NC differential geometry	Classical jet functors	Quantum symmetric forms	

Jet functors in noncommutative geometry

Mauro Mantegazza

Joint work with Keegan Flood and Henrik Winther

Masaryk University, Brno

Quantum, Super afternoon in Bologna 9 September 2022

NC differential geometry	Classical jet functors	Quantum symmetric forms	
000			

Noncommutative differential geometry

Starting point: study a geometric object via an algebra of "regular" functions over it (e.g. $\mathcal{C}^{\infty}(M)$, $\mathcal{O}(M)$, $\Bbbk[x_1, \ldots, x_n]/I$). **Main idea:** the algebraic object becomes the focus of study, it is generalised and interpreted as the algebraic dual of a more general notion of space.

NC differential geometry	Classical jet functors	Quantum symmetric forms	
•00			

Noncommutative differential geometry

Starting point: study a geometric object via an algebra of "regular" functions over it (e.g. $\mathcal{C}^{\infty}(M)$, $\mathcal{O}(M)$, $\Bbbk[x_1, \ldots, x_n]/I$). **Main idea:** the algebraic object becomes the focus of study, it is generalised and interpreted as the algebraic dual of a more general notion of space.

We want to generalise the commutative \mathbb{R} -algebra $\mathcal{C}^{\infty}(M)$ to an *arbitrary unital associative* algebra A. If A is commutative, then constructions should reproduce classical geometry.

NC differential geometry	Classical jet functors	Quantum symmetric forms	
000			

Noncommutative differential geometry

Starting point: study a geometric object via an algebra of "regular" functions over it (e.g. $\mathcal{C}^{\infty}(M)$, $\mathcal{O}(M)$, $\Bbbk[x_1, \ldots, x_n]/I$). **Main idea:** the algebraic object becomes the focus of study, it is generalised and interpreted as the algebraic dual of a more general notion of space.

We want to generalise the commutative \mathbb{R} -algebra $\mathcal{C}^{\infty}(M)$ to an *arbitrary unital associative* algebra A. If A is commutative, then constructions should reproduce classical geometry.

Geometry	Algebra	NCDG	Structure
\mathbb{R} (or \mathbb{C})	\mathbb{R} (or \mathbb{C})	k	comm. unital ring
M	$\mathcal{C}^{\infty}(M)$	A	unital assoc. 🛛 🗠 🗠
<i>E</i> v.b.	$\Gamma(E)$	E	f.g.p. left A -module
$E \to F$	$\Gamma(E) \to \Gamma(F)$	$E \to F$	left A -linear map
Useful categ	ories: $_A FGP \subseteq _A$	$\operatorname{Proj} \subseteq A^{\operatorname{I}}$	$Flat \subseteq {}_{A}Mod, Mod_{A}.$

NC differential geometry	Classical jet functors	Quantum symmetric forms	
000			

In order to describe the differential structure, we equip A with a generalised notion of exterior algebra over it.

Definition (Exterior algebra over A)

Associative graded algebra $(\Omega_d^{\bullet}, \wedge)$ with $\Omega_d^0 = A$, endowed with a differential, i.e. a k-linear map $d: \Omega_d^n \to \Omega_d^{n+1}$ such that:

- $d^2 = 0;$
- $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^n \alpha \wedge (d\beta)$ for $\alpha \in \Omega^n_d$, $\beta \in \Omega^h_d$;
- A and dA generate Ω_d^{\bullet} via \wedge .

Examples:

- de Rham complex $(\Omega^{\bullet}(M), \wedge, d)$;
- universal exterior algebra $(\Omega_u^{\bullet}, d_u, \otimes_A)$.

