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Introduction

Introduction

∂u
∂t
−∆β(u(t, x)) + div((D(x)b(u(t, x))

+(K ∗ u(t, ·))(x)u(t, x)) = 0 in (0,∞)× Rd,
u(0, x) = u0(x), x ∈ Rd,

(1)

d ≥ 2, β : R→ R, b : R→ R+, D : Rd → Rd, K : Rd → Rd.
(i) β ∈ C1(R), β(0) = 0, β′(r) ≥ α > 0, ∀r ∈ R.

(ii) D ∈ L∞(Rd;Rd) ∩ L2(Rd;Rd), (div D)− = 0.
(iii) b ∈ C1(R), b(r) ≥ 0, ∀r ∈ R.
(iv) K ∈ C1(Rd \ 0;Rd) ∩ L1(B1;Rd) ∩ Lp(Bc

1;Rd), where p ∈ [1, 2],

(div K)− ∈ L∞(Rd), (K(x)·x)−|x|−1 ∈ L∞(B1), (2)

where Br = {x ∈ Rd; |x| ≤ r}, Bc
r = {x ∈ Rd; |x| > r}, ∀r > 0.
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Introduction

NFPE (1) is related to the McKean–Vlasov SDE

dXt = (D(Xt)b(u(t,Xt)) + (K ∗ u(t, ·))(Xt))dt

+

(
2β(u(t,Xt))

u(t,Xt)

) 1
2

dWt, t ≥ 0,
(3)

through the stochastic representation

LXt (x) = u(t, x), ∀t ≥ 0; u0(x) = P ◦ X−1
0 , x ∈ Rd. (4)

Here, LXt is the density of the marginal law P ◦ X−1
t of Xt with respect to the

Lebesgue measure.
The special case K ≡ 0 was studied in the works [2]–[5].
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1◦. Riesz type kernels. The kernel

K(x) = µx|x|s−d−2, 0 < s < d, µ > 0, d > 2, (5)

is derived from the Riesz potential, K(x) ≡ ∇Is(x), where

Is(x) = − µ

d − s
|x|s−d if 0 < s < d, d > 2

Is(x) = µ log(x) if d = 2.

Condition (iv) holds if 2 < s < d + 2.
We note that, for 0 < s < d and

µ = (d − s)π
d
2 2s Γ

( s
2

)/
Γ

(
d − s

2

)
,

we have
(−∆)−

s
2 f = Is ∗ f , ∀f ∈ L1 ∩ L2. (6)

Viorel Barbu Workshop on Irregular Stochastic Analysis, Cortona, 23-27 June 2025



Workshop on Irregular Stochastic Analysis, Cortona, 23-27 June 2025

Introduction

2◦. Bessel kernels

K(x) = ∇Gα(x), x ∈ Rd \ {0}, 0 < α < d, (7)

where Gα is the Bessel potential defined by

F(Gα)(ξ) = −(1 + 4π2|ξ|)−α
2 , ξ ∈ Rd.

(Here, F(Gα) is the Fourier transform of Gα.) In analogy with (6), we have

(I −∆)−
α
2 f = Gα ∗ f , ∇((I −∆)−

α
2 f ) = K ∗ f , (8)

Gα(x) = −Hα−d
2

(|x|)|x|α−d
2 , 0 < α < d + 1, x ∈ Rd,

Hν(r) ≡ µν rν e−ν
∫∞

0 e−tr tν−
1
2
(
1 + 1

2 t
)ν− 1

2 dt, ν > 1
2 , r > 0.
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Such an example is the Keller–Segal model [11]

∂u
∂t
−∆β(u) + div(u∇v) = 0 in (0,∞)× R,

(−∆)αv = u in (0,∞)× Rd,

(I −∆)αv = u where 0 < α ≤ 1,

(9)

of the chemotaxis dynamics of biological populations in presence of an
anomalous diffusion.

