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Problem

Let 7" be a (possibly nonlinear) system with

@ output space ‘H
@ input set C' C ‘H.

We want to find a fixed point 7 of T"

c H

X —

x>

Fix T = set of fixed points of T'.

Example: If T"is a feedforward neural network, Fix T is defined by a
system of subdifferential inclusions [Combettes, Pesquet - 2020]
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Fixed point theorem

(Emile Picard, 1856-1941)

If C' = H is a Hilbert space and

T is a Banach contraction, i.e. there exists p € [0, 1]
such that

(V(z,2") € H?) Tz — T2'|| < p|lxz — 2]

Then T has a unique fixed point .
The sequence (z,)nen defined as (Vn € N) z,,,1 = Tz, with ¢ € H,
converges linearly to 7.
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Feasibility problems

(John Von Neumann, 1903-1957 — Dante C. Youla, 1925-2021)

Problem
Let S; and S be two closed convex subsets of H such S1 NSy # @.
We want to

Find 7 € S; N S,.
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Feasibility problems

(John Von Neumann, 1903-1957 — Dante C. Youla, 1925-2021)

Problem
Let S; and S be two closed convex subsets of H such S1 NSy # @.
We want to

Find f € Sl N Sg
&  Find 2 =T(z) with T = projg, o projg,.
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Feasibility problems

Problem
Let S; and S5 be two closed convex subsets of H such S; NSy # .
We want to

Find T € 51 NSy
&  Find 2 =T(z) with T = projg, o projg,.

POCS algorithm

Set zp € H
Forn=0,...
\_ Lp41 = projsl (projSan).

Convergence properties although 7" is not a Banach contraction
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Possibly infeasible problems

Problem
Let S; and S; be two closed convex subsets of H.
We want to
2 o o 2
minimize ds. (z
€S Sz( )

| — projg,z|”
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Possibly infeasible problems

Problem
Let S; and S; be two closed convex subsets of H.
We want to

A )
minimize dg, ()

|z — projg,||*

Projected gradient algorithm

Set o €EH

Forn=0,...

[ Tpy1 = projsl (xn - %Vdg‘z (xn))
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Possibly infeasible problems

Problem
Let S; and Sy be two closed convex subsets of H.
We want to

o . . 2
minimize dg, ()

Projected gradient algorithm

Set rg € H

Forn=0,...

\‘ Tn+1 = pl“OjSl (xn - %vdgg (xn))
= projg, (projg, n)

POCS with 2 sets solves a minimization problem
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More than 2 sets

POCS algorithm
(Si)1<i<m closed convex subsets of H

SetxOE’H
Forn=0,...

L Tnt1 = PrOjg, O+ O PrOjg Tp.

'

T
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More than 2 sets

POCS algorithm
(Si)1<i<m closed convex subsets of H

Set Zo eH
Forn=0,...
\‘ Zpt1 = Projg, © -+ O Projg  Tp.

T

o If N2, S; # @, (weak) convergence to a point in the
intersection
o Otherwise, generates a limit cycle (71, ...,T,,) such that

T, = pI'Oj Sh To

Ty = proj $,T3

Tp—1 = projsm,lfm

Ty = prOjSmTI
(T1,...,Tpm) with m > 3 is not a solution to an optimization
problem [Baillon, Combettes, Cominetti - 2012
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Mathematical tools
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Some vocabulary
An operator T: H — H is

e p-Lipschitz with p € ]0, 400 if
(V(z,y) € H?) || Tw— Tyl < pllz —y||
@ nonexpansive if T is 1-Lispchitz

e a-averaged with a €]0,1] if T = (1 — o)Id + aQ where Q is
nonexpansive

e firmly nonexpansive if it is 1/2-averaged

e [-cocoercive with 3 € ]0, +oo[ if 5T is firmly nonexpansive.
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Examples

o FIRMLY NONEXPANSIVE OPERATORS
» projection onto a closed convex set
» proximity operator of a function f € T'o(H)
To(H) : class of lower-semicontinuous convex function from H

to | — 0o, +00] which are proper (i.e. finite at least at one
point)