NC differential geometry	Classical jet functors	Quantum symmetric forms	
000			

In particular, for the first grade (universal first order diff. calculus):

$$\Omega_u^1 = \ker\left(\cdot \colon A \otimes A \longrightarrow A\right)$$

with differential

$$d_u: A \longrightarrow \Omega^1_u, \qquad \qquad d_u(a) = 1 \otimes a - a \otimes 1.$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	
000			

In particular, for the first grade (universal first order diff. calculus):

$$\Omega_u^1 = \ker\left(\cdot \colon A \otimes A \longrightarrow A\right)$$

with differential

$$d_u: A \longrightarrow \Omega^1_u, \qquad \qquad d_u(a) = 1 \otimes a - a \otimes 1.$$

Universal property: given an exterior algebra Ω_d^{\bullet} on A, there exists a unique surjective map

$$\Omega^{\bullet}_u \longrightarrow \Omega^{\bullet}_d.$$

compatible with the algebra structure: grading, d, \wedge . Explicitly, $\sum_i a_i \otimes b_i \in \Omega^1_u$ is mapped to $\sum_i a_i db_i \in \Omega^1_d$.

	Classical jet functors •000	Quantum symmetric forms	
1 II.			

Jet bundles

Given a vector bundle $E \to M$, the associated *n*-jet bundle $J^n E \to M$ represents the bundle of *n*-th order approximations of sections of E (equivalence classes up to *n*-th order contact).

Classical jet functors	Quantum symmetric forms	

Jet bundles

Given a vector bundle $E \to M$, the associated *n*-jet bundle $J^n E \to M$ represents the bundle of *n*-th order approximations of sections of E (equivalence classes up to *n*-th order contact). They provide:

- an intrinsic notion of "Taylor approximation";
- a characterisation of differential operators;
- an intrinsic definition of differential equation;
- a tool for a theory of differential equations.

NC differential geometry	Classical jet functors	Quantum symmetric forms	
	0000		

Jet bundles come equipped with:

• *n*-jet prolongation (\mathbb{R} -linear) map $\forall n \ge 0$

$$j^n \colon \Gamma(E) \hookrightarrow \Gamma(J^n E), \qquad \sigma \longmapsto [\sigma]^n;$$

• jet projections (vector bundle maps) $\forall n \ge m \ge 0$

$$\pi^{n,m} \colon J^n E \longrightarrow J^m E, \qquad [\sigma]_p^n \longmapsto [\sigma]_p^m.$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	
	0000		

Jet bundles come equipped with:

• *n*-jet prolongation (\mathbb{R} -linear) map $\forall n \geq 0$

$$j^n \colon \Gamma(E) \hookrightarrow \Gamma(J^n E), \qquad \sigma \longmapsto [\sigma]^n;$$

• jet projections (vector bundle maps) $\forall n \ge m \ge 0$

$$\pi^{n,m} \colon J^n E \longrightarrow J^m E, \qquad [\sigma]_p^n \longmapsto [\sigma]_p^m.$$

This construction is functorial: $\phi \colon E \to F$ gives

$$J^n\phi\colon J^nE\longrightarrow J^nF,\qquad\qquad [\sigma]_p^n\longmapsto [\phi\circ\sigma]_p^n,$$

and the following are natural transformations

$$j^n\colon {\rm id}_{{}_A{\rm Mod}}\longrightarrow \Gamma\circ J^n \qquad \quad \pi^{n,m}\colon J^n\longrightarrow J^m,$$
 such that

$$\pi^{n,m} \circ \pi^{m,h} = \pi^{n,h}, \qquad \qquad \pi^{n,m} \circ j^n = j^m.$$

Classical jet functors	Quantum symmetric forms	

Aim: to find a notion of jet bundle for noncommutative geometry.