If K = ∇W, D = −∇Φ, Φ : Rd → R, then (9) is associated with the
entropy functional

E(u) =

∫
Rd

(∫ u(x)

1

β′(τ)

b(τ)τ
dτ + Φ(x)u(x)

)
dx

+
1
2

∫
Rd×Rd

W(x− y)u(x)u(y)dxdy.
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The Biot–Savart kernel

K(x) =
1
π

x⊥|x|−2

satisfies (2), but not (iv).
(A direct treatment in V.B., M. Röckner, D. Zhang [6].)
The existence and uniqueness of the solution u : [0,∞)→ H−1(R+)

to NFPE (1) in the set P of probability densities,

P =

{
u ∈ L1(Rd); u ≥ 0, a.e. in Rd,

∫
Rd

u(x)dx = 1
}
. (10)

Moreover, for u0 ∈ P ∩ L∞(Rd), the flow t→ u(t) = S(t)u0 is a continuous
semigroup of quasi-contractions in the Sobolev space H−1(Rd) which is
everywhere differentiable from the right on [0,∞) (see Theorem 1).
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Notations and definitions

Notations and definitions

Denote by H1 the Sobolev space

H1(Rd) =

{
u ∈ L2;

∂u
∂xi
∈ L2, i = 1, ..., d

}
and by H−1 the dual of H1. The space H−1 is endowed with the scalar
product

〈u1, u2〉−1 = ((I −∆)−1u1, u2)2,

where (·, ·)2 is the scalar product of the space L2. We denote by | · |−1
the corresponding Hilbertian norm of H−1, that is,

|u|−1 = ((I −∆)−1u, u)
1
2
2 , ∀u ∈ H−1.

For 0 < T ≤ 0, we shall denote by C([0,T]; H−1 the space of all
H−1-valued continuous functions on [0,T]. W1,p([0,T]; H−1), 1 ≤ p ≤ ∞,
is the space

{
u ∈ L∞(0,T; H−1); du

dt ∈ Lp(0,T; H−1)
}

.
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Notations and definitions

The nonlinear operator A : D(A) ⊂ H−1 → H−1 is said to be
quasi-m-accretive if there is ω > 0 such that, for all λ ∈

(
0, 1

ω

)
,∣∣(I + λA)−1f1 − (I + λA)−1f2

∣∣
−1 ≤ (1− λω)−1|f1 − f2|−1,

∀f1, f2 ∈ H−1.
(11)

Equivalently,

〈Au1 − Au2, u1 − u2〉−1 ≥ −ω|u1 − u2|−1, ∀u1, u2 ∈ D(A),

R(I + λA) = H−1, ∀λ ∈ (0, λ0),
(12)

for some λ0 ∈
(
0, 1

ω

)
.

If A is quasi-m-accretive, then it generates on D(A) (the closure of
DF(A)) a continuous semigroup of ω-quasi-contractions S(t), that is

d+

dt
S(t)u0 + AS(t)u0 = 0, ∀t > 0,

lim
t→0

S(t)u0 = u0, S(t + s)u0 = S(t)S(s)u0, ∀t, s ≥ 0,
(13)

for all u0 ∈ D(A).
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Notations and definitions

S(t)u0 = lim
n→∞

(
I +

t
n

A
)−n

u0 in H−1 (14)

uniformly on compact intervals [0,T] ⊂ [−,∞) and

|S(t)u0 − S(t)v0|−1 ≤ exp(ωt)|u0 − v0|−1, ∀u0, v0 ∈ D(A), t ≥ 0. (15)

u(t) = S(t)u0 is for u0 ∈ D(A) a smooth (differentiable) solution (in the
space H−1) to the Cauchy problem

du
dt

+ Au = 0, t ≥ 0; u(0) = u0. (16)
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Weak solution to (1)

Weak solution to (1)

u ∈ C([0,∞); H−1),
du
dt
∈ L2(0,T; H−1), ∀T > 0,

β(u) ∈ L2(0,T; H1), Db(u) + (K ∗ u)u ∈ L2(0,T; L2), ∀T > 0,

H−1

(
du
dt

(t), ϕ
)

H1

+

∫
Rd

(∇β(u(t, x))− (Db(u(t, x))u(t, x)

+K(u(t, x)) ∗ u(t))u(t, x))·∇ϕ(x))dx = 0, ∀ϕ ∈ H1,

a.e. t > 0,

u(0, x) = u0(x), x ∈ Rd.
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Weak solution to (1)

Theorem 1

Let u0 ∈ P ∩ L∞. Then, there is a unique weak solution u = u(t, u0) such
that

u(t) ∈ P, ∀t ≥ 0, u ∈ L∞((0,T)× Rd), ∀T > 0.