1
prox; : H — H: x — argmin f(y) + S lly — |2,
yeEH 2

(Jean-Jacques Moreau, 1923-2014)
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Examples

o FIRMLY NONEXPANSIVE OPERATORS
» projection onto a closed convex set
> proximity operator of a function f € I'o(H)

1
prox; : H — H: z v argmin f(y) + 5|y — =2
yeEH 2

1.6p|—p=1

i ~
os) |55 -

of L—p=4 —

-0.5]

-1 //

1.5,

=] 2 0 1 2 3

pI‘OXHp
Remark: If C' C H nonempty, closed, and convex set, then
projo = prox,,, where ¢ is the indicator function of C:

Ve e H =
(v ) wl@) 400 otherwise.

{o ifzeC

JCP (CVN) Sardinia May 2023 11/37



Examples

o FIRMLY NONEXPANSIVE OPERATORS

» projection onto a closed convex set
» proximity operator of a function f € T'g(H)

» resolvent of a maximally monotone operator (MMO) A:
Ja=(1d +A)_1 TH—>H
A multivalued operator A : H — 2" is monotone if

(V(l‘l,l‘g) S Hz)(V(ul,UQ) € Axq XAxQ) (u1 — U2 | a1 = iL'Q) >0.

I

(

T
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Examples

o FIRMLY NONEXPANSIVE OPERATORS

» projection onto a closed convex set
» proximity operator of a function f € I'o(H)

» resolvent of a maximally monotone operator (MMO) A:
Ja=(0d+A) H>H
A multivalued operator A : H — 2" is monotone if
(V(z1,22) € HZ)(V(ul,ug) € Ary X Axg) (ug —ug | 21 —22) =0 .

It is maximally monotone if its graph is maximal in the sense
of the inclusion relation.u

T
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Examples

o FIRMLY NONEXPANSIVE OPERATORS

» projection onto a closed convex set
> proximity operator of a function f € T'o(H)

> resolvent of a maximally monotone operator (MMO) A:
Ja=Id+A) H - H
A multivalued operator A : H — 2% is monotone if
(V(x1,20) € HE)(V(u1,ug) € AxyxAxy) (ug —ug | 21 —29) > 0.

It is maximally monotone if its graph is maximal in the sense
of the inclusion relation.
Remark:

* If f: Hy X Ha — [—00,4+00] where H1 and Hz are two real
Hilbert spaces and, for every (z1,x2) € Hi X H1,
f(-,IQ) € Fo(Hl) and *f(l‘l, ) (S Fo(Hz), then

A: (x1,32) = Of (,22) X (=0f(21,"))
is maximally monotone.
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Examples

e FIRMLY NONEXPANSIVE OPERATORS

» projection onto a closed convex set
» proximity operator of a function f € T'g(H)

» resolvent of a maximally monotone operator (MMO) A:
Ja=0d+A) "t :H-H
A multivalued operator A : H — 27 is monotone if
(V(x1,22) € Hz)(V(ul,ug) € Az xAxg) (ug —ug | &1 —x2) 20

It is maximally monotone if its graph is maximal in the sense
of the inclusion relation.

Remark:
* If f € To(H), Of is maximally monotone and prox; = Jyj.
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Examples

@ [-COCOERCIVE OPERATORS

» gradient Vf of a differentiable convex function f if Vf is
1/5-Lipschitzian
» if (T})1<i<m are fi-cocoercive and (L;)1<i<m are linear

bounded operators with adjoints (L)i<i<m defined on Hilbert

X

spaces, then z — >, L*(T;(L;x)) is cocoercive.
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Examples

@ [-COCOERCIVE OPERATORS

» gradient Vf of a differentiable convex function f if Vf is
1/5-Lipschitzian
» if (T})1<i<m are B;-cocoercive and (L;)1<i<m are linear

bounded operators with adjoints (L)i<i<m defined on Hilbert

X

spaces, then z — >, L*(T;(L;x)) is cocoercive.