Classical jet functors 00●0	Quantum symmetric forms	

Aim: to find a notion of jet bundle for noncommutative geometry. **How?** we use a property of jet bundles: they fit in the following short exact sequence of vector bundle (*n*-jet s.e.s.)

$$0 \longrightarrow S^n E \longrightarrow J^n E \xrightarrow{\pi^{n,n-1}} J^{n-1} E \longrightarrow 0.$$

Classical jet functors 00●0	Quantum symmetric forms	

Aim: to find a notion of jet bundle for noncommutative geometry. **How?** we use a property of jet bundles: they fit in the following short exact sequence of vector bundle (*n*-jet s.e.s.)

$$0 \longrightarrow S^n E \longrightarrow J^n E \xrightarrow{\pi^{n,n-1}} J^{n-1} E \longrightarrow 0.$$

Taking global sections we obtain the following short exact sequence of finitely generated projective $\mathcal{C}^{\infty}(M)$ -modules (equivalent by Serre-Swann)

$$0 \longrightarrow \Gamma(S^n E) \longrightarrow \Gamma(J^n E) \xrightarrow{\Gamma \pi^{n,n-1}} \Gamma(J^{n-1} E) \longrightarrow 0.$$

Classical jet functors 000●	Quantum symmetric forms	

Given an exterior algebra Ω^{\bullet}_d over A, we need to find functors $S^n_d, J^n_d \colon {}_A \operatorname{Mod} \longrightarrow {}_A \operatorname{Mod}$ and natural transformations

$$\iota_d^n \colon S_d^n \longrightarrow J_d^n, \qquad \qquad \pi_d^{n,m} \colon J_d^n \longrightarrow J_d^m,$$

fitting in the following short exact sequence

$$0 \longrightarrow S_d^n \stackrel{\iota_d^n}{\longleftrightarrow} J_d^n \stackrel{\pi_d^{n,n-1}}{\longrightarrow} J_d^{n-1} \longrightarrow 0.$$

Furthermore, we want a k-linear natural transformation $j^n_d\colon \mathrm{id}_{{}_A\mathrm{Mod}}\longrightarrow J^n_d$ such that

$$\pi_d^{n,m} \circ \pi_d^{m,h} = \pi_d^{n,h}, \qquad \qquad \pi_d^{n,m} \circ j_d^n = j_d^m.$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	
		000	

Quantum symmetric forms

In the classical case, the $\mathcal{C}^{\infty}(M)$ -module of differential forms with values in a bundle E can be seen as $\Omega^{\bullet}(M) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$. So, given an exterior algebra Ω^{\bullet}_{d} over A, we can define the functors

$$\begin{array}{lll} \Omega^{\bullet}_{d} \colon {}_{A}\mathrm{Mod} & \longrightarrow {}_{A}\mathrm{Mod} & E \longmapsto \Omega^{\bullet}_{d} \otimes_{A} E; \\ \Omega^{n}_{d} \colon {}_{A}\mathrm{Mod} & \longrightarrow {}_{A}\mathrm{Mod} & E \longmapsto \Omega^{n}_{d} \otimes_{A} E. \end{array}$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	
		000	

Quantum symmetric forms

In the classical case, the $\mathcal{C}^{\infty}(M)$ -module of differential forms with values in a bundle E can be seen as $\Omega^{\bullet}(M) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$. So, given an exterior algebra Ω^{\bullet}_{d} over A, we can define the functors

$$\Omega^{\bullet}_{d}: {}_{A}\mathrm{Mod} \longrightarrow {}_{A}\mathrm{Mod} \qquad \qquad E \longmapsto \Omega^{\bullet}_{d} \otimes_{A} E;$$
$$\Omega^{n}_{d}: {}_{A}\mathrm{Mod} \longrightarrow {}_{A}\mathrm{Mod} \qquad \qquad E \longmapsto \Omega^{n}_{d} \otimes_{A} E.$$

We define the functors

$$S_d^0 = \Omega_d^0 = \mathrm{id}_{A\mathrm{Mod}}, \qquad \qquad S_d^1 = \Omega_d^1 := \Omega_d^1 \otimes_A -.$$

For n > 1, the **functor of quantum symmetric forms** S_d^n is defined by induction as the kernel of the following composition

$$\begin{split} \Omega^1_d \circ S^{n-1}_d & \xrightarrow{\Omega^1_d(\iota^{n-1}_\wedge)} \Omega^1_d \circ \Omega^1_d \circ S^{n-2}_d \xrightarrow{\wedge_{S^{n-2}_d}} \Omega^2_d \circ S^{n-2}_d \\ \text{and } \iota^n_\wedge \colon S^n_d & \longrightarrow \Omega^1_d \circ S^{n-1}_d \text{ is the inclusion.} \end{split}$$

Classical jet functors	Quantum symmetric forms 000	

The following lemma shows other equivalent descriptions of S_d^n .