Moreover,

|u(t, u0)− u(t, u0)|−1 ≤ exp(ωt)|u0 − v0|−1, ∀t > 0, u0, v0 ∈ P ∩ L∞,

0 ≤ u(t, x) ≤ exp(γt)|u0|∞, ∀(t, x) ∈ (0,∞)× Rd.

t→ u(t, u0) is narrowly continuous.
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Weak solution to (1)

Let
K = P ∩ L∞, S(t)u0 = u(t, u0).

Then S(t) : K → K is a continuous semigroup of quasi-contractions on K
and by Kōmura’s theorem it is generated by a quasi-m-accretive operator A0,
on K

d+

dt
S(t)u0 + A0S(t)u0 = 0, ∀t ≥ 0, ∀u0 ∈ D(A0),

where D(A0) is a dense subset of K.

Conclusion. t→ u(t, u0) is differentiable on the right on a dense subset of
K = H−1 ∩ P0 where P0 is the set of all probability measures.
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Proof of Theorem 1

Proof of Theorem 1

We set, for ε > 0,

βε(r) ≡ εr + β((1 + εβ)−1r), ∀r ∈ R,

ϕε(r) =
1
ε

r
|r|

if |r| ≥ 1
ε
, ϕε(r) = r if |r| ≤ 1

ε
,

Kε(x) ≡ η
(
|x|
ε

)
K(x), bε(r) ≡ (1− η(εr))b(r),

where η ∈ C1([0,∞)) is such that 0 ≤ η′(r) ≤ 1, 0 ≤ η(r) ≤ 1, ∀r ≥ 0, and

η(r) = 0, ∀r ∈ [0, 1]; η(r) = 1, ∀r ≥ 2.

We also set j(r) ≡
∫ r

0 β(s)ds and jε(r) ≡
∫ t

0 βε(s).
Now, we define the operator Aε : D(Aε) ⊂ H−1 → H−1,

Aε(u) = −∆βε(u) + div((Dbε(u)u + (Kε ∗ ϕε(u))ϕε(u)),

∀u ∈ D(Aε) = H1.
(17)
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Proof of Theorem 1

Lemma 2

Aε is quasi-m-accretive in H−1 and for λ ∈ (0, λε)

(I + λAε)−1f ≥ 0, a.e. in Rd if f ≥ 0, (18)
(I + λAε)−1(P ∩ H−1) ⊂ P, (19)

Moreover, we have

0 ≤ (I + λAε)−1f ≤ N, a.e. in Rd, (20)

for all N > 0 and f ∈ P ∩ L∞ such that, for 0 < λ < 1
γ ,

0 ≤ f ≤ (1− λγ)N, a.e. in Rd, (21)

γ = (div K)−|∞ +

∥∥∥∥ (K(x) · x)−

|x|

∥∥∥∥
L∞(B2)

. (22)

Proof. We set b∗ε(r) = bε(r)r, b∗(r) = b(r)r, ∀r ∈ R, and note that

b∗ε, (b∗ε)
′ ∈ L∞(R), ∀ε > 0. (23)
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Proof of Theorem 1

Lemma 3

For each u0 ∈ H−1 there is a unique mild solution uε ∈ C([0,∞); H−1) to
the Cauchy problem

duε
dt

+ Aεuε = 0 on (0,∞),

u0(0) = u0,

(24)

which is a smooth solution, that is, d+

dt uε(t) exists everywhere on [0,∞) if
u0 ∈ H1 = D(Aε). Moreover, if u0 ∈ P ∩ H−1, then uε(t) ∈ P , ∀t ≥ 0. If
j(u0) ∈ L2, then, for every T > 0,

uε, βε(uε) ∈ L2(0,T; H1) (25)
duε
dt
∈ L2(0,T; H−1) (26)

div((Kε ∗ uε) ∈ L2(0,T; L2) (27)
duε
dt

(t)−∆βε(uε(t)) + div(Dbε(uε(t))uε(t)

+(Kε ∗ ϕε(uε))uε)(t)) = 0, a.e. t > 0,
(28)

0 ≤ uε(t, x) ≤ exp(γt)|u0|∞, a.e. (t, x) ∈ (0,∞)× Rd. (29)
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Proof of Theorem 1

