PROGRAMME

JUNE 2015
BOLOGNA
II INTERNATIONAL
PSA SYMPOSIUM

events.unibo.it/psa2015
# PSA Symposium

**DAY 1 - 10-6-2015**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td></td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td>UNIBO DipSA- Director: Prof. Vicari Alberto</td>
<td>ISHS Talk: Hunter David</td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td><strong>Session Biology and Diversity</strong> - chairman Marco Scortichini</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>12:00</td>
<td><em>Evolution and population genomics of Pseudomonas syringae pv. actinidiae</em></td>
<td>McCann H.</td>
</tr>
<tr>
<td>12:00</td>
<td>12:20</td>
<td>New insights about the complexity of <em>Pseudomonas syringae pv. actinidiae</em> across the world</td>
<td>Mazzaglia A.</td>
</tr>
<tr>
<td>12:20</td>
<td>12:40</td>
<td>The completely assembled genome of a strain from the New Zealand PSA outbreak</td>
<td>Poulter R.</td>
</tr>
<tr>
<td>12:35</td>
<td>13:30</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>13:50</td>
<td>Molecular characterisation of <em>P. syringae pv. actinidiae</em> strains of biovar 3 strains isolated from Japan and Korea</td>
<td>Vanneste J.</td>
</tr>
<tr>
<td>13:50</td>
<td>14:10</td>
<td>Biological effect of VOCs produced during <em>Pseudomonas syringae pv. actinidiae</em> infection of kiwifruit plant</td>
<td>Cellini A.</td>
</tr>
<tr>
<td>14:10</td>
<td>14:40</td>
<td>The role of flagellin in <em>Pseudomonas syringae</em> - plant interactions: what we know and what we do not know</td>
<td>Vinatzer B.</td>
</tr>
<tr>
<td>14:40</td>
<td>15:00</td>
<td>Post-harvest quality and health of kiwifruit ‘Hayward’ affected by <em>Pseudomonas syringae pv. actinidiae</em></td>
<td>Prencipe S.</td>
</tr>
<tr>
<td>15:00</td>
<td>15:30</td>
<td>COFFEE BREAK</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>15:50</td>
<td>Latent infection by <em>Pseudomonas syringae pv. actinidiae</em> in Actinidia chinensis cv. Hort16A asymptomatic plants: five year of survival and colonization of a mutant virulent strain</td>
<td>Minardi P.</td>
</tr>
<tr>
<td>15:50</td>
<td>16:10</td>
<td>Quorum sensing in <em>Pseudomonas syringae pv. actinidiae</em> (Psa)</td>
<td>Fiorentini L.</td>
</tr>
<tr>
<td>16:10</td>
<td>16:30</td>
<td>Deciphering the plant transcriptome during the infection by <em>Pseudomonas syringae pv. actinidiae</em> (Psa)</td>
<td>Tacconi G.</td>
</tr>
<tr>
<td>16:30</td>
<td>16:50</td>
<td>Effect of plant extracts on <em>Pseudomonas syringae pv. actinidiae</em> gene expression, motility and virulence</td>
<td>Buriani G.</td>
</tr>
<tr>
<td>16:50</td>
<td>17:10</td>
<td>Dynamic evolution and role of the Pac_ICE in <em>Pseudomonas syringae pv. actinidiae</em></td>
<td>Colombi E.</td>
</tr>
<tr>
<td>16:55</td>
<td>17:00</td>
<td>Transcript comparison of <em>Pseudomonas syringae pv. actinidiae</em> genes expressed in vitro and in planta</td>
<td>Templeton M.</td>
</tr>
<tr>
<td>17:00</td>
<td>17:05</td>
<td>Preliminary results on susceptibility of <em>Actinidia</em> spp. genotypes against bacterial canker</td>
<td>Perez S.</td>
</tr>
<tr>
<td>17:05</td>
<td>17:10</td>
<td>First attempts to obtain <em>Actinidia deliciosa</em> plants inoculated with endophytes antagoñistic against</td>
<td>Ferrini F.</td>
</tr>
<tr>
<td>17:10</td>
<td>17:15</td>
<td>Looking for <em>Pseudomonas syringae pv. actinidiae</em> in asymptomatic kiwi plants in Spanish nurseries and orchards</td>
<td>López MM.</td>
</tr>
<tr>
<td>17:15</td>
<td>17:20</td>
<td>Use of loop-mediated isothermal amplification (LAMP) as diagnosis tool to identify Psa in open field</td>
<td>Buriani G.</td>
</tr>
</tbody>
</table>
Recent progress on control of *Pseudomonas syringae* pv. *actinidiae*  
Vanneste J.

Two years of evaluation of different control strategies for Bacterial Canker (*Pseudomonas syringae* pv. *actinidiae*, Psa) in Chile  
Soto S.

Five years of Psa product testing – what have we got and where to next?  
Gould E.M.

Assessment of 3 Tac-I/Beta, an antimicrobial peptide source, to control *Pseudomonas* plant pathogens  
Moya-Elizondo E.

Reduction in leaf spotting and flower bud loss symptomatic of *Pseudomonas syringae* *actinidiae* (Psa) possible using targeted spray applications and girdling: support from two field studies in Hayward kiwifruit  
Ryan T.

Field efficacy of some product against the bacterial canker of kiwifruit in Emilia-Romagna Region, Italy  
Preti M.

Coverage, accumulation and rainfastness of Nordox75WG on leaves of Hayward and Hort16A -  
Brun S.

Synthetic antibacterial peptides as novel compounds for the control of bacterial canker of kiwifruit  
Montesinos L.