Lemma 1

If Ω_d^1 and Ω_d^2 are flat in Mod_A , for all $n \ge 0$, the following subfunctors of the tensor algebra $T_d^n := (\Omega_d^1)^{\otimes_A n}$ coincide

$$S_d^n; \Im \cap_{k=0}^{n-2} \ker \left(T_d^k \wedge_{T_d^{n-k-2}} \right); \Im \cap_{\substack{h \ge 2\\ 0 \le k \le n-h}} \ker \left(T_d^k (\wedge_h)_{T_d^{n-k-h}} \right), \text{ where } \wedge_h: T_d^h \longrightarrow \Omega_d^h; \\ \\ \left(S_d^h \circ T_d^{n-h} \right) \cap \left(T_d^{n-k} \circ S_d^k \right) \text{ for } 0 \le h, k \le n \text{ such that } h+k > n.$$

Classical jet functors	Quantum symmetric forms	

Spencer cohomology

For all $k,h\geq 0,$ consider the functor $\Omega^k_d\circ S^h_d,$ and define $\delta^{h,k}$ as

$$\Omega_d^k \circ S_d^h \xrightarrow{\Omega_d^k(\iota_\wedge^h)} \Omega_d^k \circ \Omega_d^1 \circ S_d^{h-1} \xrightarrow{(-1)^k \wedge S_d^{k,1}} \Omega_d^{k+1} \circ S_d^{h-1} \xrightarrow{\delta^{h,k}} \Omega_d^{h,k}$$

We get a complex in the category of functors of type ${}_AMod \rightarrow {}_AMod$.

$$0 \longrightarrow S_d^n \xrightarrow{\delta^{n,0}} \Omega_d^1 \circ S_d^{n-1} \xrightarrow{\delta^{n-1,1}} \Omega_d^2 \circ S_d^{n-2} \xrightarrow{\delta^{n-2,2}} \Omega_d^3 \circ S_d^{n-3} \cdots$$

Definition (Spencer cohomology)

We call this the Spencer δ -complex, its cohomology the Spencer cohomology, and we denote the cohomology at $\Omega_d^k \circ S_d^h$ by $H^{h,k}$.

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors	
			●000000	

Universal 1-jet module

We start from the simplest case by computing $J_u^1 E$ for E = A (classically $A = \mathcal{C}^{\infty}(M) \cong \Gamma(M \times \mathbb{R})$).

Universal 1-jet module

We start from the simplest case by computing $J_u^1 E$ for E = A(classically $A = \mathcal{C}^{\infty}(M) \cong \Gamma(M \times \mathbb{R})$). Since $S_u^1 = \Omega_u^1 = \ker(\cdot) \subset A \otimes A$, we have a natural way of building the 1-jet short exact sequence, that is

$$0 \longrightarrow \Omega^1_u \longrightarrow A \otimes A \longrightarrow A \longrightarrow 0.$$

Universal 1-jet module

We start from the simplest case by computing $J_u^1 E$ for E = A(classically $A = \mathcal{C}^{\infty}(M) \cong \Gamma(M \times \mathbb{R})$). Since $S_u^1 = \Omega_u^1 = \ker(\cdot) \subset A \otimes A$, we have a natural way of building the 1-jet short exact sequence, that is

$$0 \longrightarrow \Omega^1_u \longrightarrow A \otimes A \longrightarrow A \longrightarrow 0.$$

We thus define $J_u^1 A := A \otimes A$ (free 1-dim. *A*-bimodule), where the projection $\pi_u^{1,0} : J_u^1 A \longrightarrow A$ is the algebra multiplication. We take as universal prolongation $j_u^1 : a \mapsto 1 \otimes a$, which splits the sequence in Mod_A .