Hence, on a subsequence {ε} → 0, we have

uε → u∗ weakly in L2
loc(0,∞; H1)

duε
dt

→ du∗

dt
weakly in L2

loc(0,∞; H−1)

uε → u∗ weak-star in L∞((0,∞)× Rd),
weakly in L2

loc(0,∞), and

strongly in L2
loc(0,∞; L2)

Dbε(uε)uε → Db(u∗)u∗ weakly in L1
loc(0,∞; L2)

βε(uε) → β(u∗) weakly in L2
loc(0,∞; H1)

(Kε ∗ ϕε(uε))ϕε(uε) → v∗ weak-star in L∞((0,∞)× Rd).

(30)
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Proof of Theorem 1

Clearly, u∗ satisfies the equation

du∗

dt
−∆β(u∗) + div(v∗ + Db(u∗)u∗) = 0 in D′(0,∞)× Rd

u∗(0) = u0.

Since
|Kε ∗ ϕε(uε)|∞ ≤ C, ∀ε > 0,

and by (30),

Kε ∗ ϕε(uε)ϕε(uε) = (Kε ∗ uε)uε → (K ∗ u∗)u∗,

a.e. in (0,∞)× Rd as ε→ 0, we infer that v∗ ≡ (K ∗ u∗)u∗. We also have

0 ≤
(

I +
t
n

A
)−n

u0 ≤
(

1− t
n
γ
)−n
|u0|∞, ∀n ∈ N.

Hence,
0 ≤ uε(t) ≤ exp(γt)|u0|∞, ∀ε > 0.
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Proof of Theorem 1

More precisely, we have
du∗

dt
−∆β(u∗) + div(Db(u∗)u∗ + (K ∗ u∗)u∗) = 0

in D′((0,∞)× Rd)
u∗(0, x) = u0(x), x ∈ Rd

(31)

u∗, β(u∗) ∈ L2
loc(0,∞; H1), (K ∗ u∗)u∗ ∈ L∞((0,∞)× Rd) (32)

u∗(t) ∈ HN , ∀t ≥ 0 (33)
du∗

dt
∈ L2

loc(0,∞; H−1) (34)

It also follows
|u∗(t, u0)− u∗(t, v0)|−1 ≤ exp(γ0t)|u0 − v0|−1, ∀u0, v0 ∈ P ∩ L∞.

We set
S(t)u0 = u∗(t), t ≥ 0, u0 ∈ P ∩ L∞, (35)

and note that S(t)(P ∩ L∞) ⊂ P ∩ L∞, ∀t ≥ 0, the function t→ S(t)u0 is
continuous (in H−1) on [0,∞) and

S(t + s)u0 = S(t)S(s)u0, ∀t, s ≥ 0, u0 ∈ P ∩ L∞,
|S(t)u0 − S(t)v0|−1 ≤ exp(γ0t)|u0 − v0|−1, ∀t ≥ 0, u0, v0 ∈ P ∩ L∞.
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Proof of Theorem 1

In other words, S(t) is a continuous semigroup of γ0-contractions on
P ∩ L∞ ⊂ H−1 which extends by continuity on K = P ∩ L∞. Then, by
Kōmura’s theorem (see [1], p. 175) there is a quasi-m-accretive operator A0
with the domain D(A0), which generates the semigroup S(t) on D(A0) = K,
that is,

d+

dt
S(t)u0 + A0S(t)u0 = 0, ∀t ≥ 0, u0 ∈ D(A0), (36)

and the function t→ d
dt S(t) exists and is everywhere continuous on (0,∞)

except a countable set of t,

A0u0 = −∆β(u0) + div(Db(u0)u0) + (K ∗ u0)u0), ∀u0 ∈ D(A0).
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Long time behaviour (H-theorem)

Long time behaviour (H-theorem)

Let K = −∇W, W(x) ≡ W(−x),

E(u) =

∫
Rd

(∫ u(x)

1

β′(τ)

b(τ)τ
dτ + Φ(x)

)
dx+

1
2

∫
Rd×Rd

W(x−y)u(x)u(y)dxdy

(The entropy functional)
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Long time behaviour (H-theorem)

