s))dw

H(s), t ∈ [0, T ].

Therefore, we obtain

󰂄󰂃 ⇀ Λ(z) = 󰂄 in L2(Ω;L2(0, T ;L2(R))),

where 󰂄 is the unique solution of the equation

γ0∂t󰂄(t) = ∂ 2
x 󰂄(t) + |∂xu(t)|2󰂄(t) + 2(∂xu(t) · ∂x󰂄(t))u(t)

+
󰀃
u(t)× ∂tu(t)

󰀄
∂tw

H(t), 󰂄(0) = 0.

Sandra Cerrai Parabolic rescaling of a stochastic wave map



One last comment

As a byproduct of our analysis, we have also shown that for
0 < 󰂃 ≪ 1

E sup
t∈[0,T ]

|u󰂃(t)− u(t)|2H1

+E
󰁝 T

0
|∂tu󰂃(t)− ∂tu(t)|2L2(R)dt ≲T µ(R) + 󰂃1∧2β .

In particular, we recover what proved in the deterministic case,
under lower regularity conditions for the initial data.
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Thank you
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For every u ∈ Ḣ1(R) ∩M there exists a sequence

(un)n≥1 ⊂
󰁟

k∈N
Ḣk(R) ∩M,

such that u− un ∈ L2(R), for every n ∈ N, with

lim
n→∞

|u− un|H1(R) = 0.

In particular, this justifies condition (7).
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