Classical jet functors	Quantum symmetric forms 000	NC Jet functors 0●00000	

$$0 \longrightarrow \Omega^1_u \longleftrightarrow J^1_u A := A \otimes A \xrightarrow[\pi^{1,0}]{\pi^{1,0}} A \longrightarrow 0$$

Classical jet functors	Quantum symmetric forms 000	NC Jet functors 0●00000	

$$0 \longrightarrow \Omega_u^1 \longleftrightarrow J_u^1 A := A \otimes A \xrightarrow[\pi_u^{1,0}]{\pi_u^{1,0}} A \longrightarrow 0$$
$$0 \longrightarrow \Omega_d^1 \longleftrightarrow J_d^1 A \xrightarrow{\pi_d^{1,0}} A \longrightarrow 0$$

Classical jet functors	Quantum symmetric forms	NC Jet functors 0●00000	

Classical jet functors	Quantum symmetric forms 000	NC Jet functors 0●00000	

	Classical jet functors	Quantum symmetric forms	NC Jet functors 0●00000	
	N_d	$\ker(\widehat{p}_d)$	0	
	\int	\int	L	
0 —	$\rightarrow \Omega^1_u \longrightarrow J^1_u$	$A := A \otimes A \xrightarrow{10}$	$A \longrightarrow 0$	
	$\overset{p_d}{*}$	$\downarrow_{\widehat{p}_d}^{\pi_u^{,\circ}}$		
0 —	$\rightarrow \Omega^1_d$ \leftarrow	$\rightarrow J_d^1 A \xrightarrow{\pi_d} \gg$	$A \longrightarrow 0$	
	\downarrow	\downarrow	Ļ	
	0 0	$\operatorname{coker}(\widehat{p}_d)$	0	

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors 0●00000	Results 0000
0 —	$\rightarrow N_d \longrightarrow$	$\ker(\hat{p}_d) \longrightarrow 0$	·	

	Classical jet functors 0000	Quantum symmetric forms	NC Jet functors 0●00000	
$0 \longrightarrow$	$N_d = $	$= N_d - \dots$	$\rightarrow 0$	
$0 \longrightarrow$	$\begin{array}{ccc} \Omega^1_u & \longrightarrow & J^1_u \\ & \downarrow^{p_d} \\ & & \downarrow \end{array}$	$A := A \otimes A \xrightarrow[\pi_u^{1,0}]{\pi_u^{1,0}}$ $\downarrow \widehat{p}_d \xrightarrow[\pi_u^{1,0}]{\pi_u^{1,0}}$	$\rightarrow A \longrightarrow 0$	
$0 \longrightarrow$	$\Omega^1_d \longrightarrow J^1_d A =$	$= (A \otimes A)/N_d \xrightarrow{\sim_d}$	$A \longrightarrow 0$	

NC differential geometry	Classical jet functors 0000	Quantum symmetric forms	NC Jet functors ○●○○○○○	Results 0000
0	$ \begin{array}{c} & N_d \\ & \downarrow \\ & \downarrow \\ & & \Omega^1_u & \longrightarrow & J^1_u \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	$= N_d - \underbrace{\int_{a}^{j_u} \frac{j_u^1}{\sqrt{1-y_u^1}}}_{A := A \otimes A} - \underbrace{\int_{\pi_u^{1,0}}^{j_u^1} \frac{j_u^1}{\pi_u^{1,0}}}_{p_d}$	$\begin{array}{c} \stackrel{ ightarrow 0}{\downarrow} \\ \stackrel{ ightarrow A}{\longrightarrow} A \longrightarrow 0 \\ \parallel \end{array}$	