Theorem 4

One has, for b ≡ 1 and u→ W ∗ u, a positive operator

E(S(t)u0) +

∫ t

s
Ψ(S(τ)u0)dτ ≤ E(S(s)u0), ∀u0 ∈ P ∩ L∞, 0 ≤ s ≤ t <∞,

Ψ(u) ≡
∫
Rd

u
∣∣∣∣∇β(u)

u
− D− K ∗ u

∣∣∣∣2 dx,

{S(t)u0; t ≥ 0} is compact in L1
loc(Rd) and any u0 = lim

tn→∞
S(tn)u0 in L1

loc is

an equilibrium point of the system,

∇β(u∞)− Du∞ − (K ∗ u∞)u∞ ≡ 0.
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The uniqueness of distributional solutions

The uniqueness of distributional solutions

We shall assume here that besides (i)–(iv) the following condition hold

(v) K ∈ L∞(Bc
1;Rd).

We recall that the function u ∈ L1
loc([0,T)× Rd) is said to be a

distributional solution to NFPE (1) on QT = (0,T)× Rd if

β(u) ∈ L1
loc(QT) (37)

(Db(u) + K ∗ u)u ∈ L1
loc(QT ;Rd) (38)

∫
QT

(u(t, x)
∂ϕ

∂t
(t, x) + β(u(t, x))∆ϕ(t, x) + u(t, x)(D(x)b(u(t, x))

+(K ∗ u(t))(x)) · ∇ϕ(t, x))dtdx +

∫
Rd

u0(x)ϕ(0, x)dx = 0,

∀ϕ ∈ C∞0 ([0,T)× Rd).

(39)
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The uniqueness of distributional solutions

Theorem 5

Let u1, u2 ∈ L1(QT) ∩ L∞(QT) be two distributional solutions to (1) such
that

lim
t↓0

ess sup
∫
Rd

(u1(t, x)− u2(t, x))ψ(x)dx = 0, ∀ψ ∈ C∞0 (Rd). (40)

Then u1 ≡ u2.

Proof. We set z = u1 − u2, w = β(u1)− β(u2) and get for z the equation

∂z
∂t
−∆w + div(D((b(u1)− b(u2))u1 + b(u2)z))

+div((K ∗ z)u1 − z(K ∗ u2)) = 0 in D′(QT).
(41)

Consider the operator Φε = (εI −∆)−1 ∈ L(L2,L2). We have

εΦε(y)−∆Φε(y) = y in D′(Rd), ∀y ∈ L2. (42)
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The uniqueness of distributional solutions

We see that Φε ∈ L(L2,H2) and applying Φε to (41) we get

d
dt

Φε(z(t)) + w(t)− εΦε(w(t))

+div(Φε(z(t))(D((b(u1(t))− b(u2(t))) + b(u2(t))z(t)))

+div(Φε((K ∗ z(t))u1(t)− z(t)(K ∗ u2(t)))) = 0, a.e. t ∈ (0,T).

(43)

hε(t) = (Φε(z(t)), z(t))2 = ε|Φε(z(t))|22 + |∇Φε(z(t))|22, t ∈ [0,T], (44)

h′ε(t) = 2
(

d
dt

Φε(z(t)), z(t)
)

2
=−2(w(t), z(t))2+2ε(Φε(w(t)), z(t))2

+((K∗z(t))u1(t)−z(t)(K∗u2(t)),∇Φε(z(t)))2+(Ψ(t),∇Φε(z(t)))2,

a.e. t ∈ (0,T),

(45)

Ψ ≡ D(b(u1)− b(u2)u1 + b(u2)z)). (46)
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The uniqueness of distributional solutions

This yields

h′ε(t) + 2α|z(t)|22 ≤ 2ε(Φε(w(t)), z(t))2 + C|z(t)|2|∇Φε(z(t))|2,
a.e. t ∈ (0,T),

(47)

and so, by (44) we get

h′ε(t) + α|z(t)|22 ≤ Chε(t) + 2ε(Φε(w(t)), z(t))2, a.e. t ∈ (0,T).

We have
|w(t)| ≤ C|z(t)|2, ∀t ∈ (0,T). (48)

√
ε|Φε(w(t)), z(t))2| ≤ C, a.e t ∈ (0,T). (49)
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The uniqueness of distributional solutions

It follows that

hε(t) ≤ C
∫ t

0
hε(s)ds + C

√
ε, ∀t ∈ [0,T].