@ «-AVERAGED OPERATORS

» Banach contractions
» if T is B-cocoercive, then Id — T is v/(2[3)-averaged when

v €]0,28]
Remark: If T'=V f, Id —~T": gradient descent operator
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Examples

@ [-COCOERCIVE OPERATORS

» gradient Vf of a differentiable convex function f if Vf is
1/5-Lipschitzian
» if (T})1<i<m are fi-cocoercive and (L;)1<i<m are linear

bounded operators with adjoints (L)1<i<m defined on Hilbert

X

spaces, then x — > " L*(T;(L;z)) is cocoercive.

@ (-AVERAGED OPERATORS
» Banach contractions
» if T is B-cocoercive, then Id —~T is v/(2/3)-averaged when
v €]0,28]
Remark: If T =V f, Id —~T": gradient descent operator
» a convex combination or a composition of averaged operators is
an averaged operator
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Map of operator world

nonexpansive operators

a-averaged operators, a < 1

Lipschitzian operators

firmly nonexpansive
operators/resolvents

proximity operators

brojection operatory

cocoercive
operators
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Fixed point algorithms

Krasnosel'skii-Mann-like algorithm

(Mark O. Krasnosel'skii, 1920-1997 — William R. Mann, 1920-2006)

Let 7': H — H be an a-averaged operator with « €]0, 1] such that
FixT # @.
Let (A,)nen be a sequence in [0, 1/« such that

Z)xn(l —a\,) = +oo.

neN

Let zp € H and (Vn € N) xp11 = @ + A\ (Txy, — 2y).
Then (,)nen converges (weakly) to a point in Fix T'.
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Fixed point algorithms

Krasnosel'skii-Mann-like algorithm

Let T: H — H be an a-averaged operator with a €]0, 1] such that
FixT # .
Let (A,)nen be a sequence in [0, 1/a] such that

Z An(1 —a,) = +o0.

neN

Let zo € H and (Vn € N) @11 = Ty + M\o(Ty, — 24).
Then (z,,)nen converges (weakly) to a point in Fix 7.

Remark: if o < 1, one can choose (Vn € N) )\, =1, that is

(Vn eN) x,11 =Tx,.
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Fixed point algorithms

Krasnosel'skii-Mann-like algorithm: stochastic variant

Same assumptions on 7" and (A, )nen.
Let zo and (e,,)nen be H-valued random variables and

(VneN) z,01 =2, + A\ (Tx, + 6, — ).

Suppose that »  _ Auv/E(l[en]]?|Xn) < 400 as., where

X, is the o-algebra generated by (zo, ..., z,).
Then (x,,)nen converges (weakly) a.s. to a (Fix T')-valued random vari-

able.
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Fixed point algorithms

Krasnosel'skii-Mann-like algorithm: random block-coordinate variant

» Variable splitting

Ty € H;

/ i
r ceH ) H = x2H;

Tm € Hp

Hi,...,Hn are separable real Hilbert spaces

» Block decomposition of T: z — (Thz,...,Thx)
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Fixed point algorithms

Krasnosel'skii-Mann-like algorithm: random block-coordinate variant

» Variable splitting
» Block decomposition of T: z — (Tiz,...,Tmx)
» Update of selected coordinates

Vie{l,....m}(Vn €N) z;p11 =Tin+ CinIn(TiTn — Tin)

where ¢;,, € {0, 1} random activation variable.
» Assumptions
o inf,en A, > 0 and sup,,cy A < 1/
® (,)nen are identically distributed
e Foreveryn €N, ¢, and (zo, ..., x,) are mutually independent.
] (VZ S {]., 000 ,m}) P[Ei,(] = 1] > 0.
Then (z,,)nen converges (weakly) a.s. to a (Fix T')-valued random vari-
able.
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14 /37



Optimization
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Fixed point formulation

@ Problem
Let f: H — ]—o0, +00]. We want to

Find 7 € Argminf

@ Reformulation
Find z=T(2)

where T: H — H.
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Fixed point formulation

e Problem
Let f: H — |]—00, +00]. We want to

Find 7 € Argminf

@ More general reformulation

Find {7~ 017
z=T(%)
where @: L — H and T": £ — K.
JCP (CVN) Sardinia May 2023
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Fixed point formulation

@ Problem
Let f: H — |]—00, +0o0]. We want to

Find 7 € Argminf

@ More general reformulation
Find {7~ 017
z=T(2)

where &: I — H and T: K — K.