NC differential geometry	Classical jet functors 0000	Quantum symmetric forms	NC Jet functors ○●○○○○○	Results 0000
0 ——	$\rightarrow N_d = $	$= N_d - \int_{k} \frac{j_u^1}{k} dk$	$\rightarrow 0$ \downarrow	
0 ——	$\rightarrow \Omega^1_u \longrightarrow J^1_u$	$A := A \otimes A$		

We thus define $J^1_dA \mathrel{\mathop:}= A \otimes A/N_d$,

$$\pi^{1,0}_d([a\otimes b]) := ab, \qquad \qquad j^1_d(a) := [1\otimes a].$$

	Classical jet functors 0000	Quantum symmetric forms	NC Jet functors 0●00000	
0		3.7	0	

We thus define $J_d^1A := A \otimes A/N_d$,

$$\pi_d^{1,0}([a \otimes b]) := ab, \qquad \qquad j_d^1(a) := [1 \otimes a].$$

In order to obtain the short exact sequence for all E in $_AMod$ we can apply the functor $- \otimes_A E \colon _AMod \longrightarrow Mod$. The 1-jet sequence splits in Mod_A , so it remains exact.

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors	
			000000	

Nonholonomic jet functors

Definition

We term the functor

$$J_d^{(n)} := (J_d^1)^{\circ n} = J_d^1 \circ \dots \circ J_d^1 = (J_d^1 A)^{\otimes_A n} \otimes_A - : {}_A \mathrm{Mod} \to {}_A \mathrm{Mod}$$

the nonholonomic *n*-jet functor. The following composition is called the nonholonomic *n*-jet prolongation.

$$j_d^{(n)} := j_{d,J_d^{(n)}}^1 \circ j_{d,J_d^{(n-1)}}^1 \circ \cdots \circ j_{d,J_d^1}^1 \circ j_d^1 : \mathrm{id} \longrightarrow J_d^{(n)}.$$

For all $1 \le m \le n$, we have the natural epimorphisms

$$\pi_d^{(n,n-1;m)} = J_d^{(n-m)} \pi_{d,J^{(m-1)}}^{1,0} \colon J_d^{(n)} \xrightarrow{} J_d^{(n-1)}$$

which will be called the nonholonomic *n*-jet projections.

Classical jet functors	Quantum symmetric forms	NC Jet functors 000●000	

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

$$0 \longrightarrow S_d^2 E \xrightarrow{\iota_{d,E}^2} J_d^2 E \xrightarrow{\pi_{d,E}^{2,1}} J_d^1 E \longrightarrow 0$$

Classical jet functors	Quantum symmetric forms	NC Jet functors	Results

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

$$0 \longrightarrow S_d^2 E \xrightarrow{\iota_{d,E}^2} J_d^2 E \xrightarrow{\pi_{d,E}^{2,1}} J_d^1 E \longrightarrow 0$$

$$0 \longrightarrow \Omega^1_d(J^1_d E) \xrightarrow[\iota^1_{d,J^1_d E}]{} J^{(2)}_d E \xrightarrow[\pi^{1,0}_{d,J^1_d E}]{} J^1_d E \longrightarrow 0$$

Classical jet functors	Quantum symmetric forms	NC Jet functors 000●000	

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

Classical jet functors	Quantum symmetric forms	NC Jet functors 000●000	

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

We assume Ω^1_d flat in Mod_A .