Hence,
hε(t) ≤ C

√
ε exp(Ct), ∀t ∈ [0,T],

and so lim
ε→0

hε(t) = 0 uniformly on [0,T].

Recalling (44), we get for ε→ 0

∇Φε(z) → 0 in L2(0,T; (L2)d)
√
εΦε(z) → 0 in L2(0,T; L2)

∆Φε(z) → 0 in L2(0,T; H−1)

Taking into account that εΦε(z)−∆Φε(z) = z, we infer that z = 0 on
(0,T)× Rd, as claimed. �
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The uniqueness of distributional solutions

Now, we shall prove for later use a similar uniqueness result for the
distributional solution v to the "freezed" linear version of NFPE (39), that is,

∂v
∂t
−∆

(
β(u)

u
v
)

+ div((Db(u) + K ∗ u)v) = 0 in D′(0,T)× Rd,

v(0) = v0,
(50)

where u is the solution to (1) given by Theorem 1. In other words,∫
QT

(
∂ϕ

∂t
+
β(u)

u
∆ϕ+ (Db(u) + K ∗ u) · ∇ϕ

)
dtdx

+

∫
Rd

v0(z)ϕ(0, x)dx, ∀ϕ ∈ C∞0 ([0,T)× Rd),

(51)
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The uniqueness of distributional solutions

Theorem 6

Let u ∈ L∞(QT) ∩ L1(QT) be the solution to (1) and let

v1, v2 ∈ L1(QT) ∩ L∞(QT)

be two distributional solutions to (41), which satisfy (40). Then, v1 ≡ v2.
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The existence for the McKean–Vlasov equation

The existence for the McKean–Vlasov equation

We shall study here the McKean–Vlasov equation (4) under hypotheses
(i)–(v), where u is the solution to NFPE (1) with u0 ∈ P ∩ L∞ given by
Theorem 1.

As seen earlier, t→ u(t) is narrowly continuous and, therefore, by the
superposition principle first applied for the linearized equation (50) and
derived afterwards for the NFPE (1), it follows (see [2], [16] and Theorem 7
in [5]) the existence of a probability weak solution Xt to the McKean–Vlasov
equation (4) with the law density u(t). More precisely, we have:

There is a stochastic basis (Ω,F ,P) with normal filtration (Ft),r>0 and
an (Ft)-Brownian motion (Wt, t > 0) such that Xt, t > 0, is an (Ft),t>0
adapted stochastic process on (Ω,F ,P), which satisfies SDE

dXt = (D(Xt)b(u(t,Xt))+(K∗u(t, ·))Xt)dt+
(√

2β(u(t,Xt))
u(t,Xt)

)
dWt,∀t > 0,

X(0) = X0,
(52)

LXt (x) = u(t, x), ∀t > 0, u0(x) = LX0(x) = (P ◦ X−1
0 )(x), ∀x ∈ Rd. (53)
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The existence for the McKean–Vlasov equation

We may view (52)–(53) as a probability representation of solutions u to
the NFPE (1). Under hypotheses (i)–(v) we have also from the uniqueness of
NFPE (39) and its linearized version (50) the weak uniqueness in law for the
solution to the McKean–Vlasov SDE (52). Namely, we have

Theorem 7

Let Xt and X̃t be probability weak solutions to (52) on the stochastic basis
(Ω,F , (Ft),P), (Ω̃, F̃ , (F̃t), P̃) such that

L(Xt) = u(t, ·), L(X̃t) = ũ(t, ·). (54)

u, ũ ∈ L1(Q) ∩ L∞(Q), Q = (0,∞)× Rd. (55)

Then Xt and X̃t have the same marginal laws, that is,

P ◦ X−1
t = P̃ ◦ X̃−1

t , ∀t > 0. (56)
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The existence for the McKean–Vlasov equation

Proof. By Itô’s formula, both functions u and ũ satisfy (37)–(39) and so, by
Theorem 5, u = ũ. Moreover, both marginal laws P ◦ X−1

t and P̃ ◦ X̃−1
t

satisfy the martingale problem with the initial condition u0 for the linearized
Kolmogorov operator

v→ ∆

(
β(u)

u
v
)
− (Db(u) + K ∗ u) · ∇v

and so, by Theorem 4.3 and the transfer of uniqueness Lemma 2.12 in [17]
(see also [15] and [5], Sect. 5), it follows that (56) holds. �

We recall that (see, e.g., [5], p. 195) that a weak probability solution Xt to
(52)–(53) is said to be a strong solution if it is a measurable function of the
Brownian motion Wt or, equivalently, if it is adapted with respect to the
completed natural filtration (FWt

t )t>0 of Wt. It turns out that under
appropriate conditions on b, D and K, the weak probability solution Xt is a
strong solution to the McKean–Vlasov equation (52)–(53). Namely, we have
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The existence for the McKean–Vlasov equation

Theorem 8

Assume that, besides hypotheses (i)–(v), the following conditions hold

t→ β(r)

r
∈ C1

b[0,∞), D ∈ C1(Rd;Rd), (57)

∂

∂xi
K ∈ L2(Bc

1;Rd), i = 1, ..., d. (58)

Then, the weak probability solution Xt to (52)–(53) is the unique strong
solution to the McKean–Vlasov equation (52)–(53).
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The existence for the McKean–Vlasov equation

Proof. By the restricted Yamada–Watanabe theorem (see, e.g., [9], [10]) the
conclusion follows if one shows that the stochastic differential equation (52)
with u given by Theorem 1 has the path uniqueness property for the weak
probability solutions, that is, for every pair of weak solutions
(X,W, (Ω,P,F , (Ft)t>0)), (X̃,W, (Ω,P,F , (Ft)t>0)), with X(0) = X̃(0),
we have sup |X(t)− X̃(t)| = 0, P-a.s. In our case, this means the pathwise
uniqueness of weak probability solutions to the stochastic differential
equation

dXt = f1(t,Xt)dt + f2(t,Xt)dWt

X(0) = X0 ∈ Rd,
(59)

in the stochastic basis (Ω,F ,P,Wt), where

f1(t, x) ≡ D(x)b(u(t, x)) + (K ∗ u(t, ·))(x), t > 0, x ∈ Rd,

f2(t, x) ≡

√
2β(u(t, x))

u(t, x)
, t > 0, x ∈ Rd,

and u is the solution to the Fokker–Planck equation (1) given by Theorem 1.
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The existence for the McKean–Vlasov equation

The main difficulty for the proof of the path uniqueness for equation (59)
is that the coefficients fi, i = 1, 2, are not Lipschitz with respect to the spatial
variable x ∈ Rd but are only in H1. We have indeed for
Di = ∂

∂xi
, i = 1, ..., d,

|Dif2(t, x)| =

∣∣∣∣∣
(
β(u)

u

)′ (
β(u)

u

)− 1
2

Diu(t, x)

∣∣∣∣∣ ≤ C|Diu(t, x)|,

∀(t, x) ∈ (0,∞)× Rd,

|Di(D(x)b(u(t, x)))| ≤ |D|∞|b(u)|∞ + |D|∞|b′(u)|∞|∇u(t, x)|
≤ C|Diu(t, x)|, (t, x) ∈ (0,∞)× Rd,

Di(K ∗ u(t))(x) =

∫
B1

K(x̄)Diu(t, x− x̄)dx +

∫
Bc

1

DiK(x̄)u(t − x̄)dx

+

∫
[|̄x|=1]

K(x̄)u(t, x− x̄)dx̄, i = 1, ..., d, (t, x) ∈ (0,∞)× Rd.
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The existence for the McKean–Vlasov equation

Taking into account that, as seen by Theorem 1, u ∈ L∞(0,T; H1), these
formulae imply that

|Dif1(t, ·)|2 ≤ C|Diu(t, ·)|2 + ‖K‖L1(B1)|Diu(t, ·)|2
+‖DiK‖L1(Bc

1)
|u(t, ·)2 + C‖K‖L∞(B1)|u(t, u(t))|∞, ∀t ∈ [0,T].

By the above estimations, we see that f1, f2 have the H1-Sobolev regularity
with respect to the spatial variable x and so the pathwise uniqueness of the
weak solution X to (59) follows by the same argument as that used for the
uniqueness of Lagrangian flows generated by nonlinear differential
equations in Rd with coefficients in L1(0,T; H1) (see Theorem 2.9 in [7]). �
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