@ Primal-dual methods .
=1
v

where ¥ solution to the dual optimization problem.

JCP (CVN) Sardinia May 2023
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Algorithms

/ = 0: Bricefio Arias-Combettes

algorithm function D T
gradient descent l Id Id — V¢
proximal point g 1d Prox.,
proximal gradient/ g+t Id prox,, o (Id —~V/)
forward-backward (FB)
Tseng/ Y d {ld —7VE) o prox,, o (Id — V) + V¢
FBF
Dual FB/ g+holL prox,(z — L*) prox,,. o (Id + yLprox,(Z — L))
dual ascent +1) - =32
Douglas-Rachford g+h Prox., (2prox,, —Id ) o (2prox.;, —Id)
3 operator splitting gt+h+( Prox.;, prox., © (2prox,;, —Id — V¢ o prox.;,) +1d — prox,,
ADMM g+hol | (wyN)r—a @y N = (7108 + LL) L (y = N prox, (L +X) A + Lo —y)
Condat-Vii g+hoL+/( (z.v) = Jyao (Id — MB)
. o TJog L[] o [VE@)] ,, [rd -Lr ]!
£ = 0: Chambolle-Pock A(z,v) = [*L 0h"] L} B(z,v) = [ At M= I o'l
Loris-Verhoeven hoL+1( (z,v) =z Juao (Id — MB)
BN O AR P @] L, [P 0 -
Ale,o) = [—L Bh*] H Bl =" ] M= [ 0 o lld—7L'L
Combettes-Pesquet g+hoL+( (z,v) =z (Id —yB)o Jyao(ld —yB)+~B

e ] e[ 5]

g and h proper lower semi-continuous convex functions
h* Fenchel-Legendre conjugate of h
£ convex and differentiable function

L linear bounded operator with adjoint L*

~ €10, 400[, (r,0) € 10, +oo[? such that 7o || L||% < 1

JCP (CVN)
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Adjoint mismatch

E. Chouzenoux, J.-C. Pesquet, C. Riddell, M. Savanier, and Y. Trousset,
Convergence of proximal gradient algorithm in the presence of adjoint mismatch,
Inverse Problems, June 2021.
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Problem

PENALIZED LEAST SQUARES

1
mir;iernz[lize §||Hx —z|I* + g(x) + g||$||27

where
@ H and G real Hilbert spaces
@ z€ G and H: H — G bounded linear operator
(i.e. projector in tomography)
o elastic net-like penalty: g € I'o(#H) and x € [0, +o0]

FORWARD-BACKWARD ALGORITHM
(Vn € N) zp4q = prox, (1 —yk)z, — yH* (Hz, — 2)), 7> 0

Difficulty : H* may be hard to compute exactly
(i.e. backprojector in tomography)
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Mismatched algorithm

ForMm

(Vn eN)  zp1 = prox,, ((1 — y&)z, — yEKu(Ha, — 2)).
where
© > en Ky — K| < +o0
@ (K,)neny and K bounded linear operator from G to H.
KEY ASSUMPTIONS

o L = KH + kld is - cocoercive .
If no mismatch (K = H*), B~ = |H||? + &.
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Mismatched algorithm

ForMm

(Vn eN)  zp1 = prox,, ((1 — y&)z, — yEKu(Ha, — 2)).
where
© > en Ky — K| < +o0
@ (K,)neny and K bounded linear operator from G to H.
KEY ASSUMPTIONS
o L = KH + kld is - cocoercive .
Sufficient condition: Amin > 0, 871 = (\/m—i— ”2€/an—1|) ,

where Apin (resp. Amax) minimum (resp. maximum) spectral
value of (L + L*)/2.
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Mismatched algorithm

ForMm

(Vn eN)  zp1 = prox,, ((1 — y&)z, — yEKu(Ha, — 2)).
where
© > en Ky — K| < +o0
@ (K,)neny and K bounded linear operator from G to H.
KEY ASSUMPTIONS
o L = KH + kld is - cocoercive .

o F= {x6H|0€Lx—Kz+ag }%@
[f no mismatch, F is the set of minimizers.
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Mismatched algorithm

ForMm

(Vn eN)  zp1 = prox,, ((1 — y&)z, — yEKu(Ha, — 2)).
where
© > pen [fn — K| < 400
o (K,)nen and K bounded linear operator from G to H.