Classical jet functors 0000	Quantum symmetric forms	NC Jet functors 000●000	

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

We assume Ω_d^1 flat in Mod_A . As for the classical case, we expect the jet prolongation to agree with the nonholonomic one, i.e.

$$l_{d,E}^2 \circ j_{d,E}^2 = j_{d,E}^{(2)} = j_{d,J_d^1E}^1 \circ j_{d,E}^1.$$

Classical jet functors	Quantum symmetric forms	NC Jet functors 000●000	

We build the (holonomic) 2-jet module with the aim that the following sequence is exact

We assume Ω_d^1 flat in Mod_A . As for the classical case, we expect the jet prolongation to agree with the nonholonomic one, i.e.

$$l_{d,E}^2 \circ j_{d,E}^2 = j_{d,E}^{(2)} = j_{d,J_d^1 E}^1 \circ j_{d,E}^1.$$

Under these conditions, $j_d^{(2)}(E) + S_d^2 E \subseteq J_d^{(2)} E$ satisfies the 2-jet short exact sequence.

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors	
			0000000	

We can describe $J_d^2 E$ implicitly as the kernel of a bilinear map

$$\widetilde{\mathcal{D}}_E \colon J_d^{(2)} E \longrightarrow (\Omega_d^1 \ltimes \Omega_d^2)(E),$$

where $(\Omega_d^1 \ltimes \Omega_d^2)(E) \cong (\Omega_d^1 \ltimes \Omega_d^2) \otimes_A E$. As a right *A*-module, $\Omega_d^1 \ltimes \Omega_d^2 \cong \Omega_d^1 \oplus \Omega_d^2$, but as an *A*-bimodule, it comes equipped with a non-trivial left action

$$f \star (\alpha + \omega) = f\alpha + df \wedge \alpha + f\omega, \quad \forall f \in A, \ \alpha \in \Omega^1_d, \ \omega \in \Omega^2_d.$$

Explicitly, we have

$$\widetilde{\mathbf{D}}_E \colon J_d^{(2)} E \longrightarrow (\Omega_d^1 \ltimes \Omega_d^2)(E)$$
$$[a \otimes b] \otimes_A [c \otimes e] \longmapsto (ad(bc) \otimes_A e, da \wedge d(bc) \otimes_A e).$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors	
			0000000	

Definition (Holonomic *n*-jet functor)

Let A be a \Bbbk -algebra endowed with an exterior algebra Ω_d^{\bullet} over it. We define J_d^n as the kernel of the natural transformation

$$J_d^1 \circ J_d^{n-1} \xrightarrow{J_d^1(l_d^{n-1})} J_d^1 \circ J_d^1 \circ J_d^{n-2} \xrightarrow{\mathbb{D}_{J_d^{n-2}}} (\Omega_d^1 \ltimes \Omega_d^2) \circ J_d^{n-2},$$

where we denote the natural inclusion by $l_d^n: J_d^n \longrightarrow J_d^1 \circ J_d^{n-1}$. We call J_d^n the (holonomic) *n*-jet functor.

It is natural to consider the following composition

$$\iota_{J_d^n} := J_d^{(n-2)}(l_d^2) \circ J_d^{(n-3)}(l_d^3) \circ \cdots \circ J_d^{(1)}(l_d^{n-1}) \circ l_d^n \colon \mathbf{J_d^n} \longrightarrow \mathbf{J_d^{(n)}}.$$

In general, $\iota_{J_d^n}$ is not injective (as has been noted also in the setting of synthetic differential geometry).

NC differential geometry	Classical jet functors	Quantum symmetric forms	NC Jet functors	
			000000	

We define the **(holonomic)** *n*-jet projection as the natural transformation $\pi^{n,n-1}$ obtained as the composition

$$J_d^n \xrightarrow{l_d^n} J_d^1 \circ J_d^{n-1} \xrightarrow{\pi^{1,0}} J_d^{n-1} \xrightarrow{\pi^{1,0}} J_d^{n-1}.$$

More generally, by composing them, we get, for all $0 \le m \le n$,

$$\pi_d^{n,m} := \pi_d^{m+1,m} \circ \pi_d^{m+2,m+1} \circ \cdots \circ \pi_d^{n,n-1} \colon \mathbf{J_d^n} \longrightarrow \mathbf{J_d^m}$$