Novel Grampositive bacterial strains against the bacterial canker of kiwifruit  
Mora I.

Poster session Control – chairman Gianni Tacconi

Bacteriophages as a new approach for the control of kiwifruit bacterial canker  
Tacconi G.

Experimental use of Bion® on Hayward Kiwifruit in France and on Hort16A Kiwifruit in Italy  
Willaert F.

Next generation biologically based strategies for suppression of Psa in kiwifruit  
Vanneste J.

Strategies for containment of Psa in Chile  
Bustos S.

The occurrence and control medicament screening of bacterial canker disease on kiwifruit in Guangxi Province of China  
Lee JW.

Overcoming barriers to the use of copper sprays for controlling Psa  
Max S.

Control of Bacterial kiwifruit disease in Piedmont  
Pizzinat A.

Innovative ways to fight Psa  
Onorato R.

Session Ecology and Epidemiology - chairman Joel Vanneste

The cycle of disease and population structure of *Pseudomonas syringae* pv. *actinidiae*  
Scortichini M.

Seasonal variation in accuracy of a weather-based Psa risk model and implications for disease management  
Beresford R.

Validation of New Zealand PSA forecasting model in Emilia-Romagna Region (Italy)  
Antoniacci L.

*Pseudomonas syringae* pv. *actinidiae* strains with low virulence and *P. syringae* pv. *actinidiae* look-alike strains of new types from kiwi plants cultivated in Spain  
Lopez M.M.

Influence of plastic tunnel and light quality on the interactions between *Pseudomonas syringae* pv. *actinidiae* and kiwifruit  
Costa G.

Poster session Ecology and Epidemiology – chairman Stefania Loreti

Development of a kiwifruit bacterial canker forecasting model by analyzing the effects of climate factors on the incidence of kiwifruit bacterial canker in Korea  
Koh Y.J.

Occurrence of virulent strain of *Pseudomonas syringae* pv. *actinidiae* in Japan  
Takikawa Y.

Study on the epidemic evolution of leaf spot symptoms caused by *P. syringae* pv *actinidiae* on kiwifruit  
Antoniacci L.

The impact of *Pseudomonas syringae* pv. *actinidiae* in kiwifruit orchards in Galicia (NW Spain)  
Abelleira A.

Increasing Resilience: Can Green kiwifruit survive Psa  
Max S.
Effect of elevated CO2 concentration on leaf structure and bacterial canker of kiwifruit

First outbreak and identification of bacterial canker of kiwifruit caused by *Pseudomonas syringae* pv. *actinidiae* biovar 3 in Ehime, Japan.

Siderophore production of virulent and low virulent strains of *Pseudomonas syringae* pv. *actinidiae*

The accessory genome of PSA strains from China, New Zealand, Chile, Italy, Japan and Korea

First outbreak and identification of bacterial canker of kiwifruit caused by *Pseudomonas syringae* pv. *actinidiae* biovar 3 in Ehime, Japan.

Siderophore production of virulent and low virulent strains of *Pseudomonas syringae* pv. *actinidiae*

The accessory genome of PSA strains from China, New Zealand, Chile, Italy, Japan and Korea

**DAY 3 - 12-6-2015**

**Session Ecology and Epidemiology - chairmain Antonio Cellini**

9:00 9:30 *Traits of Pseudomonas syringae* contributing to its fitness in and on plants Lindow S.

9:30 9:50 Influence of cultural practices on the incidence and severity of kiwifruit bacterial canker Spinelli F.

9:50 10:10 Growing kiwifruit under cover: challenges and opportunities Spinelli R.

10:10 10:40 COFFEE BREAK

**Session Diagnosis - chairman Giampaolo Buriani**

10:40 11:10 Early detection of plant pathogens and pests Boonham N.

11:10 11:30 Comparative genomics informed design of a LAMP detection assay for the pandemic subpopulation of the kiwifruit pathogen *Pseudomonas syringae* pv. *actinidiae* Ruinelli M.

11:30 11:50 A reliable method for *Pseudomonas syringae* pv. *actinidiae* detection in asymptomatic kiwifruit plants three years after pathogen inoculation in micropropagated shoots and buds Minardi P.

11:50 12:10 Multilocus VNTR Analysis of *P. s.* pv. *actinidiae* and pv. *actinidifoliorum* strains isolated from symptomatic kiwifruit Cunty A.

12:10 12:30 A test performance study (TPS) on the detection and identification of *Pseudomonas syringae* pv. *actinidiae* from wood and pollen blind samples Loreti S.

**FIELD VISIT, VISIT OF THE DOZZA CASTLE, REGIONAL VINE COLLECTION and WINE TASTING**

**DAY 4 - 13-6-2015**

**Session Diagnosis - chairman Giampaolo Buriani**

9:00 9:30 Identification of virulence associated loci in *Pseudomonas syringae* pv. *actinidiae* Venturi V.

**Session Germplasm Resources, Resistance and Breeding - chairman Guglielmo Costa**

9:30 10:00 Identification and characterization of sources of resistance to *Pseudomonas syringae* pv. *actinidiae* (Psa) Montefiori M.

10:00 10:20 Metabolite profiling a useful technique to understand Psa tolerance in kiwifruit? Clark G.

10:20 10:45 COFFEE BREAK

10:45 11:05 Outcomes of the Emilia Romagna Regional project Testolin R.

11:05 11:25 Conservation of *A. chinensis* alleles in a Psa environment Datson P.

11:25 12:10 Conclusion, plenary session, Business meeting

17:00 20.30 Technical Meeting