KEY ASSUMPTIONS
o L = KH + kld is - cocoercive .

o F={zeH|0ecLle—Kz+0g(x)} # 2.
Sufficient condition: domdg = H and
g 400 3 | La) + g(z) = +00.
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Main results
CONVERGENCE

Let v €]0,25]. Then the sequence (z,).cn generated by the mis-
matched algorithm converges weakly to a point = € F .

In addition, if Ayin > 0 and, for every n € N, K,, = K, then (z,)nen
converges linearly.

ERROR BOUND

Assume that the following hold.

@ Let u € [0, 400[ be the strong convexity modulus of g. Either
1> 0or A\ # 0.
@ 7 is a solution to the minimization problem.

Then there exists a unique solution Z € F and

17 = 2l < x I(H" = B)(HZ - 2)]|

where X 1/<,U, F 2)\m1n)
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Reconstruction example

abdomen phantom in fan beam geometry
180° using 50 angles, 62 bin detector
K pixel-driven backprojector

g o< |[W |1 with W orthogonal Symlet wavelet decomposition

0 0
{1000
20
200 ‘
0 os

sinogram

original
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Reconstruction example

abdomen phantom in fan beam geometry
180° using 50 angles, 62 bin detector
K pixel-driven backprojector

g o< ||W - ||1 with W orthogonal Symlet wavelet decomposition

original

mismatched divergent mismatched convergent
JCP (CVN)

May 2023
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Extensions

@ Primal-dual formulations

[Chouzenoux, Contreras, Pesquet, Savanier - 2023]

@ Unmatched preconditioning

[Chouzenoux, Savanier, Pesquet, Riddel - 2022]

o = = = E DA
JCP (CVN) Sardinia



Neural network compression

S. Verma and J.-C. Pesquet,
Sparsifying networks via subdifferential inclusion,
International Machine Learning Conference, Jul., 2021.
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Feedforward NNs

bl bm
z—{ W; —)@—) R, > -+ — W, —)@—) R, Tz

Neural network model
Let m > 1 be an integer.

T:Tmo...oT1

where (Vi € {1,...,m}) T;: RNi-1 - RNi: 2 — R,(Wiz +b;),
W; € RNixNi1 i 3 weight operator

b; is a (bias) vector in R,

and R;: RNt — R is a nonlinear (activation) operator.

More generally, (W;)1<i<m can be MIMO convolutive

operators
JCP (CVN) Sardinia May 2023 25 /37



Standard activation operators
Most of them are proximity operators [Combettes, Pesquet - 2020]
e Rectified linear unit (ReLU)

& if £€>0;

TR—R: &~
¢ ¢ {o, if £ <0.

Then, 0 = projy ;o[-
e Parametric RelLU

§ it £>0;

, €10, 1].
at, if £€<0 a €0.1]

Q:R—>R:§r—>{

Then ¢ = prox, where

_ . 0, if £€>0;
SRR Lo {(1/a— 1)¢%/2, if £<0.
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Standard activation operators
Most of them are proximity operators [Combettes, Pesquet - 2020]

e Unimodal sigmoid

1 1

"RoR:é—s —————
e $7 ret 2

Then ¢ = prox, where

€+1/2)In(€+1/2) + (1/2 - &) In(1/2 - &) - %(52 +1/4) it €] <1/2;
P& 4 —1/4, if |€]=1/2
e Elliot function ¢
0:R—=R: ¢ Tm

We have ¢ = prox,, where

—lel =1 - |e)) - &, if | <1

¢:R_>]_007+OO]:§H{+007 el

JCP (CVN) Sardinia May 2023 26 /37



Standard activation operators

Most of them are proximity operators [Combettes, Pesquet - 2020]

R:RY =5 RY: (&)1chen — (eXP ) ZGXP &) )

where u = (1,. ..,

1<k<N

1)/N € RY.