The natural map ι_d^n is defined by induction, for $n \ge 2$ as the unique morphism that commutes in the following diagram

$$S_d^n \xrightarrow{\iota_{\wedge}^n} \Omega_d^1 \circ S_d^{n-1} \xrightarrow{\Omega_d^1(\iota_d^{n-1})} \Omega_d^1 \circ J_d^{n-1} \xrightarrow{\downarrow_{d,J_d^{n-1}}} J_d^n \circ J_d^{n-1} \xrightarrow{\downarrow_{d,J_d^{n-1}}} J_d^n \xrightarrow{\downarrow_{d,J_d^{n-1}}} J_d^1 \circ J_d^{n-1}$$

NC differential geometry	Classical jet functors	Quantum symmetric forms	Results
			0000

Theorem (Holonomic jet exact sequence)

Let A be a k-algebra endowed with an exterior algebra Ω_d^{\bullet} such that Ω_d^1 , Ω_d^2 , and Ω_d^3 are flat in Mod_A . For $n \ge 1$, if the Spencer cohomology $H^{m,2}$ vanishes, for all $1 \le m < n-2$, then the following sequence is exact,

$$0 \longrightarrow S_d^n \stackrel{\iota_d^n}{\longleftrightarrow} J_d^n \stackrel{\pi_d^{n,n-1}}{\longrightarrow} J_d^{n-1} \longrightarrow H^{n-2,2}$$

Therefore, if $H^{n-2,2} = 0$ we obtain a short exact sequence

$$0 \longrightarrow S^n_d \stackrel{\iota^n_d}{\longrightarrow} J^n_d \stackrel{\pi^{n,n-1}_d}{\xrightarrow{}} J^{n-1}_d \longrightarrow 0$$

Classical jet functors	Quantum symmetric forms	Results 0●00

Theorem (Stability)

Let A be a k-algebra endowed with an exterior algebra Ω_d^{\bullet} .

- If Ω_d^1 is in $_A$ Flat (resp. $_A$ Proj, $_A$ FGP), then $J_d^{(n)}$ preserves $_A$ Flat (resp. $_A$ Proj, $_A$ FGP);
- If Ω¹_d, Ω²_d, and Ω³_d are flat in Mod_A, H^{m,2} vanishes and S^m_d is in _AFlat (resp. _AProj, _AFGP), for all 1 ≤ m ≤ n, then Jⁿ_d preserves _AFlat (resp. _AProj, _AFGP).

These functors are reasonable, as they map bundles into bundles.

NC differential geometry	Classical jet functors	Quantum symmetric forms	Results
			0000

Theorem (Classical correspondence)

Let $A = C^{\infty}(M)$ for a smooth manifold M, let $\Omega_d^{\bullet} = \Omega^{\bullet}(M)$ equipped with the de Rham differential d, and let E be the space of smooth sections of a vector bundle. Then the $C^{\infty}(M)$ -modules of sections of the associated classical nonholonomic and holonomic n-jet bundles are isomorphic to $J_d^{(n)}E$ and J_d^nE in $_A$ Mod, respectively, and the prolongation maps and jet projections are compatible with the isomorphisms.

Definition (Differential operators)

Let $E, F \in {}_{A}Mod$. A k-linear map $\Delta : E \to F$ is called a linear differential operator of order at most n with respect to the exterior algebra Ω_{d}^{\bullet} , if there exists an A-module map $\widetilde{\Delta} \in {}_{A}Hom(J_{d}^{n}E, F)$ such that the following diagram commutes:

If n is minimal, we say that Δ is of order n.

- stability under sum and composition;
- what should be a differential operator is a differential operator (connections, d, partial derivatives, $\tilde{D}_E = \tilde{D}_E \circ j^1_{J^1_1E}$);
- new tool to build exterior algebras (terminal calculi).

NC differential geometry	Classical jet functors	Quantum symmetric forms	
			0000

Thank you!