Then R = prox,, where ¢ = (- +u) + (- | u) and

Y: RY =] — 00, +00]
N

(€k)1<han

JCP (CVN)

2

Z §eln gy — %k), if (&)<icn € [0,1)Y

k=1
N
and Z@ =1
k=1
~+00, otherwise.

Sardinia May 2023
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Standard activation operators
Most of them are proximity operators [Combettes, Pesquet - 2020]

e Squashing function used in capsnets

|| 8
Vo e RY) Rr=—LT"—ux = prox,,.a, = —,
( ) 1+ |22 PTOX o .| H 33
where

N e
arctan AT -5, i [ <
%, el =
~+00, otherwise.
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Standard activation operators
Most of them are proximity operators [Combettes, Pesquet - 2020]

e Squashing function used in capsnets

N Il 8
(Vx S R ) Rl' = T”x”Qx = proxd,O”,Hx, n = ﬁ7
where
(&)
oo ———— ——— oo
Q-_J
t t 3
—n w
JCP (CVN) Sardinia May 2023
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FB model of NNs

Let m > 1 be an integer.

T:Tmo...oTl

where (Vi € {1,...,m}) T;: RNi-t - RY:: 2 prox; (Wiz + b;),
W; € RN*Ni-1 is 3 weight operator

b; is a (bias) vector in RV,

and f; € To(RM)

X =prox;, (Wi @iy +0b;)
~~ ~~
output of i-th layer input of i-th layer

< Wizi 1 +b; — x; € Ofi(;)
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Convex formulation of NN compression

e Data decomposition: P mini-batches (B;)i<;j<p
@ Minimization problem

minimize  ||[W;];
(Wi,bi)eNi—, Cij

where, for every j € {1,..., P},

Cog = {(Wi,b) | Y dpa,  (Witimr + bi — i) = 0}

teB;

JCP (CVN) Sardinia May 2023 28 /37



Convex formulation of NN compression

e Data decomposition: P mini-batches (B;)i<;j<p

@ Minimization problem

minimize  ||[W;|;
(Wibi)eNiZ, Cij

where, for every j € {1,..., P},

Ci,j = {(VI/Z? bi) ‘ Z dé%fi(mi,t)(Wixi—l,t +0; — CUi,t) < |]Bj|77}

teB;

1 > 0: accuracy tolerance

JCP (CVN) Sardinia May 2023 28 /37



Convex formulation of NN compression

) : P mini-batches (]Bj)lgjgp

minimize  |W||;
(Wibi) €N, Ci;

where, for every j € {1,..., P},

Ci; = {(VVu bi) ‘ Z dgfi(zi,t)(mxi—l,t +b —xiy) < ’Bj|77}

tGB]'

n > 0: accuracy tolerance

(]
Douglas-Rachford iterations

~ prijfz1 ., computed by block-iterative subgradient

projection algorithm

JCP (CVN) Sardinia
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Numerical results

ACCURACY

Dataset CIFAR-10 CIFAR-100
Pruning ratio 90% 95% 98% 90% 95%  98%
ResNet50 (Baseline) 94.62 - - 77.39 - -
SNIP 92.65 90.86 87.21 73.14 69.25 58.43
GraSP 9247 9132 8877 7328 7029 62.12
SynFlow 9249 91.22 88.82 7337 7037 6217
STR 9259 91.35 88.75 73.45 70.45 62.34
FORCE 9256 91.46 88.88 73.54 70.37 62.39
LRR 92.62 91.27 89.11 74.13 70.38 62.47
RigL 9255 91.42 89.03 73.77 70.49 6233
SIS (Ours) 92.81 91.69 90.11 73.81 70.62 62.75

INFERERENCE FLOPS at 90% sparsity level on ImageNet

ResNet50 (Baseline)

SNIP  GraSP  SynFlow STR FORCE SIS (Ours)

4.14G

409M  470M

465M

341M

455M

298M
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Maximally Monotone
Regularization

J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux,
Learning maximally monotone operators for image recovery,
SIAM Journal on Imaging Sciences, Aug. 2021.

JCP (CVN) Sardinia May 2023 30/37



Variational formulations of inverse problems

e Optimization problem

Find 2 € Argmin l(x)
xRN ~——

g(x)
Data fidelity term

MAIN CHALLENGE:
Choose the right form of regularizer and its right parameters

o = = = E DA
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Variational formulations of inverse problems
e Optimization problem

Find % € Argmin

{(x) + g(z)
z€RN ~—— ~——
Data fidelity term _
e Equivalent variational inclusion problem
If £ € Ty(RY) and g € To(RY) (+ qualification condition), then
0 € 90(Z) + Jg()

=] = = = E DA
JCP (CVN) Sardinia



Variational formulations of inverse problems

e Optimization problem

Find 2 € Argmin l(x) + g(x)
z€RN ~—— ~——

Data fidelity term _

@ Extension to monotone inclusion problem
If £ € Ty(RY), then

0 € 0UR) + A)

where A is a MMO

~» new regularization paradigm
~~ more general

~ easier to learn
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PnP approach
e Assumption: £ is differentiable with a 1//5-Lipschitz gradient,
B €10, +o0]

@ Forward-backward algorithm

(VneN) z,11= Jya (xn - VVK(xn))
~——
Denoiser
with v €]0, 23].

@ Objectives

» Learn the best denoiser ~ recent PnP approaches
» With guaranteed convergence conditions
» By characterizing the limit point.
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Learning strategy

Id +Q

Tya =

where () nonexpansive
°

~> universal approximation theorem to MMOs using
nonexpansive feedforward NNs

(Vo € RY) [[VQy(2)] <1
f: parameters of the NN
~ penalization A Y7, max{||VQy(z,)|% 1 — ¢}
e € [0,1[, A €]0,+00[, (z;)1<t<r: training sequence
°

image denoising task in the presence of zero-mean white

Gaussian noise based on penalized MSE loss
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Image restoration results
@ Q9 = DnCNN - 20 layers

=) =)
AREIENE g 64| S|
input —L— 2 =S =3 = output
Q 4 4 Q
O g g O
— =
o
@ Evaluate ¢, = ||z, — z,,_1]|/||%0]|, for generated sequence
(xn)nEN
Cn Cn Cn
1073 1073 1073
1079 1078 1079
10_77 L L L 10_7 L L L 10_77 L L L
300 600 900 300 600 900 300 600 900
PnP FB iteration n PnP FB iteration n PnP FB iteration n
(a) BM3D (b) RealSN (c) Proposed
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Image restoration results

@ ()p = DnCNN - 20 layers

° (BSD68)
denoiser kernel
(a) (b) (c) (d) (e) (f) (g) (h)
Observation 23.36  22.93 2343 19.49 23.84 19.85 20.75 20.67
RealSN 26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92
PrOX, 1wt |, 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06
1 1Y wav
Prox, -y 29-70 29.35 2943 29.15 30.67 30.62 29.61 29.23
DnCNN 29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17
BM3D 30.05 29.53 29.93 29.10 31.08 30.78 29.56 29.41
Proposed 30.86 30.33 30.31 30.14 31.72 31.69 30.42 30.09
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square

( (25.14,0.771) (25.45,0.464)
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square

(27.05,0.772)  (30.05.0.897) (27.43,0.675)
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square

(29.73,0.834) (29.32,0.891) (26.97,0.611)
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square
i1 ) T

-

(21.39,0.888) (30.96.0.911) (27.53,0.669)
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square
i1 ) T

Proposed

=5k

(31.89,0901)  (31.61,0921) (28.10,0.733)
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Visual results on color images

BSD500 test set
Motion A Gaussian A Square

Further improvement: U-Net postprocessing

TN-—
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Conclusion
@ Fixed point theory: backbone of optimization methods

@ General framework for analyzing approaches which go beyond
optimization

@ Wide number of applications

@ Many developments skipped: parallel splitting, primal-dual
formulations, Bregman divergences, game theory,...

P. L. Combettes and J.-C. Pesquet,
Fixed point strategies in data science,
IEEE Transactions on Signal Processing, March 2021.
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Thank you for your attention!

Is there a fixed point?

https://jc.pesquet.eu
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